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 JOURNAL OF APPLIED ECONOMETRICS, VOL. 8, 231-247 (1993)

 DETRENDING, STYLIZED FACTS AND THE BUSINESS
 CYCLE

 A. C. HARVEY

 Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, UK

 AND

 A. JAEGER

 Austrian Institute of Economic Research, A-1103 Vienna, PO Box 91, Austria

 SUMMARY

 The stylized facts of macroeconomic time series can be presented by fitting structural time series models.
 Within this framework, we analyse the consequences of the widely used detrending technique popularised
 by Hodrick and Prescott (1980). It is shown that mechanical detrending based on the Hodrick-Prescott
 filter can lead investigators to report spurious cyclical behaviour, and this point is illustrated with
 empirical examples. Structural time-series models also allow investigators to deal explicitly with seasonal
 and irregular movements that may distort estimated cyclical components. Finally, the structural
 framework provides a basis for exposing the limitations of ARIMA methodology and models based on
 a deterministic trend with a single break.

 1. INTRODUCTION

 Establishing the 'stylized facts' associated with a set of time series is widely considered a crucial
 step in macroeconomic research (see e.g. Blanchard and Fischer, 1989 chapter 1). For such
 facts to be useful they should (1) be consistent with the stochastic properties of the data and
 (2) present meaningful information. Nevertheless, many stylized facts reported in the literature
 do not fulfil these criteria. In particular, information based on mechanically detrended series
 can easily give a spurious impression of cyclical behaviour. Analysis based on autoregressive-
 integrated-moving average (ARIMA) models can also be misleading if such models are chosen
 primarily on grounds of parsimony.

 We argue here that structural time-series models provide the most useful framework within
 which to present stylized facts on time series. These models are explicitly based on the
 stochastic properties of the data. We illustrate how, when these models are fitted to various
 macroeconomic time series, they provide meaningful information and serve as a basis for
 exposing the limitations of other techniques. These arguments have, to some extent, been made
 before (Harvey, 1985, 1989; Clark, 1987). They are further elaborated here. In addition, we
 examine the consequences of the mechanical detrending method suggested by Hodrick and
 Prescott (1980), which has recently started to become popular in macroeconomics (see e.g.
 Danthine and Girardin, 1989; Backus and Kehoe, 1989; Kydland and Prescott, 1990; Brandner
 and Neusser, 1992). We show that the uncritical use of mechanical detrending can lead
 investigators to report spurious cyclical behaviour. This point has also been made by Cogley
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 A. C. HARVEY AND A. JAEGER

 (1990). We argue that the structural framework provides further insights and that trends and
 cycles should be fitted simultaneously to avoid such pitfalls.

 The plan of the paper is as follows. In Section 2 we lay out the basic framework of structural
 time-series modelling in this context. Section 3 provides an analysis of the consequences of
 detrending using the Hodrick-Prescott filter approach. Section 4 considers modelling and
 detrending of several macroeconomic time series. Section 5 discusses several issues including
 seasonal adjustment, trends with deterministic break points, and spurious cross-correlations
 between inappropriately detrended series. Section 6 draws together the main conclusions.

 2. THE TREND PLUS CYCLE MODEL

 Structural time-series models are set up explicitly in terms of components that have a direct
 interpretation (see Harvey, 1989). In the present context we postulate the appropriate model
 to be

 Yt = At + +t + Et, t= 1, ..., T (1)

 where Yt is the observed series, itt is the trend, It is the cycle, and et is the irregular component.
 The trend is a local linear trend defined as

 /At = /At-1 + Pt-1 + 'rt -rt - NID(0, a2) (2)
 ft = ft- + rt t t- NID(0, ao) (3)

 where At is the slope and the normal white-noise disturbances, vqt and Pt, are independent of
 each other. The stochastic cycle is generated as

 lt = p cos Xc/t- 1 + p sin Xc* 1 + Xt (4)

 * = -p sin Xct-1 + p cos Xc*-i + x (5)

 where p is a damping factor such that 0 < p < 1, Xc is the frequency of the cycle in radians,
 and xt and x* are both NID(0, a). The irregular component is NID(0, o) and the
 disturbances in all three components are taken to be independent of each other.
 The trend is equivalent to an ARIMA(0,2,1) process. However, if a2 = 0, it reduces to a

 random walk with drift. If, furthermore, a2 = 0 it becomes deterministic, that is, tt = Io + ft.
 When or = 0, but oa > 0, the trend is still a process integrated of order two, abbreviated I(2),
 that is, stationary in second differences. A trend component with this feature tends to be
 relatively smooth. An important issue is therefore whether or not the constraint a2 = should
 be imposed at the outset. We argue that there are series where it is unreasonable to assume
 a smooth trend a priori and therefore the question whether or not a, is set to zero is an
 empirical one. The examples in Section 4 illustrate this point.

