LIN6049 Advanced Semantics: Puzzles in Meaning 2022/2023

Handout 5: review

Obligatory reading: re-read obligatory readings from previous weeks Optional reading: re-read optional readings from previous weeks

1 Goals of the module

To improve our semantic theory from *Intro to Semantics* for English and for other languages \rightarrow to improve our explanation for how human language/cognition works

Like in *Intro to Semantics*, we take a sentence with its syntactic structure, and suitable meanings for words (and morphemes), and use rules to provide the sentence with meaning

2 Our model for English from Intro to Semantics

Lexicon

[Luisa]^S = the individual called Luisa in s (and so on for other proper nouns)

 $[sleeps]^{S} = \{x: x \text{ sleeps in s}\}$ (and so on for other intransitive verbs)

 $[[gray]]^{S} = \{x: x \text{ is gray in s}\}$ (and so on for other intersective adjectives)

[tall]^S = {x: x's height is above the height standard in s} (and so on for other context-sensitive adjectives)

 $[dog]^{S} = \{x: x \text{ is a dog in s}\}$ (and so on for other common nouns)

...etc.

Compositional rules

1. Subject-predicate: If S has NP as its subject and VP as its predicate, $[S]^{S} = 1$ in s if $[NP]^{S} \in [VP]^{S}$ or $[VP]^{S} \in [NP]^{S}$

2. Non-branching nodes: If X is a non-branching node with daughter Y, $[X]^{S} = [Y]^{S}$

3. Nodes with a meaningless daughter: If X has a meaningless daughter (*a*, *be*) and another daughter Z, $[X]^{S} = [Z]^{S}$

4. Predicate Modification: If X has Y and Z as its only daughters and Y and Z denote sets of individuals, $[X]^{S} = [Y]^{S} \cap [Z]^{S}$

5. *Former*: If X has an AP headed by *former* and N' as its daughters, $[X]^{S} = \{x: \text{ there is an s' before s such that } x \in [[N']]^{S'}\}$

6. And₁: If S₃ has three daughters, S₁, and and S₂, $[S_3]^S = 1$ in s if $[S_1]^S = 1$ in s and $[S_2]^S = 1$ in s

7. And₂: If X has three daughters Y, and and Z, and Y and Z denote sets of individuals, $[X]^{S} = [Y]^{S} \cap [Z]^{S}$

8. *The*: If X is an NP with Det *the* and N' as daughters, $[X]^S$ is only defined if there is exactly one z in s such that $z \in [N']^S$; if defined, $[X]^S$ is that z

3 Changes we've introduced in our model for English

Lexicon
[Luisa] ^S = the individual called Luisa in s (and so on for other proper nouns)
$[sleeps]^{S} = \{x: x \text{ sleeps in s}\}$ (and so on for other intransitive verbs)
[[gray]] ^S = {x: x is gray in s} (and so on for other intersective adjectives)
$[tall]^{S} = \{x: x's height is above the height standard in s\}$ (and so on for other context-sensitive adjectives)
$[dog]^{S} = \{x: x \text{ is an atomic or non-atomic dog in s} (and so on for other common noun roots)$
$\llbracket - \emptyset \rrbracket^{S} = \llbracket + \text{atomic} \rrbracket^{S} = \{x: x \text{ is an atom in s} (singular morphology for nouns)}$
<pre>[-s]^S = [-atomic]^S = {x: x is a non-atom in s} (plural morphology for nouns)etc.</pre>
Compositional rules
1. Subject-predicate: If S has NP as its subject and VP as its predicate, $[S]^{S} = 1$ in s if $[NP]^{S} \in [VP]^{S}$ or $[VP]^{S} \in [NP]^{S}$
2. Non-branching nodes: If X is a non-branching node with daughter Y, $[X]^{S} = [Y]^{S}$
3. Nodes with a meaningless daughter: If X has a meaningless daughter (<i>a</i> , <i>be</i>) and another daughter Z, $[X]^{S} = [Z]^{S}$
4. Predicate Modification: If X has Y and Z as its only daughters and Y and Z denote sets of individuals, $[X]^{S} = [Y]^{S} \cap [Z]^{S}$
5. <i>Former</i> : If X has an AP headed by <i>former</i> and N' as its daughters, $[X]^{S} = \{x: \text{ there is an s' before s such that } x \in [[N']]^{S'}\}$
6. And ₁ : If S ₃ has three daughters, S ₁ , and and S ₂ , $[S_3]^S = 1$ in s if $[S_1]^S = 1$ in s and $[S_2]^S = 1$ in s
7. And ₂ : If X has three daughters Y, and and Z, and Y and Z denote sets of individuals, $[X]^{S} = [Y]^{S} \cap [Z]^{S}$
8. <i>The</i> : If X is an NP with Det <i>the</i> and N' as daughters, $[X]^{S}$ is only defined if there is a maximal z in s such that $z \in$
[[N']] ^S ; if defined, [[X]] ^S is that z
Assumptions

Distributive VPs denote sets of atomic and non-atomic individuals Collective VPs denote sets of non-atomic individuals

Question 1: what else in our model for English needs to be changed, given the introduction of singularity and plurality?

