Essential Foundation Mathematical Skills

Dr Argyro Mainou

September 28, 2023

Overview

(1) ILOs
(2) Introduction
(3) Divisibility
(4) Primes
(5) Examples and exam-style questions

ILOs

\rightarrow Today's lecture is on Divisibility and Primes;
After today's lecture, you are expected to understand the concepts of prime decomposition and divisibility of numbers.

Introduction

- The Greek mathematicians were the first to study prime numbers and their characteristics in depth.
- The mathematicians of Pythagoras' school were intrigued by numbers, because of their mystical and numerological characteristics (500 BC to 300 $B C)$.
- They were aware of the concept of primality and had a passion for harmonious and flawless numbers.

Introduction

Chika's Test
 to test for divisibility by 7

Multiply the last digit by 5 and add it to the remaining number.

For example, take the number 532
$53+2 \times 5=63$
63 is a multiple of 7,50532 is a multiple of 7

Or take the number

987

$98+7 \times 5=133$
$13+3 \times 5=28$
28 is a muitiple of 7 , so both 133 and 987 are multiples of 7
If you keep going, you will always end up with either 7 or 49 if the original number is a multiple of 7.

Divisibility

Definition (Multiplication)
Let a, b, c, d, \ldots be integers $(\in \mathbb{Z}$, both positive/negative).
Notation for multiplication:
$a \cdot b=a b=a \times b$
is the product of a and b.

Basic properties:
$a \cdot b=b \cdot a$
$(a b)^{c}=a^{c} \cdot b^{c}$
$a^{b} \cdot a^{c}=a^{b+c}$
$\left(a^{b}\right)^{c}=a^{b c}$

Divisibility

Definition (Divisibility)

Let a and d be integers.
We say that d divides a if we can write $a=q \cdot d$ for some integer q.
The integer $q=a \div d=a: d=\frac{a}{d}$ is called the quotient of the division of a by d.

There may be the case when we have remainder:
If $d \neq 0$, we can always find integers q and r, such that $a=q \cdot d+r$, with $0 \leq r<|d|$.

The symbol $|\cdot|$ denotes the absolute value.
The integer r is called the remainder of the division of a by d.
\rightarrow Don't forget: r is always non-negative.

Primes

Definition (Prime)

A prime is an integer greater than 1 which is divisible only by itself and 1 .
The sequence of primes:

$$
2,3,5,7,11,13,17,19,23,29, \ldots
$$

is infinite.
To test whether or not a positive integer n is prime, we check divisibility by all primes p with $p \neq \sqrt{(n) \text {; }}$
if n is not divisible by any of them, then n is prime.

Primes

Definition (Prime Decomposition factorization)

Every integer greater than 1 can be decomposed as a product of primes, and this process is called prime decomposition factorization.

The above decomposition is unique, apart from rearrangement of factors.
For example:

$$
120=5 \cdot 3 \cdot 2 \cdot 2 \cdot 2=5 \cdot 3 \cdot 2^{3}=2^{3} \cdot 3 \cdot 5=\ldots
$$

Definition (Composite)
A composite is an integer that can be decomposed as a product of more than two primes.

All composite numbers can be expressed as a product of prime numbers.

Examples and exam-style questions

1. Split the number into 2 factors that multiply to make the starting number.
2. Circle any factors that are prime numbers.
3. Continue to split any numbers that are not prime.

$$
\begin{array}{|cccccc|}
\hline 10 & 12 & 14 & 15 & 20 & 30 \\
\hline \hline 28 & 44 & 48 & 56 & 60 & 72 \\
\hline 112 & 140 & 240 & 310 & 144 & 192 \\
\hline
\end{array}
$$

Examples and exam-style questions

Answers

$$
\begin{array}{ll}
\hline 10=2 \times 5 & 12=2^{2} \times 3 \\
14=2 \times 7 & 15=3 \times 5 \\
20=2^{2} \times 5 & 30=2 \times 3 \times 5 \\
\hline 28=2^{2} \times 7 & 42=2 \times 3 \times 7 \\
48=2^{4} \times 3 & 56=2^{3} \times 7 \\
60=2^{2} \times 3 \times 5 & 72=2^{4} \times 3^{2} \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
112=2^{4} \times 7 & 140=2^{2} \times 5 \times 7 \\
240=2^{4} \times 3 \times 5 & 310=2 \times 5 \times 31 \\
144=2^{4} \times 3^{2} & 192=2^{6} \times 3
\end{array}
$$

Examples and exam-style questions

Question: Compute the remainder of the following division: $1734 \div 7$

Question: Write 792 as a product of prime numbers.