 The cyclical component, it, is stationary if p is strictly less than one. It is equivalent to an
 ARMA(2,1) process in which both the MA and the AR parts are subject to restrictions (see
 Harvey, 1985, p. 219). The most important of these is that the AR parameters are constrained
 to lie within the region corresponding to complex roots. Since the purpose is to model the
 possible occurrence of stochastic cycles, imposing this constraint a priori is desirable.

 Estimation of the hyperparameters, (a2 a, a-, 2,p, Xc, ao, can be c arried out by maximum
 likelihood either in the time domain or the frequency domain. Once this has been done,
 estimates of the trend, cyclical, and irregular components are obtained from a smoothing
 algorithm. These calculations may be carried out very rapidly on a PC using the STAMP
 package.
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 DETRENDING AND BUSINESS CYCLE FACTS

 The model in equation (1) can be extended to deal with seasonal data. Thus there is no need
 to use data that may have been distorted by a seasonal adjustment procedure. Furthermore,
 if we are interested in stylized facts relating to seasonal components, structural time-series
 models provide a ready tool to determine these components without imposing a deterministic
 structure on the seasonal pattern (see e.g. Barsky and Miron, 1989).

 3. THE HODRICK-PRESCOTT FILTER

 Nelson and Kang (1981) have drawn attention to the distortions that can arise from fitting
 deterministic trends to series actually driven by stochastic trends. Similarly, it has long been
 known that the mechanical use of moving average filters can create a wide range of undesirable
 effects in the data (see Fishman, 1969). The filter adopted by Hodrick and Prescott (1980),
 hereafter denoted HP filter, has a long tradition as a method of fitting a smooth curve through
 a set of points. It may be rationalized as the optimal estimator of the trend component in a
 structural time-series model

 Yt = It + t t= 1,...,T (6)

 where t is defined by equation (2) and (3) but with a2 set equal to zero. 1
 Of course, the reason for estimating the trend in the present context is to detrend the data.

 The optimal filter which gives the detrended observations, y , is, for large samples and t not
 near the beginning or end of the series

 d (= - (1-L)2(1-L1)2 -

 Y = qr + (1 - L)2(1 - L -1)2 Yt qr > (7)
 where qr = a2/a2 and L is the lag operator. This expression can be obtained as the optimal
 estimator of Ct in equation (6) by means of the standard signal extraction formulae which, as
 shown by Bell (1984), apply to non-stationary, as well as stationary, time series.2

 If equation (6) was believed to be the true model, qr could be estimated by maximum
 likelihood as outlined in the previous section. However, the whole reason for applying the HP
 filter is the belief that detrended data consist of something more than white noise. Thus, a
 value of qr is imposed, rather than estimated. We will denote this value of qr by c-. From the
 point of view of structural time-series modelling, HP filtering is therefore equivalent to
 postulating model (1) and imposing the restrictions a/ae2= qr, a, = 0, and /t =0. The HP
 estimate of the cyclical component is then simply given by the smoothed irregular component.

 Given a particular model for yt, the process followed by the HP detrended series, y HP, and
 hence its dynamic properties, may be determined by substituting for Yt in equation (7).
 Suppose that we specify yt as an ARIMA(p,d,q) process, possibly representing the reduced
 form of a structural time-series model such as equation (1). That is,

 (1 - L)dyt = p- (L)0(L) t, lt - NID(0, a2) (8)

 where (p(L) and 0(L) denote the AR and MA polynomials in the lag operator. Then

 HP (1- L)2-( - -1)2 - (L) (9)
 - _r + (1 - L)2(1 - L-1)2_ p(L)

