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Introduction

An ordinary differential equation (ODE) of n−th order is a relation between an
unknown function y = y(x) of a single independent real variable x ∈ R, and the
derivatives

y′ ≡ dy

dx
, . . . , y(n) ≡ dny

dxn
.

Symbolically we can write any ODE in the form

F (x, y, y′, . . . , y(n)) = 0 (1)

The highest derivative entering (1) defines the order of the ODE. Examples are y′ + y =
0, y′′ − x2y′ + sin y = 0, etc.

Definition: Any function y = f(x) defined in some interval x ∈ (A,B), which when
substituted to eq.(1) reduces it to an identity, is called a solution of eq.(1), and (A,B) is
called its interval of definition.

The majority of interesting differential equations (not only ordinary ones!) comes from
modelling problems in various branches of physics, such as classical mechanics (Newton’s
equations of motion), quantum mechanics ( Schrödinger’s eqn.), the theory of electricity
and magnetism (Maxwell’s equations), hydrodynamics (Navier-Stokes eqn.), etc. They also
play important roles in ecological and biological problems (logistic equation for population
growth and extinction), engineering (e.g. launching and control of aircrafts and missiles,
problems of combustion, satellite navigation), economics and finances (resource optimiza-
tion; dynamics of stock exchange indices, etc.).

Note: The role of the independent variable x in applications is most frequently played by
the time variable t, and we are then interested in functions y(t). In that case the standard

notations for derivatives are: ẏ ≡ dy
dt
, ÿ ≡ d2y

dt2
, etc.

Example:
Newton’s Second Law for a point mass m moving along a single (say, vertical) coordinate y
under the influence of a force f reads mass×acceleration = force. By definition, velocity
is given by the first derivative v = ẏ and acceleration is given by second derivative a = ÿ
of the coordinate y(t). Hence Newton’s Second Law takes the form of the second-order
differential equation

mÿ = f(t, y, ẏ) , (2)

where the force f may in general be time-dependent and velocity-dependent. According to
Newtonian mechanics, all complex mechanical motion in the world is governed by second
order differential equations, hence their importance. One of the simplest systems of that
sort is represented by a point mass m attached to the loose end of a massless elastic spring
of length l, with the other end of the spring being fixed to a ceiling (see Fig. 1).



Figure 1: Elastic spring of equilibrium length l with an attached mass m.

Measuring the coordinate y from the ceiling downwards, the mass is subject to a force
equal to the sum of three contributions: the position-independent gravity force fg = mg,
the position dependent elastic force fel = −k(y − l) (Hook’s law of elasticity), and the
friction force fa = −γ ẏ which is proportional to the velocity and is directed against the
actual motion. Then (2) takes the form

mÿ = mg − k(y − l)− γẏ . (3)

Here g is the gravity acceleration, k is the spring constant depending on the spring’s material,
and γ is the friction coeffcient. We will be able to analyze this equation and the resulting
motion in due time, after we learn the methods allowing one to solve such equations.

Example:
Another example in biology is the logistic equation, which is also called the Verhulst model.
The logistic equation describes a model of population growth introduced by Pierre Verhulst
(1845, 1847). In this model, the initial stage of population growth is approximately expo-
nential when the population size N is small; then the growth slows when population size
increases, and stops when the population size reaches the maximum capacity of the envi-
ronment K. The change of population size over time is governed by a first order non-linear
differential equation.

dN(t)

dt
= rN(t)(1− N(t)

K
). (4)

Here, r is the per capita growth rate of a population in the time interval dt. We can see
that when N(t) = K, dN(t)

dt
= 0, the population stops growing and its size does not change

further. In biology, the maximum population size K is called as the carrying capacity of a
population under a certain environment. For some species, e.g. elephants in tropic forests,
the carrying capacity K can be very small such as hundreds, as elephants need a lot of
food and large space and thus limited number of individuals can be afforded by a natural
habitat. However, if we think of colon cancer population in our body, the carrying capacity
K can be as large as more than 1011 cells, as our body cell is very small, a detectable nail
size tumour has more than 109 cells. In this case, the initial growth of a tumour from a
single cell can be approximately as exponential growth, where N(t)/K → 0 when t is small
and N(0) = 1.
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Figure 2: A illustrative figure of world population growth (from steemiteducation website)

