Essential Foundation Mathematical Skills

Dr Argyro Mainou

November 2, 2023

Overview

(1) ILOs
(2) Introduction
(3) Basic Polynomial Identities

4 Polynomial Remainder
(5) Examples and exam-style questions

ILOs

\rightarrow Today's lecture is on Monomials and Polynomials;
After today's lecture, you are expected to understand the concepts of monomials and how to construct polynomials \& their arithmetic.

Introduction

Definition (Monomial)

A monomial is an expression in which variables and constants may stand alone or be multiplied.
\rightarrow A monomial cannot have a variable in the denominator.
\rightarrow You can think of a monomial as being one term.

Example:

Here are some monomials:

$$
\begin{array}{r}
5, \\
x^{3}, \\
-2 x^{5}, \\
x^{2} y .
\end{array}
$$

Introduction

Definition (Polynomial)

A polynomial is defined as an expression which is composed of variables, constants and exponents, combined using mathematical operations.
\rightarrow The prefix "poly" means many.

Example:

Here are some polynomials:

$$
\begin{array}{r}
x^{2}+5, \\
3 x-8+4 x^{5}, \\
-7 a^{2}+9 b-4 b^{3}+6 .
\end{array}
$$

Introduction

Monomial, Binomial, Trinomial

Basic Polynomial Identities

Basic Polynomial Identities

$$
\begin{aligned}
x(y+z) & =x y+x z \\
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
x^{2}-y^{2} & =(x-y)(x+y) \\
x^{3}-y^{3} & =(x-y)\left(x^{2}+x y+y^{2}\right)
\end{aligned}
$$

Polynomial Remainder

Given two polynomials $f(x)$ and $g(x)$, we can write:

$$
f(x)=g(x) q(x)+r(x),
$$

where $q(x)$ and $r(x)$ are polynomials and the degree of $r(x)$ is less than that of $g(x)$.
\rightarrow The polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ are called the quotient and the remainder, respectively, of the division $f(x) \div g(x)$.
\rightarrow They are computed with the long division algorithm.

Examples and exam-style questions

Exercises

Multiply.

$$
\left.\begin{array}{ll}
c^{3} c^{5} ; & \left(x^{3}\right)^{2} ; \\
\left(-x^{2}\right)^{3} ; & \left(-x^{3}\right)^{2} ;
\end{array} \quad-\left(x^{3}\right)^{2}\right) ~ l
$$

$$
\left(-a^{2} b\right)\left(-3 a b^{2}\right)(-7) ; \quad 4 x y(-x y)\left(-x y^{2}\right)
$$

$$
\left(a b^{2} c^{3}\right)^{4} ; \quad\left(-a b a^{2} b\right)^{2}(3 b c b c)^{3}
$$

$$
\left(\frac{3}{4} x z\right)\left(-\frac{2}{9} x^{2} y z\right)\left(-\frac{12}{5} y^{2} z\right)
$$

$$
\frac{\alpha}{2}\left(\frac{-\alpha \beta}{2}\right)^{5} 64\left(-\beta^{2}\right)
$$

Collect like terms.

$$
\begin{aligned}
& -1-3 x^{2}-8 x^{2}+4 x+3-x+4 x^{2} \\
& 2 a^{5}-3 a^{3}+a^{5}-3 a^{3}-a^{5}-2 a^{5}+5 a^{3}
\end{aligned}
$$

$$
4 a b+a b^{2}-2 a-b^{2}+3 a b-a b^{2}-7 a b
$$

$$
-3 x^{2} y-8 x^{2} y+4 x y^{2}+2-x y^{2}+4 x^{2} y
$$

$$
c^{4} d^{2}-c^{3} d+3 c^{2} d-2 c^{4} d^{2}+3 c^{3} d-c d
$$

Examples and exam-style questions

Exercise

Expand, collecting like terms.

$$
\begin{array}{ll}
(-a-b)^{2} ; & (2 x+y)^{2} \\
(-a+b)^{2} ; & -(x-3)^{2} \\
(-\alpha \beta+1)^{2} ; & \left(-6 \theta+3 \delta^{2}-\theta\right)^{2} \\
3^{2}(2 x-1)^{2} ; & \left(a b^{5}+5\right)^{2} \\
\left(a^{3}+3 b^{2}\right)\left(a^{3}-3 b^{2}\right) \\
\left(d^{3}+5\right)\left(d^{3}-5\right) ; & \left(7 a^{2}+2\right)\left(2-7 a^{2}\right)
\end{array}
$$

Examples and exam-style questions

Exercise

Compute (q, r), the quotient and remainder of polynomial division

$$
\begin{aligned}
& (x-1) \div(1-x) ; \quad(x+1) \div(x-1) \\
& (z-1) \div(z+1) ; \quad(-3 z+2) \div(z+2) \\
& (2 b-1) \div(3 b+1) ; \quad(-7 c+3) \div(3 c+4) \\
& \left(a^{2}-1\right) \div(a+1) ; \quad\left(a^{2}+1\right) \div(a+1) \\
& \left(x^{2}-7 x+3\right) \div(x+2) \\
& \left(x^{3}+28\right) \div(x+3) \\
& \left(-x^{10}+1\right) \div x^{3} \\
& \left(y^{4}-16 y^{2}+3 y\right) \div(-4+y)
\end{aligned}
$$

Examples and exam-style questions

Exercise

Compute the quotient of polynomial division

$$
\begin{aligned}
& \left(x^{4}-4 x+1\right) \div(x-2) \\
& \left(x^{4}-x+1\right) \div(-x+3) \\
& \left(-y^{4}-y^{3}+1\right) \div(y+2) \\
& \left(3 a^{6}+5 a^{4}\right) \div\left(a^{3}-3\right) \\
& \left(-2 x^{4}+9 x^{2}+2\right) \div(x-2) \\
& \left(4 y^{5}-y^{4}+y^{2}+1\right) \div\left(y^{3}+y^{2}-3\right) \\
& \left(Z^{4}-2 Z^{3}-6 Z^{2}+1\right) \div(-Z+3) \\
& \left(z^{6}-z^{3}-1\right) \div\left(z^{3}-3 z\right) \\
& \left(a^{4}-a^{3}+a+1\right) \div(-a-2) \\
& \left(c^{4}-c^{3}+c+1\right) \div(-c+3) \\
& \left(2 X^{5}-X^{4}+2\right) \div\left(X^{3}-3 X+1\right)
\end{aligned}
$$

Examples and exam-style questions

Question: Compute the quotient of polynomial division.

$$
\left(c^{4}-c^{3}+c+1\right) \div(-c+3)
$$

Question: Compute (q, r), the quotient and remainder of polynomial division.

$$
\left(5 x^{3}-x\right) \div(3 x+1)
$$