 1 The continuous time version of this model can be used to rationalize a cubic spline fitted to data which may not
 be regularly spaced. See Wecker and Ansley (1983).
 2The exact solution is given by the smoother obtained from the state space model. A fast algorithm is given in
 Koopman (1991). Such a smoother is valid even if the trend is deterministic, that is, qr = 0.
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 A. C. HARVEY AND A. JAEGER

 As noted by King and Rebelo (1989), ytHP is a stationary process for d < 4.
 The autocovariance generating function (a.c.g.f.) of ytP is given by

 (1 - - L)-d(1 - L-)4 d -
 gHP(L)= g((L) (10) [H/L + (1(1 L)2(1 - L-)2]2 gy(L)

 where gy(L) is the a.c.g.f. of Adyt and A = 1 - L.
 Note that if yt is specified in terms of unobserved components, gy(L) may be obtained

 directly without solving for the ARIMA reduced form. Setting L = exp(iX) gives the spectrum
 of yHP, fHp(X).3 The spectrum may be calculated straightforwardly and it provides
 particularly useful information if we wish to study the possible creation of spurious cycles.
 Specifying yt to be a structural time-series model of the form (1) gives insight into the effects

 of detrending, since the contribution of each of the unobserved components to the overall
 spectrum, fHp(X), can be assessed. To this end, rewrite model (1) in the single-equation form

 yt = 2 + + t + Et (11)

 The first term is integrated of order two, abbreviated as I(2), the second term is I(1), and
 the last two terms are stationary or I(0). From model (10) we have

 fHP(X)= T(X) t aO + 2(1 -cos X)oa + 4(1 -cos X)2 [g(X) + a] (12)
 where

 1 4(1 - cos X)2
 2r [Qr + 4(1 - cos X)2]2

 and gp(X) is the spectral generating function of .t.
 More generally, suppose we have any unobserved components model with I(2), I(1), and

 I(0) components. Then the transfer function for an I(d) component is

 Td(X) = 2(2- d)( - cos X)2-dr(X) d = 0, 1,2 (13)
 The transfer function tells us the effect of the filter on the spectrum of the dth difference of
 an I(d) component. Note that r2(X) = T(X).

 For the macroec( nomic series they study, Kydland and Prescott (1990) set q = 0 000625.
 Figures l(a) to l(c) show the transfer functions for I(0), I(1), and I(2) components assuming
 this value for qr plotted against a period over the range 0 < 2/rlX < 4. The filter for I(0)
 components removes the very low frequency components, but frequencies corresponding to
 periods of less than 20 are virtually unaffected. Multiplying r(X) by 2(1 - cos(X)), on the other
 hand, produces a transfer function 1 (X), with a peak at

 Xmax = arccos [1 - 40 75]rl (14)

 which for 0q = 0 000625 corresponds to a period of about 30. Thus applying the standard HP
 filter to a random walk produces detrended observations which have the characteristics of a
 business cycle for quarterly observations. Such cyclical behaviour is spurious and is a classic
 example of the Yule-Slutzky effect.
 Spurious cycles can also emanate from the 1(2) component. The transfer function in Figure

 l(c) has a peak at a frequency corresponding to a period of about 40. The nature of any
 spurious cyclical behaviour in the detrended observations depends on the relative importance

 3Neglecting factors of proportionality.
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 of 1(1) and I(2) components. For data generated by (1) the peaks created in the spectrum are
 of similar height if aC/a 2 25. In this case they tend to merge together, and the overall effect
 is of a transfer function with a single peak corresponding to a period between 30 and 40.

 4. MACROECONOMIC TIME SERIES

 We now examine the stylized facts that can be produced by different techniques when applied
 to quarterly macroeconomic time series (all in logarithms). The series are US, real GNP,
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 A. C. HARVEY AND A. JAEGER

 Austrian real GDP, the implicit deflator for US GNP, and the nominal value of the US
 monetary base.4 All four series were seasonally adjusted by some variant of the Census X-ll
 program.

 The HP filter was always applied with q =0-000625. Attempts to estimate this ratio by
 applying maximum likelihood to model (6) usually produced a very high value of q<, leading
 to the trend effectively picking up most of the movements in the stationary part of the series.
 Thus unless model (1) is a reasonable model for the series in question, qr must be fixed in order
 to obtain sensible results.

