Handout 6: quantification I

Obligatory reading: Kearns (2011), pp. 96-103, on QM+ Optional reading: Kearns (2011), pp. 118-121, also on QM+

1 Quantifiers as relations between sets (from Introduction to Semantics; only atomic individuals!)
(1) Every vampire yawns
(2) Most vampires yawn
(3) No vampire yawns
(4) Some vampires yawn
(5) Three vampires yawn

Quantifiers: every, most, some, no...etc.
Quantifier phrases: every vampire, most vampires, no vampires, etc.
(6)

Both VPs and common nouns denote sets of individuals:
(7) \llbracket vampire(s) $\rrbracket^{s}=\{x: x$ is a vampire in $s\}$
(8) $\llbracket y a w n(s) \rrbracket^{s}=\{x: x$ yawns in $s\}$

If a, b and c are the vampires of s, and b, c and d the yawning individuals:
(9) \llbracket vampire(s) $\rrbracket^{s}=\{a, b, c\}$
(10) $\llbracket y a w n(s) \rrbracket^{s}=\{b, c, d\}$

Quantified NPs denote sets of sets of individuals:
(11) a. \llbracket every vampire $\rrbracket^{s}=\left\{Q: \llbracket\right.$ vampire $\left.\rrbracket^{s} \subseteq Q\right\}$
b. \llbracket most vampires $\rrbracket^{s}=\left\{Q: \mid \llbracket\right.$ vampires $\rrbracket^{s} \cap \mathrm{Q}|>| \llbracket$ vampires $\left.\rrbracket^{s}-\mathrm{Q} \mid\right\}$
c. \llbracket no vampire $\rrbracket^{s}=\left\{\mathbf{Q}: \llbracket\right.$ vampire $\left.\rrbracket^{s} \cap \mathbf{Q}=\varnothing\right\}$
d. \llbracket some vampires $\rrbracket^{s}=\left\{Q: \llbracket v a m p i r e s \rrbracket^{s} \cap Q \neq \emptyset\right\}$
e. \llbracket three vampires $\rrbracket^{s}=\left\{Q: \mid \llbracket\right.$ vampires $\left.\rrbracket^{s} \cap Q \mid=3\right\}$

We need to use the second part of the subject-predicate rule to compute the meaning of the whole sentence:

Subject-predicate rule: If S has NP as its subject and VP as its predicate, $\llbracket \mathrm{S} \rrbracket^{\mathrm{s}}=1$ in s if $\llbracket N P \rrbracket^{s} \in \llbracket V P \rrbracket^{s}$ or $\llbracket V P \rrbracket^{s} \in \llbracket N P \rrbracket^{s}$

2 Taking grammatical number into account

（12）Every vampire yawns
【every vampire yawns】 $\rrbracket^{\text {s }}=1$ iff
$\llbracket y a w n s \rrbracket^{\text {s }} \in \llbracket$ every vampire $\rrbracket^{\text {s }}$
$=\llbracket$ yawns $\rrbracket^{s} \in\left\{Q: \llbracket v a m p i r e \rrbracket^{s} \subseteq Q\right\}$
$=\llbracket$ vampire $\rrbracket^{\mathrm{s}} \subseteq \llbracket$ yawns \rrbracket^{s}
Intuitively，if a, b and c are the vampires in s ，and b, c and d the yawners in s ，the sentence is false：

【vampire】 $\rrbracket^{s}=\{a, b, c\}$
$\llbracket y a w n s \rrbracket^{s}=\{b, c, d, b c, b d, c d, b c d\}$ ，
and $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \nsubseteq\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{bc}, \mathrm{bd}, \mathrm{cd}, \mathrm{bcd}\}$
Intuitively，if a, b and c are the vampires in s ，and a, b, c and d the yawners in s ，the sentence is true：

