. University of London

MTH5123 Differential Equations
 Lecture Notes
 Week 5

School of Mathematical Sciences
Queen Mary University of London

Autumn 2021

2.2.2.2 Euler type equation

Note:

Certain second-order linear ODEs with nonconstant coefficients can be reduced to corresponding ODEs with constant coefficients by special substitutions. Consider, for example, the Euler type equation

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0, x>0, a, b, c=\text { const. . } \tag{2.28}
\end{equation*}
$$

This equation can be reduced to one with constant coefficients by introducing the new variable $x=e^{t}$ so that $y(x)=y[x(t)]=z(t)$. By the chain rule we have

$$
\begin{equation*}
\dot{z}=\frac{d z}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{d y}{d x} e^{t} \Rightarrow y^{\prime}=e^{-t} \dot{z} . \tag{2.29}
\end{equation*}
$$

Differentiating z another time yields

$$
\ddot{z}=\frac{d}{d t} \dot{z}=\frac{d}{d t}\left[\frac{d y}{d x} e^{t}\right]=\left(\frac{d}{d t} \frac{d y}{d x}\right) e^{t}+\frac{d y}{d x} e^{t}=\frac{d^{2} y}{d x^{2}} \frac{d x}{d t} e^{t}+\frac{d y}{d x} e^{t}=\frac{d^{2} y}{d x^{2}} e^{2 t}+\frac{d y}{d x} e^{t} .
$$

Solving this equation for $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ gives

$$
\begin{equation*}
y^{\prime \prime}=e^{-2 t}(\ddot{z}-\dot{z}) . \tag{2.30}
\end{equation*}
$$

Substituting (2.29)and (2.30) into (2.28) the latter is reduced to the equation with constant coefficients

$$
\begin{equation*}
a \ddot{z}+(b-a) \dot{z}+c z=0, \tag{2.31}
\end{equation*}
$$

which can be solved for $z(t)$ by the standard method given above. One then recovers the original solution $y(x)$ by $y(x)=\left.z(t)\right|_{t=\ln x}$.

2.2.2.3 Linear inhomogeneous 2nd-order ODEs with constant coefficients and $f(x) \neq 0$

The general solution of the inhomogeneous equation (2.17) with $f(x) \neq 0$, viz. (2.14), can be recovered from the general solution of the corresponding homogeneous equation with $f(x)=0$, viz. (2.13), by extending the variation of parameter method that we already applied successfully to solving first-order linear inhomogeneous equations.
As an example, we consider second-order ODE's of the form (2.17)

$$
\begin{equation*}
a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=f(x) \tag{2.32}
\end{equation*}
$$

First: find $y_{h}(x)$ to the corresponding homogenous ODE

The characteristic equation corresponding to (2.32) is given by $M_{2}(\lambda)=a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0$. It has the two roots

$$
\begin{equation*}
\lambda_{1}=\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}, \lambda_{2}=\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}} \tag{2.33}
\end{equation*}
$$

which are real and distinct as long as $a_{1}^{2}-4 a_{2} a_{0}>0$. Considering for simplicity only this case, we have learned that we can write the general solution to the homogeneous equation as

$$
\begin{equation*}
y_{h}(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}, \tag{2.34}
\end{equation*}
$$

where c_{1} and c_{2} are two real constants.

Second: Find $y_{p}(x)$ based on The variation of parameter method

According to the variation of paramter method we will look for a solution of the full inhomogeneous equation (2.32) in the form of

$$
\begin{equation*}
y(x)=c_{1}(x) e^{\lambda_{1} x}+c_{2}(x) e^{\lambda_{2} x} \tag{2.35}
\end{equation*}
$$

We have to show that this ansatz works, and if so, whether it will yield a particular or possibly even the general solution. Differentiating (2.35) yields

$$
\begin{equation*}
\frac{d y}{d x}=c_{1}(x) \lambda_{1} e^{\lambda_{1} x}+c_{2}(x) \lambda_{2} e^{\lambda_{2} x}+c_{1}^{\prime}(x) e^{\lambda_{1} x}+c_{2}^{\prime}(x) e^{\lambda_{2} x} \tag{2.36}
\end{equation*}
$$

with $c_{1,2}^{\prime} \equiv \frac{d c_{1,2}}{d x}$. To simplify this expression before we proceed further, we impose the additional condition

$$
\begin{equation*}
c_{1}^{\prime}(x) e^{\lambda_{1} x}+c_{2}^{\prime}(x) e^{\lambda_{2} x}=0 \tag{2.37}
\end{equation*}
$$

on the two functions $c_{1,2}(x)$. This implies that

$$
\begin{equation*}
\frac{d y}{d x}=c_{1}(x) \lambda_{1} e^{\lambda_{1} x}+c_{2}(x) \lambda_{2} e^{\lambda_{2} x} \tag{2.38}
\end{equation*}
$$

which facilitates the following second differentiation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=c_{1}(x) \lambda_{1}^{2} e^{\lambda_{1} x}+c_{2}(x) \lambda_{2}^{2} e^{\lambda_{2} x}+c_{1}^{\prime}(x) \lambda_{1} e^{\lambda_{1} x}+c_{2}^{\prime}(x) \lambda_{2} e^{\lambda_{2} x} \tag{2.39}
\end{equation*}
$$