 Details of the results of fitting structural time-series model (1) are shown in Table I.
 Estimation was carried out in the frequency domain. Estimation in the time domain gave
 similar results and so these are not reported. Goodness of fit can be assessed by means of the
 estimated prediction error variance (a2), or, equivalently, by Ri which is the coefficient of
 determination with respect to first differences. The Box-Ljung statistic, Q(P), is based on the
 first P residual autocorrelations. The degrees of freedom for the resulting X2 statistic should
 be taken to be P+ 1 minus the number of estimated hyperparameters (see Harvey, 1989,
 chapter 5). Tests for normality and heteroscedasticity were also carried out. They are not
 reported in Table I and are only mentioned in the text if they were significant.

 Estimating model (1) for real US GNP gives a2 =0. Thus the result of unrestricted
 estimation is a relatively smooth trend. Furthermore, since a = 0, the series effectively
 decomposes into a smooth trend plus a cycle (see Figure 2(a)). This is not surprising since ar
 is small and, coupled with the zero for &2, this means there is little contamination from non-
 stationary components in the series. Application of the HP filter yields a detrended series
 which is difficult to distinguish from the cycle extracted from the structural model (see Figure
 2(b)). Thus applying the HP filter to real US GNP data is practically equivalent to estimating
 the structural time-series model (1). The striking coincidence between the estimated business
 cycle component and the HP cycle suggests that the HP filter is tailor-made for extracting the
 business cycle component from US GNP.

 The close similarity between estimated and HP cycle reported for US GNP may not
 necessarily obtain for output series from other countries. To illustrate this point, we estimated
 model (1) using real Austrian GDP. Attempting to estimate the full model, (1), leads to the
 cyclical component virtually disappearing and we are led to a local linear trend model. On the
 other hand, if we impose a2 = 0 on (1) we obtain a smooth trend and a cycle. A graph of

 Table I. Estimates of structural time-series models

 Series Time range Restrictions 0a a2 a2 p 2r/Xc e 2 a2 RI2 Q(P)
 US GNP 1954:1-89:4 None 8 0 625 0-92 22-2 0 937 0-05 8-01
 Austrian GDP 1964:1-88:4 None 9 578 0 - - 244 1126 0-05 13-63

 a2=0 21 - 36 0-97 13.0 438 1071 0-09 7.46
 US Prices 1954:1-89:4 None 28 94 0 - - 0 161 0-64 5.78

 a2=0 19 - 79 0.94 27-5 3 160 0-65 4-27
 US monetary 1959:1-89:4 None 40 63 3 0-98 5-6 0 151 0-64 7-89
 base a2 =0 47 - 25 0-73 6-0 0 153 0-64 10-68

 Notes: All variance estimates have been multiplied by 107. 2w/Xe is period (in quarters). Q(P) is Box-Ljung statistic
 based on first P residual autocorrelations. P= 12 for US Series and P= 10 for Austrian GDP.

 4 The US series are taken from Citibase data bank. Austrian GDP data are taken from the data bank of the Austrian
 Institute of Economic Research.
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 DETRENDING AND BUSINESS CYCLE FACTS

 the cycle shows it to be relatively small (see Figure 3(a)); it rarely deviates from the trend by
 more that 2 per cent. However, the cycles do coincide with the Austrian experience of
 somewhat muted booms and recessions. The cyclical component obtained from HP filtering,
 shown in Figure 3(b), is more volatile and quite erratic because it includes the irregular
 movements in the series which appear to be substantial.

 The cyclical model obtained by imposing a smooth trend by setting a2 = 0 has a slightly
 better fit than the local linear trend model. The explanation lies in the fact that the local linear
 trend model emerges as a limiting case of the smooth trend and cycle model as p - 0 and
 X- 0. Thus, when ao is quite small, as it is here, it is difficult to pick out the cycle in an

 5.0
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 .0

 L _ / _

 -2.5 -

 -a.0
 51 58 62 66 70 74 78 82 86

 Year
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 Figure 2. Business cycles in US GNP. (a) Estimated cyclical component; (b) Hodrick-Prescott cycle
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 unrestricted model since the likelihood function is very flat. The fact that the cycle model
 would be rejected on grounds of parsimony does not mean that it does not provide a valid
 description of the data. Furthermore, if we feel a priori that the underlying trend should be
 smooth then the cycle model is to be preferred over the more parsimonious local linear trend.

