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Question 1.
(a) (i) Find all functions f(y) for which the following differential equation

becomes exact:

ex f(y) + x2 + (ex cos y + y)
dy

dx
= 0 (1)

[4]
(ii) Suppose, f(y) is chosen so that the equation (1) is exact and f (π) = 0.

Solve (1) in implicit form. [8]

(b) Consider the Initial Value Problem

(x+ 2)
dy

dx
+ (y + 2)2/3 = 0, y(0) = b . (2)

where b is a real parameter and we assume b > −2.

(i) Find the value of the parameter b such that the corresponding Initial
Value Problem may have more than one solution and explain your
choice. Confirm your choice by giving explicitly at least two different
solutions of (2) for such a value of the parameter. [8]

(ii) Use the Picard-Lindelöf theorem to verify that the existence and
uniqueness of the solution for (2) with b = 0 is guaranteed in the
rectangular domain D := {|x| < A, |y| < B} with A = 1/2 and
B = 1. [5]

Question 2.

Write down the solution to the following Boundary Value Problem for the second
order non-homogeneous differential equation

x2
d2y

dx2
+ 2x

dy

dx
= f(x), y(1) = 0, y′(3) = 0 (3)

by using the Green’s function method along the following lines:

(a) Using that the left-hand side of the ordinary differential equations is in the
form of an Euler-type equation determine the general solution of the
associated homogeneous ordinary differential equation.

[6]

(b) Formulate the corresponding left-end and right-end initial value problems
and use their solutions to construct the Green’s function G(x, s).

[14]

(c) Write down the solution to the Boundary Value Problem (3) in terms of
G(x, s) and f(x) and use it to find the explicit form of the solution for
f(x) = x2.

[5]
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Question 3.

(a) Consider a system of two linear first-order ordinary differential equations:

ẋ = −2x+ y, ẏ = −5x+ 4y .

(i) Determine eigenvalues and eigenvectors associated with the system,
find equations for stable and unstable invariant manifolds and sketch
the phase portrait.

[11]

(ii) For the nonlinear system

ẋ = f1(x, y), ẏ = f2(x, y)

with

f1(x, y) = (1− y)(2x− y), f2(x, y) = (2 + x)(x− 2y)

show that there exists an equilibrium point with y = −4 and determine
its x−coordinate in the (x, y) plane. Linearize the system around such
an equilibrium and determine its nature (stable vs. unstable) and type
(saddle, focus, or node). Describe in words the shape of trajectories
close to the point.

[9]

(b) Consider a system of two nonlinear first-order ordinary differential
equations:

ẋ = −y + axy2, ẏ = x− bx2y .

where a, b are real constants. Find a relation between a and b such that the
function V (x, y) = 1

2
(x2 + y2) can be used as a Lyapunov function ensuring

the stability of such a system in the whole (x, y) plane.

[5]

Question 4.

(a) Find the general solution of the homogeneous ordinary differential equation

y′′ − 4y′ + 13y = 0.

[6]

(b) Find the general solution of the non-homogeneous ordinary differential
equation

y′′ − 4y′ + 13y = 18e2x.

[12]
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(c) Find the explicit solution to the following Initial Value Problem

y′ =
y + x

ln (y + x)
− 1 , y(0) = e.

[7]

End of Paper—An appendix of 2 pages follows.
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Useful Facts.

• Useful integrals: ∫
xa dx =

1

a+ 1
xa+1, ∀a 6= −1∫

1

x
dx = ln |x| for a = −1;

∫
lnx

dx

x
=

1

2
ln2 |x|∫

cosx dx = sinx,

∫
sinx dx = − cosx,∫

sinx cosx dx =
1

2
sin2 x,

∫
tanx dx = − ln | cosx|∫

eax cos bx dx =
eax

a2 + b2
(a cos bx+ b sin bx) , a 6= ±ib∫

eax sin bx dx =
eax

a2 + b2
(a sin bx− b cos bx) , a 6= ±ib∫

dx

a2 + x2
=

1

a
arctan

x

a
,

∫
dx√
a2 − x2

= arcsin
x

a∫
dx

x2 − a2
=

1

2a
ln
|x− a|
|x+ a|

,

• Useful trigonometric formulae:

eiθ = cos θ + i sin θ, cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
cos 2x = cos2 x− sin2 x, sin 2x = 2 sin x cosx

sin (A±B) = sinA cosB±cosA sinB, cos(A±B) = cosA cosB∓sinA sinB

• Reminder on Ordinary Differential Equations:

If the equation P (x, y)+Q(x, y)
dy

dx
= 0 is exact, its solution can be found

in the form F (x, y) = Const. where

P =
∂F

∂x
and Q =

∂F

∂y

• The Euler type equation ax2y′′ + bxy′ + cy = 0 is solved by replacing x = et

and introducing the new function z(t) by the relations

z(t) = y(et), ⇒ dz

dt
= ety′,

d2z

dt2
= ety′ + e2ty′′
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• If there exists a unique solution y(x) to a non-homogeneous boundary value
problem for ordinary differential equations
L(y) = a2(x)y

′′ + a1(x)y
′ + a0(x) = f(x) in an interval x ∈ [x1, x2] with

linear homogeneous boundary conditions

αy′(x1) + βy(x1) = 0, γy′(x2) + δy(x2) = 0

it can be found by the Green’s function method:

y(x) =

∫ x2

x1

G(x, s) f(s) ds, G(x, s) =

{
A(s) yL(x), x1 6 x 6 s
B(s) yR(x), s 6 x 6 x2

where

A(s) =
yR(s)

a2(s)W (s)
, B(s) =

yL(s)

a2(s)W (s)
, W (s) = yL(s)y

′
R(s)−yR(s)y′L(s)

and yL(x), yR(x) are solutions to the left/right initial value problems:

L(y) = 0, y(x1) = α, y′(x1) = −β; and L(y) = 0, y(x2) = γ, y′(x2) = −δ

End of Appendix.
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