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2.2.2.2 Euler type equation

Note:
Certain second-order linear ODEs with nonconstant coefficients can be reduced to corre-
sponding ODEs with constant coefficients by special substitutions. Consider, for example,
the Euler type equation

ax2y′′ + bxy′ + cy = 0 , x > 0, a, b, c = const. . (2.28)

This equation can be reduced to one with constant coefficients by introducing the new
variable x = et so that y(x) = y[x(t)] = z(t). By the chain rule we have

ż =
dz

dt
=
dy

dx

dx

dt
=
dy

dx
et ⇒ y′ = e−tż . (2.29)

Differentiating z another time yields

z̈ =
d

dt
ż =

d

dt

[
dy

dx
et
]

=

(
d

dt

dy

dx

)
et +

dy

dx
et =

d2y

dx2
dx

dt
et +

dy

dx
et =

d2y

dx2
e2t +

dy

dx
et .

Solving this equation for y′′ = d2y
dx2

gives

y′′ = e−2t (z̈ − ż) . (2.30)

Substituting (2.29)and (2.30) into (2.28) the latter is reduced to the equation with constant
coefficients

az̈ + (b− a)ż + cz = 0 , (2.31)

which can be solved for z(t) by the standard method given above. One then recovers the
original solution y(x) by y(x) = z(t)|t=lnx.

2.2.2.3 Linear inhomogeneous 2nd-order ODEs with constant coefficients and
f(x) 6= 0

The general solution of the inhomogeneous equation (2.17) with f(x) 6= 0, viz. (2.14), can
be recovered from the general solution of the corresponding homogeneous equation with
f(x) = 0, viz. (2.13), by extending the variation of parameter method that we already
applied successfully to solving first-order linear inhomogeneous equations.
As an example, we consider second-order ODE’s of the form (2.17)

a2
d2y

dx2
+ a1

dy

dx
+ a0y = f(x) . (2.32)

First: find yh(x) to the corresponding homogenous ODE

The characteristic equation corresponding to (2.32) is given by M2(λ) = a2λ
2+a1λ+a0 = 0.

It has the two roots

λ1 =
−a1 +

√
a21 − 4a2a0

2a2
, λ2 =

−a1 −
√
a21 − 4a2a0

2a2
, (2.33)
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which are real and distinct as long as a21 − 4a2a0 > 0. Considering for simplicity only this
case, we have learned that we can write the general solution to the homogeneous equation
as

yh(x) = c1e
λ1x + c2e

λ2x, (2.34)

where c1 and c2 are two real constants.

Second: Find yp(x) based on The variation of parameter method

According to the variation of paramter method we will look for a solution of the full inho-
mogeneous equation (2.32) in the form of

y(x) = c1(x)eλ1x + c2(x)eλ2x . (2.35)

We have to show that this ansatz works, and if so, whether it will yield a particular or
possibly even the general solution. Differentiating (2.35) yields

dy

dx
= c1(x)λ1e

λ1x + c2(x)λ2e
λ2x + c′1(x)eλ1x + c′2(x)eλ2x (2.36)

with c′1,2 ≡
dc1,2
dx

. To simplify this expression before we proceed further, we impose the
additional condition

c′1(x)eλ1x + c′2(x)eλ2x = 0 (2.37)

on the two functions c1,2(x). This implies that

dy

dx
= c1(x)λ1e

λ1x + c2(x)λ2e
λ2x , (2.38)

which facilitates the following second differentiation

d2y

dx2
= c1(x)λ21e

λ1x + c2(x)λ22e
λ2x + c′1(x)λ1e

λ1x + c′2(x)λ2e
λ2x . (2.39)

Now we substitute (2.35), (2.38) and (2.39) into the left-hand side of (2.32) giving

a2
d2y

dx2
+ a1

dy

dx
+ a0y = c1(x)eλ1x

(
a2λ

2
1 + a1λ1 + a0

)
(2.40)

+c2(x)eλ2x
(
a2λ

2
2 + a1λ2 + a0

)
+ a2

(
c′1(x)λ1e

λ1x + c′2(x)λ2e
λ2x
)
.