-the denotation of adjectives? (\rightarrow puzzle 5!) -the denotation of *and*₂? (since we used it for sentences such as *Lolo is brown and furry*, with adjectives, and maybe we need to reconsider adjectives) -the denotation of quantifiers?

Question 2: what else in our model for other languages needs to be changed, given the introduction of a semantics for grammatical number?

Question 3: what else in our model for language/semantic competence more generally needs to be changed, given the introduction of a semantics for grammatical number?

4 Towards a general model of semantic competence

Lexicon (languages have some or all of these)

For PN a proper name: [PN]^S = the individual called PN in s

For V an intransitive verb: $\llbracket V \rrbracket^S = \{x: x \text{ Vs in s}\}$

For IA an intersective adjective: $[IA]^{S} = \{x: x \text{ is IA in s}\}$

For N a common noun root: $[[N]]^S = \{x: x \text{ is an atomic or non-atomic N in s}\}$

 $[+atomic]^{s} = \{x: x \text{ is an atom in } s\}$

 $[-atomic]^{S} = \{x: x \text{ is a non-atom in s}\}$

Compositional rules I (all languages have all of these)

1. Subject-predicate: If S has NP as its subject and VP as its predicate, $[S]^{S} = 1$ in s if $[NP]^{S} \in [VP]^{S}$ or $[VP]^{S} \in [NP]^{S}$

2. Non-branching nodes: If X is a non-branching node with daughter Y, $[X]^{S} = [Y]^{S}$

3. Nodes with a meaningless daughter: If X has a meaningless daughter and another daughter Z, $[X]^{s} = [Z]^{s}$

Compositional rules II (languages have no, or some, or all of these)

1. Predicate Modification: If X has Y and Z as its only daughters and Y and Z denote sets of individuals, $[X]^{S} = [Y]^{S} \cap [Z]^{S}$

2. *Former* (or its equivalent in other languages): If X has an AP headed by *former* and N' as its daughters, $[X]^{S} = \{x: there is an s' before s such that <math>x \in [N']^{S'}$

3. And₁ (or its equivalent in other languages): If S₃ has three daughters, S₁, and and S₂, $[S_3]^S = 1$ in s if $[S_1]^S = 1$ in s and $[S_2]^S = 1$ in s

and $[S_2]^S = 1$ in s 4. And₂ (or its equivalent in other languages): If X has three daughters Y, and and Z, and Y and Z denote sets of individuals, $[X]^S = [Y]^S \cap [Z]^S$

5. *The* (or its equivalent in other languages): If X is an NP with Det *the* and N' as daughters, $[X]^S$ is only defined if there is a maximal z in s such that $z \in [N']^S$; if defined, $[X]^S$ is that z

6. If X = [Y [+minimal]], $[X]^{S} = \{x: x \in [Y]^{S} \text{ and } x \text{ is simplest in } [Y]^{S} = \{x: x \in [Y]^{S} \text{ and } x \text{ has no parts in } [Y]^{S} \}^{-1}$

7. If X = [Y [-minimal]], $[X]^{S} = \{x: x \in [Y]^{S} \text{ and } x \text{ is not simplest in } [Y]^{S} = \{x: x \in [Y]^{S} \text{ and } x \text{ has parts in } [Y]^{S} \}$

Assumptions (languages will have no, or some, or all of these)

Distributive VPs denote sets of atomic and non-atomic individuals Collective VPs denote sets of non-atomic individuals

Some more questions:

-how do languages that allow null subjects (e.g., Spanish) interpret subjects and predicates?

-what predictions are made for adjectives, quantifiers, or the definite article in languages that have a dual? How should we adapt their denotations (if indeed we have to)?

-for English, we can say that $[three N']^{S} = \{P: I[N']^{S} \cap PI = 3\}$. The N here, however, must be plural (**three dog*, \checkmark *three dogs*). What meaning do we predict for *three dogs*, and is it the correct meaning?

-how do distributive and collective VPs combine with quantified subjects, and do we make the correct predictions for the sentences they form?

-is it possible to imagine a language that doesn't distinguish collective from distributive VPs? What would it look like?

-do all languages with adjectives have adjectives of the *former*-type, which require a rule different from Predicate Modification?