 The two examples considered so far are based on real output series. Next we look at a price
 series and a nominal money stock series. Unrestricted estimation of model (1) for the implicit
 US GNP deflator leads quite clearly to a random walk plus noise model in first differences.
 This very simple model is also consistent with the correlogram of the second differences which
 is -0 47 at lag 1 and -0 07, 0 04, 0 05, -0 01 for lags 2 to 5. Thus Box-Jenkins

 5.0
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 a-
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 Figure 3. Business cycles in Austrian GDP. (a) Estimated
 cycle

 79 82 85 88

 cyclical component; (b) Hodrick-Prescott
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 DETRENDING AND BUSINESS CYCLE FACTS  239

 methodology would almost certainly select an equivalent model, namely ARIMA(0,2,1).
 Nevertheless, setting a2 = 0 does give a cycle and the model has essentially the same fit. It
 would clearly be rejected on grounds of parsimony, but it is consistent with the data and so
 cannot be dismissed, just as we could not dismiss the smooth trend/cycle model for Austrian
 GDP. However, while it may be reasonable to argue that a real series, such as GDP, contains
 a smooth trend, such an argument is less convincing for prices. Abrupt upwards or downwards
 movements in the price level can easily arise from indirect tax changes or oil price shocks,
 suggesting that the underlying trend is not smooth and contains an I(1) component.
 Applying the HP filter to the US price series yields what Kydland and Prescott (1990)
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 Figure 4. Business cycles in US monetary base. (a) Estimated cyclical component; (b) Hodrick-Prescott
 cycle

 t-
 a)

 o
 a)

 .0

 -1.0

 -2.0

 -3.0

This content downloaded from 
�������������131.111.184.3 on Sun, 29 Aug 2021 16:12:30 UTC������������� 

All use subject to https://about.jstor.org/terms



 A. C. HARVEY AND A. JAEGER

 identify as cyclical movements. While we cannot rule out the possibility that the price level
 contains cycles, we note that the transfer function for our preferred model, the random walk
 plus noise in first differences, has a peak since it is a combination of the T2(X) and Ti(X) filters
 shown in Figures l(b) and l(c). It is therefore possible that the price cycle identified by Kydland
 and Prescott (1990) is spurious.

 For the US monetary base series, the unrestricted structural model is a local linear trend with
 a very small cycle. Setting o2 = 0 gives a model with basically the same fit and a cycle with a
 somewhat larger amplitude (see Figure 4(a)). The HP filter procedure imposes a smaller
 variance on the trend component and gives rise to a large cycle (see Figure 4(b)). This provides
 an illustration of how HP filtering may change substantially the volatility and periodicity
 properties of an estimated cyclical component.

 5. FURTHER ISSUES

 5.1. Seasonality

 In common with most studies, the results reported above used seasonally adjusted data. Such
 data may not always have desirable properties, particularly if the seasonality pattern changes
 in some way, and is not of a kind that a standard adjustment method, such as the Bureau of
 the Census X-11, handles well. Data on real GDP for the United Kingdom provide a good
 example.5 With the seasonally adjusted data and the restriction 2 = imposed we estimated
 the cyclical component given in Figure 5(b). This cycle is not well defined and does not coincide
 particularly well with the known booms and recessions in the UK. On the other hand,
 seasonally unadjusted data produce much better results when a seasonal component6 is added
 to model (1) (compare Figure 5(a) with 5(b)). The estimated seasonality pattern given in Figure
 5(c) changes quite noticeably and the adjustment procedure presumably creates distortions in
 the series in attempting to cope with it.

 5.2. ARIMA Methodology and Smooth Trends

 ARIMA methodology usually results in the stylized fact that real output series are I(1).
 Informal Box-Jenkins identification as well as formal root tests support this notion. For
 example, the first five autocorrelations of the first differences of real US GNP are 0-29, 0-19,
 -0-02, -0-10, -0-01. These autocorrelations show no need for second differencing of the
 data. A standard augmented Dickey-Fuller test rejects the null hypothesis of a second unit
 root in US GNP quite clearly. The relevant t-statistic is around -6-0, the precise value
 depending on the number of lags included. Thus, an ARIMA model of order (0,1,2) with a
 constant might be a reasonable selection. If we restrict attention to pure autoregressions and
 test down from a high number of lags an ARIMA(1,1,0) model with constant is obtained.

