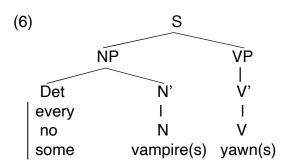
Handout 6: quantification I

Obligatory reading: Kearns (2011), pp. 96-103, on QM+ Optional reading: Kearns (2011), pp. 118-121, also on QM+

- 1 Quantifiers as relations between sets (from Introduction to Semantics; only atomic individuals!)
- (1) Every vampire yawns
- (2) *Most* vampires yawn
- (3) *No* vampire yawns
- (4) *Some* vampires yawn
- (5) Three vampires yawn

Quantifiers: *every*, *most*, *some*, *no*...etc. Quantifier phrases: *every vampire*, *most vampires*, *no vampires*, etc.



Both VPs and common nouns denote sets of individuals:

- (7) [[vampire(s)]]^s = {x: x is a vampire in s}
- (8) [[yawn(s)]]^s = {x: x yawns in s}

If a, b and c are the vampires of s, and b, c and d the yawning individuals:

- (9) $[[vampire(s)]]^s = \{a, b, c\}$
- (10) $[[yawn(s)]]^{s} = \{b, c, d\}$

Quantified NPs denote sets of sets of individuals:

- (11) a. $[every vampire]^s = \{Q : [vampire]^s \subseteq Q\}$
 - b. $[most vampires]^{s} = \{Q : I[vampires]^{s} \cap QI > I[vampires]^{s} QI \}$
 - c. $[no vampire]^s = \{Q : [vampire]^s \cap Q = \emptyset\}$
 - d. [[some vampires]]^s = {Q : [[vampires]]^s \cap Q $\neq \emptyset$ }
 - e. [[three vampires]]^s = {Q : I[[vampires]]^s \cap QI = 3}

We need to use the second part of the subject-predicate rule to compute the meaning of the whole sentence:

Subject-predicate rule: If S has NP as its subject and VP as its predicate, $[S]^{s} = 1$ in s if $[NP]^{s} \in [VP]^{s}$ or $[VP]^{s} \in [NP]^{s}$

2 Taking grammatical number into account

(12) Every vampire yawns

 $[[every vampire yawns]]^{s} = 1 iff$ $[[yawns]]^{s} \in [[every vampire]]^{s}$ $= [[yawns]]^{s} \in \{Q : [[vampire]]^{s} \subseteq Q\}$ $= [[vampire]]^{s} \subseteq [[yawns]]^{s}$

Intuitively, if a, b and c are the vampires in s, and b, c and d the yawners in s, the sentence is false:

[vampire]^s = {a, b, c} [yawns]^s = {b, c, d, bc, bd, cd, bcd}, and {a, b, c} ⊈ {b, c, d, bc, bd, cd, bcd} \checkmark

Intuitively, if a, b and c are the vampires in s, and a, b, c and d the yawners in s, the sentence is true:

 $[vampire]]^{s} = \{a, b, c\}$ $[yawns]]^{s} = \{a, b, c, d, ab, ac, bc, bd, cd, ..., abc, ..., abcd\},$ and $\{a, b, c\} \subseteq \{a, b, c, d, ab, ac, bc, bd, cd, ..., abc, ..., abcd\}$

(13) Some vampires yawn

[some vampires yawn] ^s = 1 iff

 $[[yawn]]^{s} \in [[some vampires]]^{s}$ = $[[yawn]]^{s} \in \{Q : [[vampires]]^{s} \cap Q \neq \emptyset\}$ = $[[vampires]]^{s} \cap [[yawn]]^{s} \neq \emptyset$

Intuitively, if a, b and c are the vampires in s, and d, e and f the yawners in s, the sentence is false:

 $\llbracketvampires\rrbracket^{s} = \{ab, bc, ac, abc\}$ $\llbracketyawns\rrbracket^{s} = \{d, e, f, de, df, ef, def\},$ and {ab, bc, ac, abc} $\cap \{d, e, f, de, df, ef, def\} = \emptyset$

Intuitively, if a, b and c are the vampires in s, and a, b, d and e the yawners in s, the sentence is true:

 $[vampires]^{s} = \{ab, bc, ac, abc\}$ $[vamns]^{s} = \{a, b, d, e, ab, ad, bd, de, ..., abd, ..., abde\},$ and $\{ab, bc, ac, abc\} \cap \{a, b, d, e, ab, ad, bd, de, ..., abd, ..., abde\} = <math>\{ab\} \neq \emptyset \quad \checkmark$

What about other quantified NPs? \rightarrow Puzzle 6!

3 Taking collective VPs into account

(14) Some vampires met in the hallway

[some vampires met in the hallway] = 1 iff

- $[met in the hallway]^{s} \in [some vampires]^{s}$
- = $\llbracket met in the hallway \rrbracket^{s} \in \{Q : \llbracket vampires \rrbracket^{s} \cap Q \neq \emptyset \}$
- = $[vampires]^{s} \cap [met in the hallway]^{s} \neq \emptyset$

Intuitively, if a, b and c are the vampires in s, and a, d and e met in the hallway in s, the sentence is false:

 \llbracket vampires \rrbracket ^s = {ab, bc, ac, abc} \llbracket met in the hallway \rrbracket ^s = {ad, ae, de, ade}, and {ab, bc, ac, abc} \cap {ad, ae, de, ade} = \emptyset \checkmark

Intuitively, if a, b, c, d and e are the vampires in s, and a, b, c met in the hallway in s, the sentence is true:

 \llbracket vampires $\rrbracket^{s} = \{ab, bc, ac, ad, bd, cd, ae, ..., abc, ..., abce, ...abcde\}$ \checkmark \llbracket met in the hallway $\rrbracket^{s} = \{ab, bc, ac, abc\},$ and $\{ab, bc, ac, ad, bd, cd, abc, ..., abcd\} \cap \{ab, bc, ac, abc\} = \{ab, bc, ac, abc\} \neq \emptyset$

(15) *Every vampire met in the hallway

[[every vampire met in the hallway]]^s = 1 iff

[met in the hallway] $\in [every vampire]^{s}$

= $[met in the hallway]^{s} \in \{Q: [vampire]^{s} \subseteq Q\}$

= $[vampire]^{s} \subseteq [met in the hallway]^{s}$

Suppose that a, b and c are the vampires in s, and a, b and c met in the hallway in s:

 \llbracket vampire \rrbracket ^s = {a, b, c} \llbracket met in the hallway \rrbracket ^s = {ab, bc, ac, abc}, and {a, b, c} \nsubseteq {ab, bc, ac, abc}

The sentence can never be true, as that last statement can never be satisfied, no matter what the facts are \rightarrow the sentence is odd \checkmark