Coursework 1 Year 2022/2023 final

1. Linearity of ODEs

MATCHING 4 points 0.10 penalty

Find the right match for the following ODEs in the dropdown menu

 $y' + y'' = 2x^2y \bullet \cdots$

ODE

 $5y' = x - e^x y \bullet$ • 1st-order linear ODE $2x^2yy' + 2xy^2 + 3 = 0 \bullet$ • 1st-order Exact ODE $xy' = (-5y + x)\sin(y/x) \bullet$ • Scale-invariant ODE $y'' = \frac{x}{y} \bullet$ • None of the above forms $y'' = 5 + y \bullet$ • 2nd-order linear inhom • 2nd-order linear inhomogeneous ODE

• 2nd-order Euler-type ODE

neous ODE $x^2y'' = 5y \bullet \cdots \bullet \text{ 2nd-order Euler-type OD}$ $ye^{xy} - 2\frac{y^2}{x^3} + y'xe^{xy} + 2\frac{y}{x^2}y' = 0 \bullet \cdots \bullet \text{ 1st-order Exact ODE}$ $y''' = \frac{x}{y} \bullet \cdots \bullet \text{ None of the above forms}$ $y'e^x = y\sin(x) + \tanh(y) \bullet \cdots \bullet \text{ 1st-order nonlinear ODE}$

2. **IVP**

CLOZE 0.10 penalty

a) Solving the initial value problem (IVP) $y' = y^{3/4}/x$, implies finding a solution y(x) of the differential equation that passes through the point (x_0, y_0) with

MULTI 1 point Single Shuffle

• $x_0 = 1, y_0 = 0$ \checkmark • $x_0 = 0, y_0 = 1$ • $x_0 = 1, y_0 = e$

• 2nd-order linear homogeneous

b) If this IVP has a unique solution, it means that

MULTI 1 point Single Shuffle

- there exists a rectangular region of the two dimensional xy plane whose center is the point (x_0, y_0) where the solution to the IVP is unique. ✓
- in the whole xy plane, there exist one and only one solution passing through this point.
- there is only one unique solution to the ODE in the xy plane.

c) Does the IVP satisfy the hypotheses of the Picard-Lindelöf theorem?

MULTI 1 point Multiple Shuffle

• no √

• yes

d) How many solutions has the IVP in a)?

MULTI 1 point Multiple Shuffle

• none

• more than one \checkmark

ullet one

3. Scale Invariant ODE

2 points 0.10 penalty Single Shuffle MULTI

The general solution of the 1st-order ODE, $y'x^2 = -y^2$ is

- (a) $y(x) = -\frac{2x}{2+Cx} (100\%)$ (b) $y(x) = Cx + \frac{1}{x}$ (c) $y(x) = \frac{2x}{C+x}$ (d) $y(x) = \frac{1}{1+x}$

Total of marks: 10