 Neither of the above models is consistent with the structural time-series model (1) which has
 an ARIMA(2,2,4) reduced form. However, since ao is relatively small, the I(2) component
 may be difficult to detect by ARIMA methodology given typical sample sizes. To verify this
 conjecture we conducted two small Monte Carlo experiments. The data-generating process for

 5The series run from 1960:1 1987:4. The seasonally adjusted series is taken from the OECD Main Economic
 Indicator data bank whereas the seasonally unadjusted series from the OECD Quarterly National data bank.
 6The estimated seasonal component is modelled using the trigonometric formulation described in Harvey (1989,
 pp. 42-3).
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 DETRENDING AND BUSINESS CYCLE FACTS  241

 both experiments is the estimated structural time series model for real US GNP reported in
 Table I. Table II reports the sample autocorrelations up to lag eight for the first differences
 of the generated series using sample sizes 100 and 500, respectively. Table III reports the
 empirical size of augmented Dickey-Fuller tests at the 5 per cent level for the null hypothesis
 that the first difference of the generated data has a unit root. The numbers of lags included
 in the Dickey-Fuller regression is fixed at 4, 8, and 16. The experiments are based on 500
 replications. The results for T= 100 in Table II, confirm that much longer time series would
 be needed than commonly available to detect small but persistent changes in growth rates using
 ARIMA methodology. As regards the results for unit root tests reported in Table III, the
 findings of Schwert (1989) and Pantula (1991) are clearly applicable. They demonstrate that
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 if, after first differencing, we have an MA process which is close to being non-invertible,
 standard unit root tests will tend to reject the null hypothesis that a unit root is present with
 much higher frequency than the nominal test size. This tendency appears to be even more
 pronounced in a situation where a smooth local linear trend model (6) is appropriate since the
 reduced-form ARIMA (0,2,2) model will then have two roots close to the unit circle. For
 example, the results in Table III show that with a sample size of 100 and the number of lags
 in the Dickey-Fuller regression fixed at 8, the empirical size of the test is 0-74, exceeding the
 nominal 5 per cent size of the test substantially.

 For purposes of short-term forecasting a parsimonious ARIMA model, such as ARIMA
 (1,1,0), may well be perfectly adequate compared with a trend plus cycle model. But as a
 descriptive device it may have little meaning and may even be misleading. For example, it may
 lead to a rejection of cyclical behaviour when such behaviour is, in fact, quite consistent with
 the data (see Harvey, 1985). Perhaps more important is the concept of 'persistence' associated
 with the identification of I(1) models. A trend plus cycle model of the form (1) with a2 =
 has stationary components with no persistence and a smooth I(2) trend with infinite
 persistence. But since the trend is reflecting slow long-term changes in growth rates, perhaps

 Table II. Autocorrelations of first differences of I(2) process

 Autocorrelation at lag

 Sample 1 2 3 4 5 6 7 8

 100 0.41 0-30 0-19 0.09 0-01 -0-05 -0-09 -0-11
 (0-12) (0-12) (0-11) (0-12) (0-13) (0-13) (0-14) (0-14)

 500 0.58 0-50 0-42 0-34 0.28 0-23 0-18 0-18

 (0-11) (0-13) (0-15) (0-17) (0-18) (0-20) (0-20) (0-20)

 Notes: This table presents the results of a Monte Carlo experiment. The data generating process is given by the
 estimated structural time-series model for US GNP. The table reports the mean of the autocorrelations of the first
 differences, and, in parentheses, standard deviations of the estimates. The results are based on 500 replications.