1 Properties of first-order ODEs

Explicit Solutions of Simple Types of First Order ODEs

In this chapter we familiarize ourselves with a few simple first-order differential equa-
tions, always written in the normal form y′ = f(x, y) or ẏ = f(t, y), which allow for a
complete analytical solution. The simplest case is one when the right-hand side is indepen-
dent of y, that is

y′ = f(x)

Solutions to such an equation amount to finding the antiderivative for the right-hand side,
that is, to a simple integration: y =

∫
f(x)dx + C, where C is an arbitrary constant. We

will see that general solutions of first order ODEs will always contain an arbitrary constant.
The above type belongs in fact to a more general class of explicitly solvable first order ODEs
as discussed in the next section.

1.1 Separable First Order ODEs

These are equations with the right-hand side being a product of two factors, one
depending only on the variable x and another one depending only on the unknown function
y, that is
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dy

dx
= f(x)g(y) , (1.1)

where both f(x) and g(y) are assumed to be continuous. The first observation is that if
y1, . . . , yk are roots of the algebraic equation g(y) = 0, then the constant functions

y(x) = y1, y(x) = y2, . . . , y(x) = yk

are solutions of the ODE (1.1).
To find non-constant solutions scientists and engineers usually employ the following heuristic
method (i.e mathematically ill-defined, but producing sensible results) of separation of
variables, which allows one to solve (1.1) by the following steps: One starts with treating
the derivative dy

dx
as if it was a ratio of two algebraic quantities dy and dx. That way one

formally separates variables as dy
g(y)

= f(x)dx and by integrating both sides arrives at the
relation ∫

dy

g(y)
=

∫
f(x)dx+ C , (1.2)

where C is an arbitrary constant. Denoting the result of integration on the left-hand side
as
∫

dy
g(y)
≡ H(y) (1.2) takes the form H(y) =

∫
f(x)dx + C. At the final step we may

try to express y(x) by formally defining the inverse function H−1(u) in such a way that
H (H−1(u)) = u, which is equivalent to

H(y) = u ⇔ y = H−1(u) .

This allows one to write a one-parameter family of solutions to (1.1) as

y = H−1
(∫

f(x)dx+ C

)
.

Note: There may exist more than one function inverse to a given function. For example,
suppose H(y) = y2. Solving y2 = u we find y = ±

√
u for any u > 0. Hence there exist two

different inverse functions H−1(u > 0) =
√
u and H−1(u > 0) = −

√
u. To find all solutions

to an ODE by separation of variables we need to use all possible inverse functions H−1(u).

Example:
Find non-constant solutions of the ODEs

(a) y′ = xy2, (b) y′ =
2xy

1 + y
(c) y′ = 3y2/3

Solution:
(a) Separating the variables we have

H(y) =

∫
dy

y2
=

∫
xdx+ C

which gives H(y) = − 1
y

on the left-hand side so that the equation H(y) = − 1
y

= u is solved

by y = −1/u. This defines the inverse function H−1(u) = −1/u. On the right-hand side
the integration gives 1

2
x2 + C.
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The general solution to the ODE is then given by applying the function H−1 to the right-
hand side

y = H−1
(
x2

2
+ C

)
= − 1

x2

2
+ C

for any value of the constant C.

(b) In this case

H(y) =

∫
dy

y + 1

2y
=

∫
xdx =

1

2
x2 + C

We further write on the left-hand side

H(y) =

∫
dy

y + 1

2y
=

∫
dy

[
1

2
+

1

2y

]
=
y

2
+

1

2
ln |y|

However, in this case it is not possible to solve y
2

+ 1
2

ln |y| = u explicitly, so we neither can
write an explicit formula for the inverse function H−1(u), nor find the general solution y(x)
explicitly. In such a case it is conventional to say that the general solution to the ODE is
given in implicit form by the relation y

2
+ 1

2
ln |y| = 1

2
x2 + C.