【vampire】 $\rrbracket^{s}=\{a, b, c\}$
【yawns】 ${ }^{s}=\{a, b, c, d, a b, a c, b c, b d, c d, \ldots, a b c, \ldots, a b c d\}$ ，
and $\{a, b, c\} \subseteq\{a, b, c, d, a b, a c, b c, b d, c d, \ldots, a b c, \ldots, a b c d\}$
（13）Some vampires yawn
«some vampires yawn】 ${ }^{\text {s }}=1 \mathrm{iff}$
$\llbracket y a w n \rrbracket^{s} \in \llbracket$ some vampires \rrbracket^{s}
$=\llbracket$ yawn $\rrbracket^{s} \in\left\{Q: \llbracket\right.$ vampires $\left.\rrbracket^{s} \cap Q \neq \varnothing\right\}$
$=\llbracket$ vampires $\rrbracket^{\mathrm{s}} \cap \llbracket$ yawn $\rrbracket^{\mathrm{s}} \neq \emptyset$
Intuitively，if a，b and c are the vampires in s，and d，e and f the yawners in s，the sentence is false：
\llbracket vampires $\rrbracket^{\mathrm{s}}=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ac}, \mathrm{abc}\}$
$\llbracket y a w n s \rrbracket^{s}=\{d, e, f, d e, d f, e f, d e f\}$,
and $\{a b, b c, a c, a b c\} \cap\{d, e, f, d e, d f, e f, d e f\}=\varnothing$

Intuitively，if a, b and c are the vampires in s ，and a, b, d and e the yawners in s ，the sentence is true：
\llbracket vampires $\rrbracket^{\mathrm{s}}=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ac}, \mathrm{abc}\}$
【yawns $\rrbracket^{\mathrm{s}}=\{a, b, d, e, a b, a d, b d, d e, \ldots$, abd，．．．，abde $\}$ ，
and $\{a b, b c, a c, a b c\} \cap\{a, b, d, e, a b, a d, b d, d e, \ldots, a b d, \ldots, a b d e\}=\{a b\} \neq \varnothing$
What about other quantified NPs？\rightarrow Puzzle 6！

3 Taking collective VPs into account

（14）Some vampires met in the hallway
«some vampires met in the hallway】 ${ }^{\text {s }}=1 \mathrm{iff}$
\llbracket met in the hallway $\rrbracket^{\mathrm{s}} \in \llbracket$ some vampires \rrbracket^{s}
$=\llbracket$ met in the hallway $\rrbracket^{s} \in\left\{Q: \llbracket\right.$ vampires $\left.\rrbracket^{s} \cap Q \neq \varnothing\right\}$
$=\llbracket$ vampires $\rrbracket^{\mathrm{s}} \cap \llbracket$ met in the hallway $\rrbracket^{\mathrm{s}} \neq \varnothing$
Intuitively，if a, b and c are the vampires in s，and a，d and e met in the hallway in s，the sentence is false：
\llbracket vampires $\rrbracket^{s}=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ac}, \mathrm{abc}\}$
【met in the hallway】 ${ }^{\text {s }}=\{$ ad，ae，de，ade $\}$,
and $\{a b, b c, a c, a b c\} \cap\{a d, a e, d e, a d e\}=\varnothing$
Intuitively，if a, b, c, d and e are the vampires in s ，and a, b, c met in the hallway in s ，the sentence is true：
\llbracket vampires $\rrbracket^{\mathrm{s}}=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ac}, \mathrm{ad}, \mathrm{bd}, \mathrm{cd}, \mathrm{ae}, \ldots, \mathrm{abc}, \ldots, \mathrm{abce}, \ldots \mathrm{abcde}\} \quad \checkmark$
【met in the hallway】 ${ }^{s}=\{a b, b c, a c, a b c\}$ ，
and $\{a b, b c, a c, a d, b d, c d, a b c, \ldots, a b c d\} \cap\{a b, b c, a c, a b c\}=\{a b, b c, a c, a b c\} \neq \emptyset$
（15）＊Every vampire met in the hallway
\llbracket every vampire met in the hallway $\rrbracket^{\text {s }}=1 \mathrm{iff}$
$\llbracket m e t$ in the hallway $\rrbracket^{\mathrm{s}} \in \llbracket$ every vampire \rrbracket^{s}
$=\llbracket$ met in the hallway $\rrbracket^{\mathrm{s}} \in\left\{\mathrm{Q}: \llbracket\right.$ vampire $\left.\rrbracket^{\mathrm{s}} \subseteq \mathrm{Q}\right\}$
$=\llbracket$ vampire $\rrbracket^{\mathrm{s}} \subseteq \llbracket \mathrm{met}$ in the hallway $\rrbracket^{\text {s }}$
Suppose that a, b and c are the vampires in s ，and a, b and c met in the hallway in s ：
【vampire】 ${ }^{s}=\{a, b, c\}$
$\llbracket m e t$ in the hallway $\rrbracket^{s}=\{a b, b c, a c, a b c\}$,
and $\{a, b, c\} \nsubseteq\{a b, b c, a c, a b c\}$
The sentence can never be true，as that last statement can never be satisfied，no matter what the facts are \rightarrow the sentence is odd