 Table III. Empirical size of 5 per cent ADF-test for unit
 root in first differences of 1(2) process

 Empirical size

 Sample size k=4 k = 8 k =16

 100 0.90 0.74 0.25
 500 0.99 0.94 0.38

 Notes: This table presents the results of a Monte Carlo
 experiment. The data generating process is given by the estimated
 structural time-series model for US GNP. The table reports the
 empirical size of the 5 per cent level augmented Dickey-Fuller test
 of the null hypothesis of a unit root in the first differences. k
 denotes the numbers of lags included in the Dickey-Fuller
 regressions. The results are based on 500 replications.
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 arising from demographic changes, innovations in technology, changes in savings behaviour,
 or increasing integration of capital and goods markets, the shocks which drive the smooth
 trend may hav-e no connection with short-term economic policy. Following the extensive
 literature on the productivity slowdown phenomenon, we may well argue that understanding
 the reasons for persistent changes in growth rates is one of the key problems in
 macroeconomics.
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 A. C. HARVEY AND A. JAEGER

 5.3. Segmented Trends

 It is sometimes argued that the trend component in economic time series is deterministic, but
 with a break at one or more points. We do not find the argument for such a trend particularly
 persuasive but if the data were really generated in this way, it is worth noting that a smooth
 trend within a structural time-series model would adapt to it. Thus the structural time series
 model would still give a good indication of the appropriate stylized facts. Indeed it is
 interesting to note that the trend component we estimated for US GNP shows a slowdown in
 the underlying growth rate in the late 1960s (see Figure 6(b)) and not in the first quarter of
 1973 as maintained by Perron (1989) (see Figure 6(a)).7 The imposition of exogenously
 determined breakpoints could therefore be potentially misleading and subject to many of the
 pitfalls associated with fitting deterministic trends to the series as a whole.

 Making segmented trends more flexible by allowing several endogenously determined breaks
 also has a limited appeal. Such an approach is unnecessarily complicated and the conclusions
 could be very sensitive to the method used to choose the breaks. Structural models are not only
 likely to be more robust, but are also easier to fit.

 5.4. Spurious Cross-correlations Between Detrended Series

 The illustrative examples in Section 4 cast sert serious doubt on the validity of the cycles in the
 detrended price and monetary base series obtained using the HP filter. For US data, Kydland
 and Prescott (1990) draw wide-ranging conclusions about macroeconomic behaviour based on
 such data by examining sample cross-correlations. In particular, they argue that mainstream
 macroeconomic theory is inconsistent with a negative contemporaneous correlation of about
 -0-50 for US data between HP detrended prices and real GNP.
 In this section we use some of the results developed in Section 3 to study the possibility of

 spurious sample cross-correlations between spurious cycles. From the point of view of the
 structural time-series model (1), arbitrary cross-correlations can arise if one or both of the
 cyclical components is absent and the shocks of the trend components are correlated across
 series. In the following, we focus our attention on the analytically tractable case where
 spurious HP cycles are imposed on two series and the two series are independent by
 construction. First, note that the asymptotic distribution of the sample cross-correlations
 between two independent stationary series is asymptotically normal (AN) and given by (see e.g.
 Brockwell and Davis, 1987, p. 400)

 ri2(h)- AN(O, T1 (1+2 r (j)r2(j))) (15)

 where \12(h) is the sample cross-correlation at lag h between two series with sample size Tand
 rl(j) and r2(j) are the autocorrelations of the two sta tionary processes at lag j, respectively.
 The standard deviation of r12(h) can be used to evaluate the probability of finding large
 spurious sample cross correlations between spurious cycles imposed on independent series. To
 evaluate the standard deviation of the sample cross-correlations we need the autocorrelations
 of the spurious HP cycles. As a benchmark case, assume we have two independent random
 walk processes

 (1 - L)yi,t = (i,t, (i, - NID(O, ai2) (16)

 7In fact, Nordhaus (1972) published a paper entitled 'The recent productivity slowdown' before the assumed
 breakpoint.
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 where i = 1, 2 and the ji,t are uncorrelated with each other. From equation (12), the spectra
 of the two HP filtered random walk processes are

 8(1 - cos X)3 r _12
 fc ) [ + 4(1 -cos X)2]2 2 (17)

 The autocovariances of the HP-filtered processes may be calculated by taking the inverse
 Fourier transform of equation (17)

 a() cos(Xj)8(1 - cos X)3 j c(j)- 1- _ [/ +(1 -cos3)2]2 d 0, 1,... (18) 2w J- [C + 4(1 - cos X I

 and the autocorrelations are therefore given as r(j) = c(j)lc(0) for j = 1,.... Setting a2 = 1-0,
 the autocorrelations can be calculated by numerical integration up to some maximum lag imax.