Now we substitute (2.35), (2.38) and (2.39) into the left-hand side of (2.32) giving

$$
\begin{gather*}
a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=c_{1}(x) e^{\lambda_{1} x}\left(a_{2} \lambda_{1}^{2}+a_{1} \lambda_{1}+a_{0}\right) \tag{2.40}\\
+c_{2}(x) e^{\lambda_{2} x}\left(a_{2} \lambda_{2}^{2}+a_{1} \lambda_{2}+a_{0}\right)+a_{2}\left(c_{1}^{\prime}(x) \lambda_{1} e^{\lambda_{1} x}+c_{2}^{\prime}(x) \lambda_{2} e^{\lambda_{2} x}\right) .
\end{gather*}
$$

Remembering that both λ_{1} and λ_{2} are roots of the characteristic equation, that is $a_{2} \lambda_{1}^{2}+$ $a_{1} \lambda_{1}+a_{0}=0$ and $a_{2} \lambda_{2}^{2}+a_{1} \lambda_{2}+a_{0}=0$ we see that (2.32) and (2.40) together imply the relation

$$
\begin{equation*}
c_{1}^{\prime}(x) \lambda_{1} e^{\lambda_{1} x}+c_{2}^{\prime}(x) \lambda_{2} e^{\lambda_{2} x}=f(x) / a_{2} . \tag{2.41}
\end{equation*}
$$

Now we compare (2.37) and (2.41). Multiplying (2.37) with the factor $-\lambda_{2}$ and adding to (2.41) gives

$$
\begin{equation*}
c_{1}^{\prime}(x) e^{\lambda_{1} x}\left(\lambda_{1}-\lambda_{2}\right)=f(x) / a_{2}, \tag{2.42}
\end{equation*}
$$

which allows us to find $c_{1}(x)$ by straightforward integration,

$$
\begin{equation*}
c_{1}(x)=\frac{1}{\left(\lambda_{1}-\lambda_{2}\right) a_{2}}\left(\int f(x) e^{-\lambda_{1} x} d x+C_{1}\right) \tag{2.43}
\end{equation*}
$$

where C_{1} is a real constant. Similarly, multiplying (2.37) with the factor λ_{1} and subtracting from (2.41) gives

$$
\begin{equation*}
c_{2}^{\prime}(x) e^{\lambda_{2} x}\left(\lambda_{2}-\lambda_{1}\right)=f(x) / a_{2} . \tag{2.44}
\end{equation*}
$$

Hence

$$
\begin{equation*}
c_{2}(x)=-\frac{1}{\left(\lambda_{1}-\lambda_{2}\right) a_{2}}\left(\int f(x) e^{-\lambda_{2} x} d x+C_{2}\right) \tag{2.45}
\end{equation*}
$$

where C_{2} is a real constant. Collecting everything together we find that a solution to the inhomogeneous equation (2.32) is given by

$$
\begin{equation*}
y(x)=\frac{1}{\left(\lambda_{1}-\lambda_{2}\right) a_{2}}\left\{e^{\lambda_{1} x}\left(\int f(x) e^{-\lambda_{1} x} d x+C_{1}\right)-e^{\lambda_{2} x}\left(\int f(x) e^{-\lambda_{2} x} d x+C_{2}\right)\right\} . \tag{2.46}
\end{equation*}
$$

Putting $f(x)=0$ in (2.46) and introducing the notation

$$
\frac{C_{1}}{\lambda_{1}-\lambda_{2}}=c_{1},-\frac{C_{2}}{\lambda_{1}-\lambda_{2}}=c_{2}
$$

we see that the solution (2.46) reduces to

$$
\begin{equation*}
y_{h}(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}, \tag{2.47}
\end{equation*}
$$

which is the general solution of the corresponding homogeneous equation. Accordingly, our corresponding solution $y(x)$ of the inhomogeneous equation can be written as $y_{g}(x)=$ $y_{h}(x)+y_{p}(x)$, where

$$
\begin{equation*}
y_{p}(x)=\frac{1}{\left(\lambda_{1}-\lambda_{2}\right) a_{2}}\left\{e^{\lambda_{1} x} \int f(x) e^{-\lambda_{1} x} d x-e^{\lambda_{2} x} \int f(x) e^{-\lambda_{2} x} d x\right\} \tag{2.48}
\end{equation*}
$$

is a particular solution of the inhomogeneous equation. Hence, the variation of parameter method did indeed yield the general solution $y_{g}(x)=y(x)$ of (2.32).

