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Solutions for Tutorial 5 – Part 2 (Questions 6,7,8 and 9) 

Question 6. State whether the following are true and explain why. If this is true, this can be done by 

arguing the proposition is true or demonstrating the negation is false. If it is false, then it can be done 

by demonstrating the proposition is false or that the negation is true.  

Assume that 𝑛 ∈ 𝑍 and 𝑥, 𝑦, 𝜀, 𝛿 ∈ ℝ. If a condition is written after ∀ or ∃, this implies that a smaller 

set is taken, for example ∀ ε > 0 means for all positive (and real) ε.  

(a) ∀ 𝑥, ∃ 𝑦, 3𝑥2 − 2𝑦 = 5. 

 The equality 3𝑥2− 2𝑦 = 5 is equivalent to 𝑦 = 
1

2
(3𝑥2− 5).  Therefore, for any 𝑥, there is a 𝑦 such that 

3𝑥2− 2𝑦 = 5, namely 𝑦 =
1

2
(3𝑥2− 5). So, this statement is TRUE.  

(b) ∃ 𝑥, ∀ 𝑦, 3𝑥2 − 2𝑦 = 5. 

Again, the equality 3𝑥2 − 2𝑦 = 5 is equivalent to 𝑦 =
1

2
(3𝑥2− 5). However, the quantifiers are different. 

For this to be true, there would have to be a value of 𝑥 such that 𝑦 =
1

2
(3𝑥2− 5) holds both for 𝑦 = 0 and 

𝑦 = 1. This would give us 0 = 
1

2
(3𝑥2− 5) = 1, which is not possible. So, this statement is FALSE.  

(c) ∀ 𝑥, ∃ 𝑦, 3𝑥2 − 2𝑦2 = 5. 

 This statement is False. The equality 3𝑥2 − 2𝑦2 = 5 is equivalent to 𝑦2= 
1

2
 (3𝑥2 − 5). So, if 𝑥 = 1 we would 

require that 𝑦2 = −1, which is impossible (for real y). Thus, the statement is FALSE.  

(d) ∃ 𝑥, ∀ 𝑦, 3𝑥2 − 2𝑦2 = 5. 

Changing the quantifiers does not somehow make the statement true. Similarly to Part (b), we are 

asking for a value of 𝑥 such that 3𝑥2 − 2𝑦2 = 5 holds for both 𝑦 = 0 and 𝑦 = 1, which is false. Thus, this 

statement is also FALSE.  

(e) ∀ 𝜀 > 0, ∃ 𝑛, 2 −𝑛 < 𝜀.  

This statement is TRUE. By taking logarithms of both sides, we see that the inequality is equivalent to 

−𝑛 < 𝑙𝑜𝑔2𝜀 = (𝑙𝑛𝜀)/(𝑙𝑛2), which holds if and only if 𝑛 > − 𝑙𝑜𝑔2𝜀 (For ε close to 0, we note that 𝑙𝑜𝑔2𝜀 is 

large and negative, and so −𝑙𝑜𝑔2𝜀 is large and positive.)  

It is a standard fact that for any real number 𝑥 there is an integer 𝑛 such that 𝑛 > 𝑥. 

 

Question 7. Write down the negation of the following propositional functions and state whether the 

statement or its negation is true. You can assume 𝑛 is an integer and 𝑥 and 𝑦 are real numbers. 

(a) ∀ 𝑛, (𝑛 ≤ 10) ∧ (𝑛 > 0). 

We have ¬(∀ 𝑛, (𝑛 ≤ 10) ∧ (𝑛 > 0)) ≡ ∃ 𝑛, (𝑛 > 10) ∨ (𝑛 ≤ 0).  

The negation is true: there exists an integer which is greater than 10 or less than or equal to 0, for 

example 11, 12, 0, −1, . . . .  

