Essential Foundation Mathematical Skills

Dr Argyro Mainou

October 19, 2023

Overview

(1) ILOs
(2) Introduction
(3) Square roots
(4) Arithmetic of Square roots
(5) Examples and exam-style questions

ILOs

\rightarrow Today's lecture is on Square roots;
After today's lecture, you are expected to understand the concepts of Square roots and Arithmetic of Square roots.

Introduction

The most famous square root of all is:
$\sqrt{2}=1.4142135623730950488016887242096980785696718753769 \ldots$

Very little is known about its digits, besides the fact that they will never terminate or repeat!

Figure 1: Geometric representation of $\sqrt{2}$.

Square roots

Definition (Square Root)

We define the square root of $a \geq 0$ as \sqrt{a}, such that $(\sqrt{a})^{2}=a$.
Note that:

- $a^{\frac{1}{2}}=\sqrt[2]{a}=\sqrt{a}$.
- $a^{\frac{1}{3}}=\sqrt[3]{a}$.
- $a^{\frac{1}{n}}=\sqrt[n]{a}$.
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$.

Basic square roots identities:
(1) $\sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}$,
$a, b \geq 0$
$\Longrightarrow \quad \sqrt{a^{2}}=\sqrt{a} \cdot \sqrt{a}=(\sqrt{a})^{2}=a$.
(2) $\sqrt{\frac{1}{a}}=\frac{1}{\sqrt{a}}, \quad a \geq 0$.

Combining the 2 identities above, we also get:
$\sqrt{\frac{a}{b}}=\sqrt{a \cdot \frac{1}{b}}=\sqrt{a} \cdot \sqrt{\frac{1}{b}}=\frac{\sqrt{a}}{\sqrt{b}}, \quad a, b \geq 0$.

Square roots

Exercises

(1) Calculate the following: $\sqrt{\frac{25}{16}}, \frac{\sqrt{625}}{11} \times \frac{14}{\sqrt{25}} \times \frac{11}{\sqrt{196}}$.
(2) Rationalise the expression: $\frac{1}{\sqrt{5}-\sqrt{3}}$.
(3) Simplify the expression: $\sqrt{7-2 \cdot \sqrt{6}}$.

Square roots

Definition (Radical or Surd, Radicand)
The expression \sqrt{a} is also called a radical or a (quadratic) surd. a is called the radicand.

Definition (Square-free Integer)
An integer is square-free if it has no square divisors, that is, if all the exponents of the primes in its prime factorization are equal to one.

For example:
$210=2 \cdot 3 \cdot 5 \cdot 7$ is a square-free integer, while
$120=2^{3} \cdot 3 \cdot 5$ is not.
\rightarrow All primes are square-free integers.

Arithmetic of Square roots

- A convenient representation of a radical is obtained by extracting all squares, leaving a square-free kernel under the square root sign.

For example:
$\sqrt{125}=\sqrt{5^{3}}=5 \cdot \sqrt{5}, \quad \sqrt{84}=\sqrt{2^{3} \cdot 3 \cdot 7}=2 \cdot \sqrt{21}$.

- Radicals can be removed from the denominator via rationalization:

$$
\begin{aligned}
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a} \cdot \sqrt{b}}{\sqrt{b} \cdot \sqrt{b}}=\frac{\sqrt{a b}}{\sqrt{b^{2}}}=\frac{\sqrt{a b}}{b}, \\
& \frac{1}{a+\sqrt{b}}=\frac{1}{a+\sqrt{b}} \times \frac{a-\sqrt{b}}{a-\sqrt{b}}=\frac{a-\sqrt{b}}{(a+\sqrt{b})(a-\sqrt{b})}=\frac{a-\sqrt{b}}{a^{2}-b} .
\end{aligned}
$$

For example:

$$
\begin{aligned}
& \frac{1}{\sqrt{120}}=\frac{\sqrt{120}}{\sqrt{120} \cdot \sqrt{120}}=\frac{\sqrt{120}}{120}=\frac{\sqrt{30}}{60}, \\
& \sqrt{\frac{45}{28}}=\frac{3}{2} \sqrt{\frac{5}{7}}=\frac{3}{2} \frac{\sqrt{5}}{\sqrt{7}}=\frac{3}{2} \frac{\sqrt{5} \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}}=\frac{3}{2} \frac{\sqrt{5} \cdot \sqrt{7}}{7}=\frac{3 \cdot \sqrt{5 \cdot 7}}{2 \cdot 7}=\frac{3 \cdot \sqrt{35}}{14} .
\end{aligned}
$$

Arithmetic of Square roots

- To estimate the size of an expression involving square roots, we sandwich it between two consecutive integers and then square it.