(c). To find the general solution valid for y 6= 0, we define H(y) =
∫

dy
3y2/3

= y1/3, so that

solving H(y) = y1/3 = u defines the inverse function H−1(u) = u3. As f(x) = 1 we have
on the right-hand side

∫
f(x) dx = x+C. Finally, the general solution is given by applying

the inverse H−1 to the right-hand side: y = H−1(x+ C) = (x+ C)3.

It is easy to check by direct substitution that the heuristic ”separation of variables” method
indeed works perfectly, but a mathematician must be concerned with finding a justification
of the correct results obtained by an ill-defined method. A mathematically legitimate way
of solving (1.1) goes as follows. Let the equation g(y) = 0 have distinct real roots y = y1 <
y2 < y3 . . . so that y(x) = y1, y(x) = y2, etc. are solutions to (1.1) (which are called in this
case special solutions). Consider now any open interval (A,B) which contains none of the
roots y1, y2, . . .. Then g(y) 6= 0 for any y ∈ (A,B) (that is g(y) retains its sign inside the
interval). Then inside the interval we can rewrite (1.1) as

1

g(y)
y′ = f(x) (1.3)

Define the function H(y) via the indefinite integral:

H(y) =

∫
1

g(y)
dy.

and consider a function of variable x defined as H(y(x)). Then using the chain rule of
differentiation we have

d

dx
H(y(x)) =

dH

dy

dy

dx
=

1

g(y)
y′ = f(x) (1.4)
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so that we conclude that H(y(x)) is an antiderivative of f(x), hence

H(y(x)) =

∫
f(x) dx+ C .

Since g(y) retains its sign in (A,B) the derivative dH
dy

= 1
g(y)

is of the same sign in the

interval. Therefore the function H(y) is either strictly increasing, or strictly decreasing
in (A,B), hence it has a unique functional inverse H−1 inside that interval. The general
solution y(x) of (1.1) is therefore given by

y(x) = H−1
(∫

f(x) dx+ C

)
(1.5)

and indeed coincides with one predicted by the heuristic method.

1.2 First order ODEs which can be reduced to be
separable

1. Consider equations of the type

y′ = f(ax+ by + c), where a, b, c are real constants (1.6)

Introducing a new function z(x) = ax + by + c we see that this equation can be
rewritten as y′ = f(z). Then (1.6) becomes equivalent to

z′ = a+ by′ = a+ bf(z), (1.7)

which is a particular type of separable equation (1.1).

Example:

Solve the equation

y′ = (4y − x− 6)2

Solution:

We introduce z = 4y − x − 6 so that the equation can be written as y′ = z2. Then
z′ = 4y′ − 1 = 4z2 − 1 which is a separable ODE. Separating variables we get∫

dz

4z2 − 1
=

∫
dx+ C

and performing the integration in the left-hand side as:

H(z) =
1

2

∫ (
1

2z − 1
− 1

2z + 1

)
dz
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we see that

H(z) =
1

4
(ln |2z − 1| − ln |2z + 1|) =

1

4
ln

∣∣∣∣2z − 1

2z + 1

∣∣∣∣
The inverse function H−1(u) is obtained by solving H(z) = u, that is

1

4
ln

∣∣∣∣2z − 1

2z + 1

∣∣∣∣ = u ⇔
∣∣∣∣2z − 1

2z + 1

∣∣∣∣ = e4u

Solving for z (exercise for yourself!) gives explicitly two possible solutions

z(u) =
1

2

1 + e4u

1− e4u
or z(u) =

1

2

1− e4u

1 + e4u
.

Denoting the functions on the right-hand side as z = H−1(u) we see that the solution
z(x) is given in either case by

z(x) = H−1(x+ C) =
1

2

1± e4(x+C)

1∓ e4(x+C)

It is convenient to write ±e4C = A, where the constant A may have an arbitrary sign.
Finally, using the definition of z we see that y is expressed in terms of the above z via

y =
1

4
(z(x) + x+ 6) =

1

4

(
x+ 6 +

1

2

1 + Ae4x

1− Ae4x

)
which gives the general solution to the original ODE.
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