Remembering that both λ1 and λ2 are roots of the characteristic equation, that is a2λ
2
1 +

a1λ1 + a0 = 0 and a2λ
2
2 + a1λ2 + a0 = 0 we see that (2.32) and (2.40) together imply the

relation
c′1(x)λ1e

λ1x + c′2(x)λ2e
λ2x = f(x)/a2 . (2.41)

Now we compare (2.37) and (2.41). Multiplying (2.37) with the factor −λ2 and adding to
(2.41) gives

c′1(x)eλ1x(λ1 − λ2) = f(x)/a2 , (2.42)

which allows us to find c1(x) by straightforward integration,

c1(x) =
1

(λ1 − λ2)a2

(∫
f(x)e−λ1xdx+ C1

)
, (2.43)
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where C1 is a real constant. Similarly, multiplying (2.37) with the factor λ1 and subtracting
from (2.41) gives

c′2(x)eλ2x(λ2 − λ1) = f(x)/a2 . (2.44)

Hence

c2(x) = − 1

(λ1 − λ2)a2

(∫
f(x)e−λ2xdx+ C2

)
, (2.45)

where C2 is a real constant. Collecting everything together we find that a solution to the
inhomogeneous equation (2.32) is given by

y(x) =
1

(λ1 − λ2)a2

{
eλ1x

(∫
f(x)e−λ1xdx+ C1

)
− eλ2x

(∫
f(x)e−λ2xdx+ C2

)}
.

(2.46)
Putting f(x) = 0 in (2.46) and introducing the notation

C1

λ1 − λ2
= c1 , −

C2

λ1 − λ2
= c2

we see that the solution (2.46) reduces to

yh(x) = c1e
λ1x + c2e

λ2x , (2.47)

which is the general solution of the corresponding homogeneous equation. Accordingly,
our corresponding solution y(x) of the inhomogeneous equation can be written as yg(x) =
yh(x) + yp(x), where

yp(x) =
1

(λ1 − λ2)a2

{
eλ1x

∫
f(x)e−λ1xdx− eλ2x

∫
f(x)e−λ2xdx

}
(2.48)

is a particular solution of the inhomogeneous equation. Hence, the variation of parameter
method did indeed yield the general solution yg(x) = y(x) of (2.32).

Note:

1. Although the solution (2.46) (or equivalently the pair (2.47), (2.48)) was formally
derived for real λ1 6= λ2 it retains its validity for complex conjugate roots λ1 = α+ iβ
and λ2 = α−iβ with β 6= 0 as long as one uses complex coefficients c1, c2. To bring the
solution onto a real form one uses Euler’s formula (2.27). One can even use (2.46) in
the limit λ1 → λ2 (that is, β → 0) by using L’Hopital’s rule, as will be demonstrated
later on by an example.

2. Although the variation of parameter method is of general validity for arbitrary f(x), its
implementation relies on our ability to perform the integrals

∫
f(x)e−λ2xdx explicitly.

In practical terms, for finding explicit forms of the solution it is sometimes easier to
guess a particular solution yp(x) of the inhomogeneous equation and then to combine
it with the general solution yh(x) of the corresponding homogeneous equation into the
general solution yg(x) = yh(x) + yp(x) of the inhomogeneous one according to our
theory.
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2.2.2.4 Educated guess method for linear inhomogeneous 2nd-order
ODEs with constant coefficients and f(x) = P (x)eax

If the right-hand side has the form f(x) = P (x)eax, where P (x) is a polynomial of degree k,
and a 6= λ1, a 6= λ2 (which means that eax is not a solution of the homogeneous equation),
then a particular solution can always be found in the form yp(x) = Q(x)eax with some
polynomial Q(x) = dkx

k+ . . .+d1x+d0 of the same degree. We may refer to such a method
of finding particular solutions as the educated guess method.

Example:
Find a particular solution of the ODE

y′′ + 2y′ − 3y = xe2x .

Solution: Here a = 2 and P (x) = x is of first degree. First we need to check that e2x is
not a solution of y′′+ 2y′− 3y = 0, which is indeed the case. Then we look for a solution in
the form yp(x) = (d1x+ d0)e

2x. Differentiating gives

y′p = e2x(2d0 + d1 + 2d1x) , y′′p = e2x(4d0 + 4d1 + 4d1x) ,

which by substitution into the left-hand side of the inhomogeneous equation and collecting
similar terms yields

y′′p + 2y′p − 3yp = e2x(5d0 + 6d1 + 5d1x) .

Matching the coefficients to the right-hand side xe2x we find d1 = 1/5 and d0 = −6d1
5

=
−6/25. Thus a particular solution to the given ODE is

yp(x) =

(
1

5
x− 6

25

)
e2x .

Another version of the educated guess method exits in the case of two complex conjugate
roots λ1 = α+iβ, λ2 = α−iβ. Here, if the right-hand side has the form f(x) = P (x) cos (ax)
or f(x) = P (x) sin (ax), where P (x) is a polynomial of degree k, and ia 6= λ1, ia 6= λ2 (which
means that eiax = cos(ax) + i sin(ax) is not a solution of the homogeneous equation), then
such a particular solution can always be found in the form

yp(x) = Q(x)(A cos (ax) +B sin (ax)) (2.49)

with some coefficients A,B and some polynomial Q(x) = dkx
k + . . . + d1x + 1 (note that

the last coefficient of the polynomial can be chosen to be equal to one).