For example:

$$
\begin{aligned}
n<3 \cdot \sqrt{13}<n+1 & \Longrightarrow n^{2}<9 \cdot 13<(n+1)^{2} \\
& \Longrightarrow n^{2}<117<(n+1)^{2} \\
& \left.\Longrightarrow n=10 \quad \text { (because } 10^{2}<117<11^{2}\right) .
\end{aligned}
$$

Or, for example, if we want to estimate $\frac{29-3 \cdot \sqrt{13}}{7}$, we use the previous example and we have:

$$
\begin{aligned}
10<3 \cdot \sqrt{13}<11 & \Longrightarrow-11<-3 \cdot \sqrt{113}<-10 \\
& \Longrightarrow 29-11<29-3 \cdot \sqrt{13}<29-10 \\
& \Longrightarrow \frac{29-11}{7}<\frac{29-3 \cdot \sqrt{13}}{7}<\frac{29-10}{7} \\
& \Longrightarrow 2+\frac{4}{7}<\frac{29-3 \cdot \sqrt{13}}{7}<2+\frac{5}{7} .
\end{aligned}
$$

Examples and exam-style questions

Exercise: Simplify the following expressions to the form $r \cdot \sqrt{d}$, where r is a fraction and d is a square-free integer:

- $\sqrt{11}-\frac{1}{\sqrt{11}}$,
- $5 \cdot \sqrt{3}+\frac{7}{\sqrt{3}}$,
- $\sqrt{6} \cdot \sqrt{21}-\sqrt{\frac{32}{7}}$,
- $\sqrt{\frac{7}{3}}-\sqrt{\frac{3}{7}}+\sqrt{\frac{36}{21}}$.

Examples and exam-style questions

Exercise: Simplify the following expressions to the form $s+r \cdot \sqrt{d}$, where s, r are fractions and d is a square-free integer:

- $\left(\sqrt{60}-\frac{\sqrt{15}}{2}\right)^{2}$,
- $\left(1-\frac{1}{\sqrt{5}}\right) \cdot(\sqrt{5}-1)^{2}$,
$\frac{-\sqrt{3}+1}{\sqrt{3}-3}-\frac{1}{\sqrt{3}}$
- $\sqrt{3}(\sqrt{3}-1)^{2}$,
- $(\sqrt{5}+\sqrt{6})^{3}$,
- $\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)^{2}$,
$\frac{1}{\sqrt{2}+\sqrt{3}} \sqrt{\frac{1}{2}}$
- $\frac{2+\sqrt{8}}{(\sqrt{2})^{3}}$,
- $\left(\sqrt{60}-\frac{\sqrt{15}}{2}\right)^{2}$,
$\frac{1}{\sqrt{80}}-\frac{\sqrt{5}}{3 \sqrt{5}-7}$
- $\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{3-\sqrt{5}}{2}\right)$,
- $(1-\sqrt{2})(1+\sqrt{2})$.
$\frac{4-\sqrt{2} \sqrt{3}}{-\sqrt{9}+\sqrt{6}}$

Examples and exam-style questions

Question: Find how many of the following inequalities are correct:
(i) $7>\sqrt{48}$
(ii) $2 \sqrt{3}<\sqrt{13}$
(iii) $11>\sqrt{120}$
(iv) $6<\sqrt{35}$

Question: Simplify, eliminating radicals in the denominator

$$
\frac{\sqrt{3}}{\sqrt{5}-2}
$$

Question: Simplify, eliminating radicals at denominator,

$$
\sqrt{\frac{7}{14}+\frac{1}{5}-\frac{5}{4}+1}
$$

