Coursework 2 2023-2024

1. Dynamical systems

0 CLOZE 0.10 penalty

a) Which of the following systems of ODEs is autonomous and dynamical?

```
MULTI 1 point Multiple Shuffe
- I
                                - II \checkmark
                                    - III,
```

where
I: $y_{1}{ }^{\prime}=3 y_{1} e^{t}, \quad y_{2}{ }^{\prime}=y_{1}-y_{2}$
II: $\dot{y_{1}}=y_{2} e^{y_{1}}-\ln \left(1+\left|y_{2}\right|\right), \quad \dot{y_{2}}=\left(y_{1} y_{2}\right)^{5 / 2}$
III: $\frac{d y_{1}}{d x}=\ln \left(3+\left|y_{1}\right|\right), \quad \frac{d y_{2}}{d x}=-y_{2}$
b) Find out which of the following options are equilibria of the dynamical system,

$$
\dot{y_{1}}=e^{y_{1} y_{2}-1}-1, \quad \dot{y_{2}}=\left(y_{1}-4\right) y_{2}
$$

Multi	2 points Multiple Shuffe

- I
- II
- III \checkmark
where I: $\left(y_{1}^{*}, y_{2}^{*}\right)=(1,0) ; \mathrm{II}:\left(y_{1}^{*}, y_{2}^{*}\right)=(4,0)$;
III: $\left(y_{1}^{*}, y_{2}^{*}\right)=(4,1 / 4) ; \operatorname{IV}:\left(y_{1}^{*}, y_{2}^{*}\right)=(1,1)$.

2. Phase portrait 2

0 OLOZE 0.10 penalty

Consider a system of two linear first-order ordinary differential equations: $\dot{y}_{1}=y_{1}-y_{2}, \quad \dot{y}_{2}=2 y_{1}-y_{2}$.
a) The corresponding eigenvalues are

MULTI	1 point	Multiple Shuffle

- $\lambda_{1}=1, \lambda_{2}=-1 \quad$ - $\lambda_{1}=i, \lambda_{2}=-i \checkmark \quad$ • $\lambda_{1}=1+i, \lambda_{2}=1-i$
b) The corresponding eigenvectors of this linear ODE system are:

| Multi | | |
| :--- | :--- | :--- | :--- |
| 1 point | Multiple Shuffe | |
| - I and II | - I and IV \checkmark | - II and III |

where
$\mathrm{I}: u_{1}=\binom{1+i}{2}$
$\mathrm{II}: u_{2}=\binom{1-i}{3}$
III: $u_{1}=\binom{2 i}{2(1+i)}$
IV: $u_{2}=\binom{2}{2(1+i)}$
c) The phase portrait for this system of ODEs is

MULTI	1 point

- Stable node
- Unstable focus with spiral out
- Centre \checkmark
- Stable focus with spiral in

3. Stability

| MUuTt | 2 points 0.10 penalty Single Shuffe |
| :--- | :--- | :--- |

For which value of a the system of ODEs
$\dot{y}_{1}=\sinh \left(y_{1}\right)+a \tanh \left(y_{2}\right), \quad \dot{y_{2}}=-2 \cos \left(y_{1}\right)+2 e^{y_{1}+y_{2}}+\tanh \left(y_{2}\right)$, linearised around $\left(y_{1}, y_{2}\right)=(0,0)$ displays an unstable focus?
(a) $0<a<2$
(b) $a=2$
(c) $a<-1 / 2(100 \%)$
(d) $-1 / 2<a<0$

4. Lyapunov function 2

0 Multr 2 points 0.10 penalty Single Shuffe
Which of the following functions $V\left(y_{1}, y_{2}\right)$ is a Lyapunov function for the dynamical system with equilibrium point at $(0,0)$ $\dot{y_{1}}=-2 y_{1} y_{2}^{2} e^{\left(y_{1} y_{2}\right)^{2}}-6 y_{1}, \quad \dot{y_{2}}=-2 y_{1}^{2} y_{2} e^{\left(y_{1} y_{2}\right)^{2}}-2 y_{2}$
(a) $V\left(y_{1}, y_{2}\right)=y_{1}^{4}+\left(y_{2}-1\right)^{2}$
(b) $V\left(y_{1}, y_{2}\right)=e^{\left(y_{1} y_{2}\right)^{2}}$
(c) $V\left(y_{1}, y_{2}\right)=e^{\left(y_{1} y_{2}\right)^{2}}+y_{2}^{2}-1+3 y_{1}^{2}(100 \%)$
(d) $V\left(y_{1}, y_{2}\right)=y_{1}^{2} e^{\left(y_{1} y_{2}\right)^{2}}+y_{2}^{2}-3 y_{1}$

Total of marks: 10

