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COURSEWORK 1 — SOLUTIONS

Exercise (∗) 1. The solutions will appear on WeBWork after CW1 due date.

Exercise 2. Write A = (aij) and B = (bij), meaning (as in lectures) that aij and bij denote the
(i, j)-entries of A and B, respectively.

(a) The matrices (αA)T and α(AT ) have the same size because A is a square matrix. We need
to check that they have the same entries. The (i, j)-entry of αA is αaij, so the (i, j)-entry
of (αA)T is αaji, which in turn is equal to the (i, j)-entry of α(AT ). Thus (αA)T and
α(AT ) have the same entries, so it follows that (αA)T = α(AT ).

(b) Again, since (A + B)T and AT + BT have the same size we only need to check that they
have the same entries. To see this, note that the (i, j)-entry of A + B equals aij + bij, so
the (i, j)-entry of (A + B)T equals aji + bji, which in turn is equal to the (i, j)-entry of
AT + BT . Thus (A + B)T and AT + BT have the same entries as claimed, and it follows
that (A+B)T = AT +BT .

Exercise 3.
(a) Using properties of matrix addition and multiplication, we find that

(A+B)2 = (A+B)(A+B) = A2 +BA+ AB +B2 .

Thus (A+B)2 = A2 + 2AB +B2 if and only if BA = AB, i.e. if and only if A and B commute.
(b) We need to show that I −A+A2 is the inverse of I +A (under the assumption A3 = 0). That
is, we must show that the matrices (I +A)(I −A+A2) and (I −A+A2)(I +A) are both equal
to the identity matrix I. Since A3 = 0, we have

(I + A)(I − A+ A2) = I − A+ A2 + A− A2 + A3 = I + A3 = I + 0 = I

and

(I − A+ A2)(I + A) = I − A+ A2 + A− A2 + A3 = I + A3 = I + 0 = I ,

which is what we wanted. Therefore, (I + A)−1 = I − A+ A2. In particular, we see that I + A is
invertible because we have just written down its inverse!

(c) Since we are assuming that A is invertible, i.e. that A−1 exists, it at least makes sense to consider
the possibility that the inverse of AT is equal to (A−1)T . To show that this is actually true, we must
show that AT (A−1)T and (A−1)TAT are both equal to the identity matrix. Using the property in
the hint, we find that

AT (A−1)T = (A−1A)T = IT = I

and

(A−1)TAT = (AA−1)T = IT = I .

Thus AT is invertible with inverse (A−1)T , that is

(AT )−1 = (A−1)T .



Exercise 4. (a) Write A = (aij)n×n and B = (bij)n×n. Since A and B are diagonal, we have
aij = 0 and bij = 0 whenever i 6= j. Now write AB = (cij)n×n, i.e. let cij denote the
(i, j)-entry of AB. We are trying to show that AB is diagonal, so we must show that cij = 0
whenever i 6= j. The definition of matrix multiplication says that

cij =
n∑

k=1

aikbkj.

Now, in this notation we have aik = 0 whenever i 6= k, and bkj = 0 whenever j 6= k; so
the only way that one of the terms aikbkj in above sum can be non-zero is if both i and j
are equal to k (because both aik and bkj would have to be non-zero). In particular, i and j
have to be equal to each other! If they are not, then cij = 0, which is what we were trying
to show.

We also need to show that A and B commute. Write BA = (dij)n×n. By the above
proof, we know that BA is also diagonal (i.e. we could have just interchanged the roles of
A and B in the above proof). Since both AB and BA are diagonal, we just need to show
that their diagonal entries, i.e. those with i = j, are equal. That is, we must show that
cii = dii for all i ∈ {1, . . . , n}. We have

cii =
n∑

k=1

aikbki,

and in order for a term aikbki in this sum to be non-zero, we need both aik and bki to be
non-zero, so we need k = i. Therefore,

cii = aiibii.

But if we swap the roles of A and B in this calculation, we find that

dii = biiaii = aiibii.

