MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra

COURSEWORK 1 - SOLUTIONS

Exercise (*) 1. The solutions will appear on WeBWork after CW1 due date.
Exercise 2. Write $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, meaning (as in lectures) that $a_{i j}$ and $b_{i j}$ denote the (i, j)-entries of A and B, respectively.
(a) The matrices $(\alpha A)^{T}$ and $\alpha\left(A^{T}\right)$ have the same size because A is a square matrix. We need to check that they have the same entries. The (i, j)-entry of αA is $\alpha a_{i j}$, so the (i, j)-entry of $(\alpha A)^{T}$ is $\alpha a_{j i}$, which in turn is equal to the (i, j)-entry of $\alpha\left(A^{T}\right)$. Thus $(\alpha A)^{T}$ and $\alpha\left(A^{T}\right)$ have the same entries, so it follows that $(\alpha A)^{T}=\alpha\left(A^{T}\right)$.
(b) Again, since $(A+B)^{T}$ and $A^{T}+B^{T}$ have the same size we only need to check that they have the same entries. To see this, note that the (i, j)-entry of $A+B$ equals $a_{i j}+b_{i j}$, so the (i, j)-entry of $(A+B)^{T}$ equals $a_{j i}+b_{j i}$, which in turn is equal to the (i, j)-entry of $A^{T}+B^{T}$. Thus $(A+B)^{T}$ and $A^{T}+B^{T}$ have the same entries as claimed, and it follows that $(A+B)^{T}=A^{T}+B^{T}$.

Exercise 3.

(a) Using properties of matrix addition and multiplication, we find that

$$
(A+B)^{2}=(A+B)(A+B)=A^{2}+B A+A B+B^{2}
$$

Thus $(A+B)^{2}=A^{2}+2 A B+B^{2}$ if and only if $B A=A B$, i.e. if and only if A and B commute. (b) We need to show that $I-A+A^{2}$ is the inverse of $I+A$ (under the assumption $A^{3}=0$). That is, we must show that the matrices $(I+A)\left(I-A+A^{2}\right)$ and $\left(I-A+A^{2}\right)(I+A)$ are both equal to the identity matrix I. Since $A^{3}=0$, we have

$$
(I+A)\left(I-A+A^{2}\right)=I-A+A^{2}+A-A^{2}+A^{3}=I+A^{3}=I+0=I
$$

and

$$
\left(I-A+A^{2}\right)(I+A)=I-A+A^{2}+A-A^{2}+A^{3}=I+A^{3}=I+0=I
$$

which is what we wanted. Therefore, $(I+A)^{-1}=I-A+A^{2}$. In particular, we see that $I+A$ is invertible because we have just written down its inverse!
(c) Since we are assuming that A is invertible, i.e. that A^{-1} exists, it at least makes sense to consider the possibility that the inverse of A^{T} is equal to $\left(A^{-1}\right)^{T}$. To show that this is actually true, we must show that $A^{T}\left(A^{-1}\right)^{T}$ and $\left(A^{-1}\right)^{T} A^{T}$ are both equal to the identity matrix. Using the property in the hint, we find that

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I
$$

Thus A^{T} is invertible with inverse $\left(A^{-1}\right)^{T}$, that is

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

Exercise 4. (a) Write $A=\left(a_{i j}\right)_{n \times n}$ and $B=\left(b_{i j}\right)_{n \times n}$. Since A and B are diagonal, we have $a_{i j}=0$ and $b_{i j}=0$ whenever $i \neq j$. Now write $A B=\left(c_{i j}\right)_{n \times n}$, i.e. let $c_{i j}$ denote the (i, j)-entry of $A B$. We are trying to show that $A B$ is diagonal, so we must show that $c_{i j}=0$ whenever $i \neq j$. The definition of matrix multiplication says that

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Now, in this notation we have $a_{i k}=0$ whenever $i \neq k$, and $b_{k j}=0$ whenever $j \neq k$; so the only way that one of the terms $a_{i k} b_{k j}$ in above sum can be non-zero is if both i and j are equal to k (because both $a_{i k}$ and $b_{k j}$ would have to be non-zero). In particular, i and j have to be equal to each other! If they are not, then $c_{i j}=0$, which is what we were trying to show.

We also need to show that A and B commute. Write $B A=\left(d_{i j}\right)_{n \times n}$. By the above proof, we know that $B A$ is also diagonal (i.e. we could have just interchanged the roles of A and B in the above proof). Since both $A B$ and $B A$ are diagonal, we just need to show that their diagonal entries, i.e. those with $i=j$, are equal. That is, we must show that $c_{i i}=d_{i i}$ for all $i \in\{1, \ldots, n\}$. We have

$$
c_{i i}=\sum_{k=1}^{n} a_{i k} b_{k i},
$$

and in order for a term $a_{i k} b_{k i}$ in this sum to be non-zero, we need both $a_{i k}$ and $b_{k i}$ to be non-zero, so we need $k=i$. Therefore,