 Line 1 in Table IV reports the asymptotic standard deviations for the chosen benchmark
 case. Sample sizes T are 25, 100, and 500; qr is fixed at 0-000625; and the first 100
 autocorrelations are used to approximate the infinite sum for the asymptotic variance defined
 in equation (15). If the sample size T is 100, the standard deviation for the sample cross-
 correlations f12(h) is 0-20. Thus, given a normal distribution there is about a 30 per cent
 chance of finding spurious cross-correlations exceeding 0-20 in absolute value. To reduce the
 chance of finding spurious cross-correlations to about 5 per cent, cross-correlations have to
 exceed 0 40 in absolute value. If the sample size is as low as T= 25, the standard deviation
 increases to 0-41.8 Even if the sample size is as large as 500, there is still a chance of about
 5 per cent that the sample cross-correlations will exceed 0.18 in absolute value. If the two
 independent processes are specified as doubly integrated random walks, (1 - L)2y =
 appropriately modified versions of equations (17) and (18) give the standard deviations
 reported in line 2 of Table IV. For T= 100, the standard deviation is 0-34 and so values of
 sample cross-correlations which are quite high in absolute value may easily arise under this
 specification for the two independent processes. These examples illustrate that the danger of
 finding large sample cross-correlations between independent but spurious HP cycles is not
 negligible. Furthermore, they strongly indicate that research on stylized business cycle facts
 should report standard errors in addition to point estimates of cross-correlations.9

 Table IV. Asymptotic standard deviation of sample cross-
 correlations

 Standard deviation

 Process T= 25 T= 100 T= 500

 (I - L)yi,t = ti,t 0-41 0-20 0-09
 (1-L)2yi,t = i,tt 0-67 0-34 0-15

 Notes: This table reports the asymptotic standard deviations for
 the sample cross-correlations between two independent spurious
 HP cycles. qr is fixed at 0 000625.

 8 Monte Carlo experiments indicate that the asymptotic distribution in equation (15) approximates the actual small
 sample distribution well for sample sizes as low as T= 25.
 9As an exception, Brandner and Neusser (1992) suggest the rule of thumb that cross-correlations between detrended
 series exceeding 2/4T in absolute value are significant at the 5 per cent level. From equation (15), however, this rule
 of thumb is misleading because it implicitly assumes that at least one of the detrended series is white noise.
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 6. CONCLUSIONS

 Given the nature of macroeconomic time series, it is almost impossible to unambiguously
 obtain stylized facts from a single series. Instead we must be content with the less ambitious
 objective of extracting sets of stylized facts that are consistent with the data. It will often be
 possible to obtain several sets of stylized facts for a series and these may have very different
 implications. In such cases it is necessary to look for corroborating evidence from other
 sources.

 We have argued in this article that because structural time-series models are formulated in
 terms of components that have a direct interpretation, they are a particularly useful way of
 presenting stylized facts. Furthermore, they provide a framework for assessing the limitations
 of stylized facts obtained by other methods. Our principal conclusions are as follows:

 (1) ARIMA models fitted on the basis of parsimony may be uninformative and are sometimes
 misleading. A process integrated of order 2, or I(2), is unlikely to be chosen in small
 samples using correlogram and standard unit root tests. The net result are simple I(1)
 representations which are not consistent with a smooth trend plus cycle representation. If
 the latter representation is believed to be appropriate, measures of persistence associated
 with I(1) models have little meaning.

 (2) Pure autoregressive models are even more unlikely than ARIMA models to be consistent
 with trend plus cycle models. Furthermore, they have virtually no hope of adequately
 modelling the kind of changing seasonality that is to be found in the UK GDP series. These
 points need to be borne in mind when making inferences from vector autoregressions.

 (3) The Hodrick-Prescott filter may create spurious cycles and/or distort unrestricted
 estimates of the cyclical component. This property of the Hodrick-Prescott filter may lead
 to misleading conclusions being drawn on the relationship between short-term movements
 in macroeconomic time series. A proper presentation of the stylized facts associated with
 a trend plus cycle view needs to be done within the framework of a model that fits both
 components at the same time.
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