Coursework 2 2023-2024

1. Dynamical systems

CLOZE 0.10 penalty

a) Which of the following systems of ODEs is autonomous and dynamical?

MULTI 1 point Multiple Shuffle

■ II ✓ ■ III,

where

I: $y_1' = 3y_1e^t$, $y_2' = y_1 - y_2$ II: $\dot{y_1} = y_2e^{y_1} - \ln(1 + |y_2|)$, $\dot{y_2} = (y_1y_2)^{5/2}$ III: $\frac{dy_1}{dx} = \ln(3 + |y_1|)$, $\frac{dy_2}{dx} = -y_2$

b) Find out which of the following options are equilibria of the dynamical system,

$$\dot{y_1} = e^{y_1 y_2 - 1} - 1, \quad \dot{y_2} = (y_1 - 4) y_2$$

$$\bullet \text{ II} \qquad \bullet \text{ III } \checkmark \qquad \bullet \text{ IV}$$
where $\text{I:}(y_1^*, y_2^*) = (1, 0); \text{ II:}(y_1^*, y_2^*) = (4, 0);$

$$\text{III:}(y_1^*, y_2^*) = (4, 1/4); \text{ IV:}(y_1^*, y_2^*) = (1, 1).$$

2. Phase portrait 2

CLOZE 0.10 penalty

Consider a system of two linear first-order ordinary differential equations: $\dot{y_1} = y_1 - y_2$, $\dot{y_2} = 2y_1 - y_2$.

a) The corresponding eigenvalues are

Multiple Shuffle

• $\lambda_1 = 1, \ \lambda_2 = -1$ • $\lambda_1 = i, \ \lambda_2 = -i \checkmark$ • $\lambda_1 = 1 + i, \ \lambda_2 = 1 - i$

b) The corresponding eigenvectors of this linear ODE system are:

MULTI 1 point

Multiple Shuffle

• I and II

• I and IV ✓

• II and III

• III and IV ✓

$$I: u_1 = \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$$

$$II: u_2 = \begin{pmatrix} 1-i \\ 3 \end{pmatrix}$$

$$III: u_1 = \begin{pmatrix} 2i \\ 2(1+i) \end{pmatrix}$$

$$IV: u_2 = \begin{pmatrix} 2 \\ 2(1+i) \end{pmatrix}$$

c) The phase portrait for this system of ODEs is

MULTI 1 point Multiple

- Stable node
- Centre ✓

- Unstable focus with spiral out
 - Stable focus with spiral in

3. Stability

MULTI 2 points 0.10 penalty Single Shuffle

For which value of a the system of ODEs

 $\dot{y}_1 = \sinh(y_1) + a \tanh(y_2), \quad \dot{y}_2 = -2\cos(y_1) + 2e^{y_1+y_2} + \tanh(y_2), \text{ lin-}$ earised around $(y_1, y_2) = (0, 0)$ displays an unstable focus?

- (a) 0 < a < 2
- (b) a = 2
- (c) a < -1/2 (100%)
- (d) -1/2 < a < 0

4. Lyapunov function 2

MULTI 2 points 0.10 penalty Single Shuffle

Which of the following functions $V(y_1, y_2)$ is a Lyapunov function for the dynamical system with equilibrium point at (0,0) $\dot{y}_1 = -2y_1y_2^2e^{(y_1y_2)^2} - 6y_1, \quad \dot{y}_2 = -2y_1^2y_2e^{(y_1y_2)^2} - 2y_2$

$$\dot{y}_1 = -2y_1y_2^2e^{(y_1y_2)^2} - 6y_1, \quad \dot{y}_2 = -2y_1^2y_2e^{(y_1y_2)^2} - 2y_2$$

(a)
$$V(y_1, y_2) = y_1^4 + (y_2 - 1)^2$$

- (b) $V(y_1, y_2) = e^{(y_1 y_2)^2}$ (c) $V(y_1, y_2) = e^{(y_1 y_2)^2} + y_2^2 1 + 3y_1^2$ (100%) (d) $V(y_1, y_2) = y_1^2 e^{(y_1 y_2)^2} + y_2^2 3y_1$

Total of marks: 10