Note:

1. Although the solution (2.46) (or equivalently the pair (2.47), (2.48)) was formally derived for real $\lambda_{1} \neq \lambda_{2}$ it retains its validity for complex conjugate roots $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$ with $\beta \neq 0$ as long as one uses complex coefficients c_{1}, c_{2}. To bring the solution onto a real form one uses Euler's formula (2.27). One can even use (2.46) in the limit $\lambda_{1} \rightarrow \lambda_{2}$ (that is, $\beta \rightarrow 0$) by using L'Hopital's rule, as will be demonstrated later on by an example.
2. Although the variation of parameter method is of general validity for arbitrary $f(x)$, its implementation relies on our ability to perform the integrals $\int f(x) e^{-\lambda_{2} x} d x$ explicitly. In practical terms, for finding explicit forms of the solution it is sometimes easier to guess a particular solution $y_{p}(x)$ of the inhomogeneous equation and then to combine it with the general solution $y_{h}(x)$ of the corresponding homogeneous equation into the general solution $y_{g}(x)=y_{h}(x)+y_{p}(x)$ of the inhomogeneous one according to our theory.

2.2.2.4 Educated guess method for linear inhomogeneous 2nd-order ODEs with constant coefficients and $f(x)=P(x) e^{a x}$

If the right-hand side has the form $f(x)=P(x) e^{a x}$, where $P(x)$ is a polynomial of degree k, and $a \neq \lambda_{1}, a \neq \lambda_{2}$ (which means that $e^{a x}$ is not a solution of the homogeneous equation), then a particular solution can always be found in the form $y_{p}(x)=Q(x) e^{a x}$ with some polynomial $Q(x)=d_{k} x^{k}+\ldots+d_{1} x+d_{0}$ of the same degree. We may refer to such a method of finding particular solutions as the educated guess method.

Example:

Find a particular solution of the ODE

$$
y^{\prime \prime}+2 y^{\prime}-3 y=x e^{2 x}
$$

Solution: Here $a=2$ and $P(x)=x$ is of first degree. First we need to check that $e^{2 x}$ is not a solution of $y^{\prime \prime}+2 y^{\prime}-3 y=0$, which is indeed the case. Then we look for a solution in the form $y_{p}(x)=\left(d_{1} x+d_{0}\right) e^{2 x}$. Differentiating gives

$$
y_{p}^{\prime}=e^{2 x}\left(2 d_{0}+d_{1}+2 d_{1} x\right), y_{p}^{\prime \prime}=e^{2 x}\left(4 d_{0}+4 d_{1}+4 d_{1} x\right),
$$

which by substitution into the left-hand side of the inhomogeneous equation and collecting similar terms yields

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}-3 y_{p}=e^{2 x}\left(5 d_{0}+6 d_{1}+5 d_{1} x\right) .
$$

Matching the coefficients to the right-hand side $x e^{2 x}$ we find $d_{1}=1 / 5$ and $d_{0}=-\frac{6 d_{1}}{5}=$ $-6 / 25$. Thus a particular solution to the given ODE is

$$
y_{p}(x)=\left(\frac{1}{5} x-\frac{6}{25}\right) e^{2 x} .
$$

Another version of the educated guess method exits in the case of two complex conjugate roots $\lambda_{1}=\alpha+i \beta, \lambda_{2}=\alpha-i \beta$. Here, if the right-hand side has the form $f(x)=P(x) \cos (a x)$ or $f(x)=P(x) \sin (a x)$, where $P(x)$ is a polynomial of degree k, and $i a \neq \lambda_{1}, i a \neq \lambda_{2}$ (which means that $e^{i a x}=\cos (a x)+i \sin (a x)$ is not a solution of the homogeneous equation), then such a particular solution can always be found in the form

$$
\begin{equation*}
y_{p}(x)=Q(x)(A \cos (a x)+B \sin (a x)) \tag{2.49}
\end{equation*}
$$

with some coefficients A, B and some polynomial $Q(x)=d_{k} x^{k}+\ldots+d_{1} x+1$ (note that the last coefficient of the polynomial can be chosen to be equal to one).