(b) ∃ 𝑛, (𝑛 ≠ 0) → (𝑛2 > 0).  
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We have ¬(∃ 𝑛, (𝑛 ≠ 0) → (𝑛2> 0)) ≡ ∀ 𝑛, (𝑛 ≠ 0) ∧ (𝑛2 ≤ 0). Recall that the negation of an implication 𝑝 

→ 𝑞 is 𝑝 ∧ ¬𝑞. The original implication is true as the negation is false, if 𝑛 is not zero then 𝑛2 cannot 

be 0 or negative. 

(c) ∃ 𝑥, ∃ 𝑦, (𝑦 = 3𝑥 − 10) ∧ (𝑦 = −𝑥 + 2). 

We have 

 ¬(∃ 𝑥, ∃ 𝑦, (𝑦 = 3𝑥 − 10) ∧ (𝑦 = −𝑥 + 2))  

≡ ∀ 𝑥, ¬(∃ 𝑦, (𝑦 = 3𝑥 − 10) ∧ (𝑦 = −𝑥 + 2))  

≡ ∀ 𝑥, ∀𝑦, (𝑦 ≠ 3𝑥 + 10) ∨ (𝑦 ≠ −𝑥 + 2)).  

First, we try to investigate whether the original statement is true or false. Any potential pair (𝑥, 𝑦) 

exhibiting the truth of this statement must satisfy 𝑦 = 3𝑥 − 10 and 𝑦 = −𝑥 + 2 simultaneously. Solving 

these equations gives us 3𝑥 − 10 = −𝑥 + 2(= 𝑦) and thus 4𝑥 = 12, and so we get 𝑥 = 3 (and also 𝑦 = −1). 

Therefore, if both conditions 𝑥 = 3 and 𝑦 = −1  are satisfied, then original statement is true. 

(d) ∀ 𝑥, ∃ 𝑦, 𝑥2 + 𝑦2 = 1.  

We have ¬(∀ 𝑥, ∃ 𝑦, 𝑥2 + 𝑦2 = 1) ≡ ∃ 𝑥, ∀ 𝑦, 𝑥2 + 𝑦2 ≠ 1.  The negation is true. Here we pick 𝑥 = 2 (any 𝑥 

such that |𝑥| > 1 will do) and note that for all y we have 

𝑥2 + 𝑦2 = 4 + 𝑦2 > 4.  

In particular, 𝑥2 + 𝑦2 can never be equal to 1 for that particular value of 𝑥. Therefore, the original 

statement is true. 

 

Question 8. Let A , B be subsets of some universal set U. Using logical arguments, prove that 𝐴 ⊆ 𝐵 

⇔ 𝐵𝑐 ⊆ 𝐴𝑐 .  

Proof:  

𝐴 ⊆ 𝐵 ⇔ ∀ 𝑥, 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 

            ⇔ ∀ 𝑥, 𝑥 ∉ 𝐴 ∨ 𝑥 ∈ 𝐵 

                                                                 ⇔ ∀ 𝑥, 𝑥 ∈ 𝐵 ∨ 𝑥 ∉ 𝐴  

               ⇔ ∀ 𝑥, 𝑥 ∉ 𝐵𝑐 ∨ 𝑥 ∈ 𝐴𝑐 

  ⇔ ∀ 𝑥, 𝑥 ∈ 𝐵𝑐 → 𝑥 ∈ 𝐴𝑐  

                                                                 ⇔ 𝐵𝑐 ⊆ 𝐴𝑐 . 

Thus, 𝐴 ⊆ 𝐵 ⇔ 𝐵𝑐 ⊆ 𝐴𝑐.  

Please note that in the second and second last steps, we have used the equivalent propositions 

 ¬ 𝑝 ∨ 𝑞 and 𝑝 → 𝑞.  

In the third step, we have used the commutativity of ∨. In the fourth step, we have used the concept 

of the compliment of a set.  

Question 9. 𝓅(𝑋) = {∅,{𝑎},{ 𝑏},{𝑐},{𝑎, 𝑏},{𝑎, 𝑐},{𝑏, 𝑐},{𝑎, 𝑏, 𝑐}}. 


