Coursework 2 2022-2023

1. Dynamical systems

CLOZE 0.10 penalty

a) Which of the following systems of ODEs is autonomous and dynamical?

MULTI 1 point Multiple Shuffle I √ II • III,

where

I: $\dot{y_1} = e^{y_1} - \sin(y_2)$, $\dot{y_2} = y_1 + y_2$ II: $\frac{dy_1}{dx} = 5y_1$, $\frac{dy_2}{dx} = -y_2$ III: $y_1' = 3y_2$, $y_2' = y_1y_2 - y_2$

b) Find out which of the following options are equilibria of the dynamical system,

$$\dot{y_1} = e^{y_1 y_2} - 1, \quad \dot{y_2} = (y_1 - 3)y_2$$

Multiple Shuffle MULTI 2 points

• I (50%)

• II (50%)

• III

 \bullet IV

where I: $(y_1^*, y_2^*) = (5, 0)$; II: $(y_1^*, y_2^*) = (3, 0)$; $\mathrm{III:}(y_1^*,y_2^*) = (0,1); \, \mathrm{IV:}(y_1^*,y_2^*) = (3,2).$

2. Phase portrait

CLOZE 0.10 penalty

Consider a system of two linear first-order ordinary differential equations: $\dot{y}_1 = y_2$, $\dot{y}_2 = -9y_1$.

a) The corresponding eigenvalues are

MULTI 1 point Multiple Shuffle

• $\lambda_1 = 3, \ \lambda_2 = -3$ • $\lambda_1 = 3i, \ \lambda_2 = -3i \ \checkmark$ • $\lambda_1 = 9, \ \lambda_2 = -9$

b) The corresponding eigenvectors of this linear ODE system are

MULTI 1 point Multiple Shuffle

• I and III ✓

• II and III ✓

• I and IV

• I and III ✓

Where
$$I: u_2 = \begin{pmatrix} i \\ 3 \end{pmatrix}$$

$$II: u_2 = \begin{pmatrix} 1 \\ -3i \end{pmatrix}$$

$$III: u_1 = \begin{pmatrix} 1 \\ 3i \end{pmatrix}$$

$$IV: u_1 = \begin{pmatrix} 3i \\ -1 \end{pmatrix}$$

c) The phase portrait for this system of ODEs is

MULTI 1 point Multiple

- Stable node
- Centre ✓

- Unstable focus with spiral out
 - Stable focus with spiral in

3. Stability

MULTI 2 points 0.10 penalty Single Shuffle

For which value of a the system of ODEs

 $\dot{y}_1 = \tanh(y_1) + a\sin(y_2), \quad \dot{y}_2 = -2\cos(y_1) + 2e^{y_1} + 3y_2$ has an unstable focus at $(y_1, y_2) = (0, 0)$

- (a) 0 < a < 2
- (b) a = 2
- (c) a < -1/2 (100%)
- (d) -1/2 < a < 0

4. Lyapunov function

0.10 penalty Single Shuffle MULTI 2 points

Which of the following functions $V(y_1, y_2)$ is a Lyapunov function for the dynamical system

$$\dot{y_1} = (4 - y_1)e^{y_1\dot{y_2}}, \quad \dot{y_2} = y_1^2 - y_1^2y_2$$

(a)
$$V(y_1, y_2) = (y_1 - 4)^4 + (y_2 - 1)^2$$
 (100%)

- (b) $V(y_1, y_2) = y_1^4 + y_2^2$ (c) $V(y_1, y_2) = -y_1^3 + e^{y_2}$ (d) $V(y_1, y_2) = -y_1^4 + (y_2 1)^3$

Total of marks: 10