Since this argument did not depend on the value of i, we have shown that cii = dii for all
i, which is what we wanted.

(b) Let’s use the same notation A = (aij)n×n, B = (bij)n×n and AB = (cij)n×n as in part (a).
We are assuming that A and B are upper triangular, i.e. that aij = 0 and bij = 0 whenever
i > j. We must show that AB is upper triangular, i.e. that cij = 0 whenever i > j. From
the definition of matrix multiplication, we can write

cij =
n∑

k=1

aikbkj =

j∑
k=1

aikbkj +
n∑

k=j+1

aikbkj.

Since A is upper triangular, we have aik = 0 whenever i > k; but we are also assuming that
i > j (because we are trying to show that cij = 0 in this case), so in the sum

∑j
k=1 aikbkj

above we have k ≤ j < i and hence all of the aik in this sum are 0. Similarly, in the second
sum

∑n
k=j+1 aikbkj we have k < j (because k starts from j + 1 in this sum) and hence

bkj = 0 because B is upper triangular. Combining these last two observations, we conclude
that when i > j we have

cij =

j∑
k=1

aik︸︷︷︸
=0

bkj +
n∑

k=j+1

aik bkj︸︷︷︸
=0

= 0 ,

which means that AB = (cij) is indeed upper triangular.



(c) Two upper triangular matrices will not necessarily commute. Here is a counterexample. If

A =

1 1 0
0 1 0
0 0 1

 and B =

1 0 0
0 1 1
0 0 1

 ,

then

AB =

1 1 1
0 1 1
0 0 1

 but BA =

1 1 0
0 1 1
0 0 1

 .

Exercise 5. (a) We are assuming that A is symmetric, i.e. that AT = A, and we must prove
that BABT is symmetric, i.e. that (BABT )T = BABT . By Proposition 2.12(4) in the
lecture notes (which says that (CD)T = DTCT for matrices C and D), we have (BABT )T =
(BT )TATBT = BATBT . Since A is symmetric, this equals BABT , which is what we
wanted.

(b) In general, we have (AB)T = BTAT . If A and B are symmetric, it follows that (AB)T =
BA. This equals AB if and only if A and B commute (by definition of “commute”).

(c) We are assuming that AB = I, and we are trying to prove that also BA = I. This means
that B is invertible (with inverse A). By the Invertible Matrix Theorem, to prove that B
is invertible, we can instead prove that that Bx = 0 has only the trivial solution. But if
Bx = 0, then

x = Ix = ABx = A0 = 0 ,

so indeed the only solution of Bx = 0 is the trivial solution. Hence, B is invertible, but
we still need to show that A is the inverse of B, i.e. that BA = I (we already know that
AB = I, by assumption). Let C denote the inverse of B, so that BC = I = CB. Then,
in particular, CB = AB (because both are equal to I) and so part (d) gives A = C, i.e.
A is the inverse of B. (Alternatively, observe that BA = BAI = BA(BC) = B(AB)C =
BIC = BC = I.)

(d) Multiplying both sides of the equation AB = AC on the left by A−1 (which we are assuming
exists) gives A−1AB = A−1AC, i.e. IB = IC, i.e. B = C as required.

Exercise 6. Matlab code:

A=[2 4; -6 0]

A =

2 4

-6 0

B=[1 -5; -3 2]

B =

1 -5

-3 2

A-B

ans =



1 9

-3 -2

1/2*A-3*B

ans =

-2 17

6 -6

M=[1 1 1 -3 -2; 2 3 0 -4 1; -3 -4 -1 6 -1]

M =

1 1 1 -3 -2

2 3 0 -4 1

-3 -4 -1 6 -1

rref(M)

ans =

1 0 3 0 3

0 1 -2 0 1

0 0 0 1 2

C=inv(A)

C =

0 -0.1667

0.2500 0.0833

C*A

ans =

1 0

0 1

A*C

ans =

1 0

0 1


