

SEF015: Discrete Mathematics (2022-23)

Tutorial 2 (Week 3) - Solutions

Question 1. Since $f(2) = 2^3 + 2 \cdot 2^2 - 5 \cdot 2 - 6 = 8 + 8 - 10 - 6 = 0$, so 2 is a root and x - 2 is a factor of f(x) or x - 2 divides f(x). The division of f(x) by x - 2 gives $x^2 + 4x + 3$ (with remainder 0). Now, by inspection (or the quadratic formula), we can find $x^2 + 4x + 3 = (x + 3)(x + 1)$. Therefore

$$x^3 + 2x^2 - 5x - 6 = (x + 3)(x + 1)(x - 2).$$

Question 2. The truth table for $\neg(\neg p \land q)$ is

p	q	$\neg p$	$\neg p \land q$	$\neg(\neg p \land q)$
T	T	F	F	T
T	F	F	F	Т
F	Т	Т	Т	F
F	F	T	F	T

Question 3. The truth table for $(p \land r) \lor (q \land r)$ is

p	q	r	$p \wedge r$	$q \wedge r$	$(p \wedge r) \vee (q \wedge r)$
Т	T	T	T	T	T
T	T	F	F	F	F
Т	F	T	T	F	T
T	F	F	F	F	F
F	T	T	F	Т	Т
F	T	F	F	F	F
F	F	T	F	F	F
F	F	F	F	F	F

Question 4. The truth table for $(p \lor \neg q) \leftrightarrow r$ is

p	q	$\neg q$	$p \vee \neg q$	r	$(p \lor \neg q) \leftrightarrow r$
Т	Т	F	T	T	T
Т	Т	F	Т	F	F
Т	F	Т	Т	Т	T
Т	F	Т	Т	F	F
F	Т	F	F	Т	F
F	Т	F	F	F	T
F	F	Т	Т	Т	T
F	F	Т	T	F	F

Question 5. The truth table for $p \to (\neg r \lor q)$ is

p	q	r	$\neg r$	$q \lor \neg r$	$\neg r \lor q$	$p \rightarrow (\neg r \lor q)$
T	Т	Т	F	Т	Т	T
T	Т	F	Т	T	Т	T
T	F	Т	F	F	F	F
T	F	F	Т	T	T	T
F	Т	Т	F	Т	T	T
F	Т	F	Т	T	T	T
F	F	Т	F	F	F	T
F	F	F	Т	T	T	T

Question 6. a) $\neg p \lor (p \lor q)$

p	$\neg p$	q	$p \lor q$	¬p V	$(p \lor q)$
Т	F	T	T	1	
Т	F	F	Т	1	
F	Т	Т	Т	1	
F	Т	F	F	1	

a)
$$(p \rightarrow r) \rightarrow (p \rightarrow (q \lor r))$$

p	q	r	$p \rightarrow r$	q V r	$p \rightarrow (q \lor r)$	a) $(p \rightarrow r) \rightarrow (p \rightarrow (q \lor r))$
T	Т	Т	Т	Т	T	T
T	Т	F	F	Т	Т	T
T	F	Т	T	Т	T	T
T	F	F	F	F	F	T
F	Т	Т	T	Т	T	T
F	Т	F	T	Т	T	T T
F	F	Т	T	Т	Т	T
F	F	F	T	F	T	T

a) See the last column in both the above tables, all true. So the statements $\neg p \lor (p \lor q)$ and $(p \to r) \to (p \to (q \lor r))$ are tautologies.