$$
c_{i i}=a_{i i} b_{i i} .
$$

But if we swap the roles of A and B in this calculation, we find that

$$
d_{i i}=b_{i i} a_{i i}=a_{i i} b_{i i} .
$$

Since this argument did not depend on the value of i, we have shown that $c_{i i}=d_{i i}$ for all i, which is what we wanted.
(b) Let's use the same notation $A=\left(a_{i j}\right)_{n \times n}, B=\left(b_{i j}\right)_{n \times n}$ and $A B=\left(c_{i j}\right)_{n \times n}$ as in part (a). We are assuming that A and B are upper triangular, i.e. that $a_{i j}=0$ and $b_{i j}=0$ whenever $i>j$. We must show that $A B$ is upper triangular, i.e. that $c_{i j}=0$ whenever $i>j$. From the definition of matrix multiplication, we can write

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{j} a_{i k} b_{k j}+\sum_{k=j+1}^{n} a_{i k} b_{k j} .
$$

Since A is upper triangular, we have $a_{i k}=0$ whenever $i>k$; but we are also assuming that $i>j$ (because we are trying to show that $c_{i j}=0$ in this case), so in the sum $\sum_{k=1}^{j} a_{i k} b_{k j}$ above we have $k \leq j<i$ and hence all of the $a_{i k}$ in this sum are 0 . Similarly, in the second sum $\sum_{k=j+1}^{n} a_{i k} b_{k j}$ we have $k<j$ (because k starts from $j+1$ in this sum) and hence $b_{k j}=0$ because B is upper triangular. Combining these last two observations, we conclude that when $i>j$ we have

$$
c_{i j}=\sum_{k=1}^{j} \underbrace{a_{i k}}_{=0} b_{k j}+\sum_{k=j+1}^{n} a_{i k} \underbrace{b_{k j}}_{=0}=0,
$$

which means that $A B=\left(c_{i j}\right)$ is indeed upper triangular.
(c) Two upper triangular matrices will not necessarily commute. Here is a counterexample. If

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
A B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { but } \quad B A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Exercise 5. (a) We are assuming that A is symmetric, i.e. that $A^{T}=A$, and we must prove that $B A B^{T}$ is symmetric, i.e. that $\left(B A B^{T}\right)^{T}=B A B^{T}$. By Proposition 2.12(4) in the lecture notes (which says that $(C D)^{T}=D^{T} C^{T}$ for matrices C and D), we have $\left(B A B^{T}\right)^{T}=$ $\left(B^{T}\right)^{T} A^{T} B^{T}=B A^{T} B^{T}$. Since A is symmetric, this equals $B A B^{T}$, which is what we wanted.
(b) In general, we have $(A B)^{T}=B^{T} A^{T}$. If A and B are symmetric, it follows that $(A B)^{T}=$ $B A$. This equals $A B$ if and only if A and B commute (by definition of "commute").
(c) We are assuming that $A B=I$, and we are trying to prove that also $B A=I$. This means that B is invertible (with inverse A). By the Invertible Matrix Theorem, to prove that B is invertible, we can instead prove that that $B \mathbf{x}=\mathbf{0}$ has only the trivial solution. But if $B \mathbf{x}=\mathbf{0}$, then

$$
\mathbf{x}=I \mathrm{x}=A B \mathbf{x}=A \mathbf{0}=\mathbf{0}
$$

so indeed the only solution of $B \mathbf{x}=\mathbf{0}$ is the trivial solution. Hence, B is invertible, but we still need to show that A is the inverse of B, i.e. that $B A=I$ (we already know that $A B=I$, by assumption). Let C denote the inverse of B, so that $B C=I=C B$. Then, in particular, $C B=A B$ (because both are equal to I) and so part (d) gives $A=C$, i.e. A is the inverse of B. (Alternatively, observe that $B A=B A I=B A(B C)=B(A B) C=$ $B I C=B C=I$.)
(d) Multiplying both sides of the equation $A B=A C$ on the left by A^{-1} (which we are assuming exists) gives $A^{-1} A B=A^{-1} A C$, i.e. $I B=I C$, i.e. $B=C$ as required.
Exercise 6. Matlab code:

```
A=[2 4; -6 0]
A =
24
B=[14 -5; -3 2}
B =
    1 -5
    -3 2
```

A-B
ans $=$

```
        1
1/2*A-3*B
ans =
        -2 
M=[14 1 1 - -3 -2; 2 3 0 -4 1; -3 -4 -1 6 - -1]
M =
\begin{tabular}{rrrrr}
1 & 1 & 1 & -3 & -2 \\
2 & 3 & 0 & -4 & 1 \\
-3 & -4 & -1 & 6 & -1
\end{tabular}
rref(M)
ans =
\begin{tabular}{rrrrr}
1 & 0 & 3 & 0 & 3 \\
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 2
\end{tabular}
C=inv(A)
C =
```



```
C*A
ans =
        1 0
        0 1
A*C
ans =
    1 
```

