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Abstract—Band-pass filters are useful in a wide range of economic
contexts. This paper develops a set of approximate band-pass filters and
illustrates their application to measuring the business-cycle component of
macroeconomic activity. Detailed comparisons are made with several
alternative filters commonly used for extracting business-cycle compo-
nents.

I. Introduction

THE STUDY of business cycles necessarily begins with
the measurement of business cycles. The seminal contri-

bution of Burns and Mitchell (1946) was influential partly
because it provided a comprehensive catalogue of the
empirical features of the business cycles of developed
countries, notably the United States. However, their work was
also important because it developed methods for measuring
business cycles that could be used by other researchers
working with other countries or other sample periods.

Contemporary students of the business cycle still face the
same basic issue as Burns and Mitchell did fifty years ago:
How should one isolate the cyclical component of an
economic time series? In particular, how should one separate
business-cycle elements from slowly evolving secular trends
and rapidly varying seasonal or irregular components? The
decomposition used by Burns and Mitchell is no longer in
common use, due both to its complexity and its central
element of judgment.1 In its place, modern empirical macro-
economists employ a variety of detrending and smoothing
techniques to carry out trend-cycle decompositions. These
decompositions are frequently ad hoc in the sense that the
researcher requires only that the detrending procedure
produce a stationary business-cycle component, but does not
otherwise explicitly specify the statistical characteristics of
business cycles. Examples of techniques in common use are
application of two-sided moving averages, first-differencing,
removal of linear or quadratic time trends, and application of
the Hodrick-Prescott (1980) filter. Many recent studies use a
battery of such methods to measure business cycles.

In our view, this proliferation of techniques for measuring
business cycles has resulted from a lack of attention to an
issue which Burns and Mitchell viewed as central: the
definition of a business cycle. In this paper, we develop
methods for measuring business cycles that require that the

researcher begin by specifying characteristics of these
cyclical components. Our procedures isolate business-cycle
components in a straightforward way, transforming the
macroeconomic data by applying particular moving aver-
ages that are implied by these defining characteristics.
Technically, we develop approximate band-pass filters that
are constrained to produce stationary outcomes when ap-
plied to growing time series.2

For the empirical applications in this paper, we adopt the
definition of business cyclessuggested by the procedures
and findings of NBER researchers like Burns and Mitchell.
Burns and Mitchell specified that business cycles were
cyclical components of no less than six quarters (eighteen
months) in duration, and they found that U.S. business
cycles typically last fewer than 32 quarters (eight years). We
adopt these limits as our definition of the business cycle. We
apply our method to several major quarterly postwar U.S.
time series, including output and inflation.

Defining the business cycle as fluctuations with a speci-
fied range of periodicities results in a particular two-sided
moving average (a linear filter). In the particular case of the
NBER definition of the business cycle, the desired filter is a
band-pass filter, i.e., a filter that passes through components
of the time series with periodic fluctuations between six and
32 quarters, while removing components at higher and lower
frequencies. However, the exact band-pass filter is a moving
average of infinite order, so an approximation is necessary
for practical applications. Thus, a central problem addressed
by this paper is how to construct a good approximation to the
optimal filter (i.e., the filter that accomplishes the business-
cycle decomposition specified by the researcher).

In approaching this problem of filter design, we require
that our method meet six objectives.3 First, as suggested
above, the filter should extract a specified range of periodici-
ties and otherwise leave the properties of this extracted
component unaffected. Second, we require that the ideal
band-pass filter should not introduce phase shift, i.e., that it
not alter the timing relationships between series at any
frequency. These two objectives define an ideal moving
average of the data with symmetric weights on leads and
lags. Third, we require that our method be an optimal
approximation to the ideal band-pass filter; we specify a
particular quadratic loss function for discrepancies between
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discusses in justifying use of the Hodrick-Prescott (1980) filter.
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the exact and approximate filter. Fourth, we require that the
application of an approximate band-pass must result in a
stationary time series even when applied to trending data.
Given the large body of empirical work that suggests the
presence of stochastic trends in economic time series, we
design our filters so that they will make the filtered time
series stationary if the underlying time series is integrated of
order one or two. (Equivalently, we impose the requirement
that the approximate filter’s frequency response is exactly
zero at the zero frequency). This requirement also means
that our band-pass filters will eliminate quadratic determinis-
tic trends from a time series. Fifth, we require that the
method yield business-cycle components that are unrelated
to the length of the sample period. Technically, this means
that the moving averages we construct are time invariant, in
that the coefficients do not depend on the point in the
sample. Sixth, and finally, we require that our method be
operational. In the general filter-approximation problem,
there is an important tradeoff involved: The ideal band-pass
filter can be better approximated with the longer moving
averages, but adding more leads and lags also means that
observations must be dropped at the beginning and end of
the sample, thus leaving fewer for analysis. We therefore
experiment extensively with the application of our filter to
macroeconomic time series and provide some guidance to
readersabout the tradeoffs involved.Werecommend that research-
ers use moving averages based on three years of past data and
three years of future data, as well as the current observation,
when working with both quarterly and annual time series.

The organization of the paper is as follows. Section II
describes the construction of approximate band-pass filters.
In section III, we define our business-cycle filter and apply it
to postwar U.S. data. Further, we investigate the implication
of changing the number of leads and lags used to construct
the approximate filter for certain summary statistics, using
both postwar U.S. data and a specified stochastic data-
generating process (for which we can compute the influence
of the length of the moving average on population mo-
ments). In section IV, we contrast our business-cycle filter to
the results of other commonly used procedures. In section V,
we provide a detailed comparison of two ‘‘HP’’ filters: the
cyclical filter of Hodrick and Prescott (1980) and a high-pass
filter constructed using our methods. Particular attention is
directed to two practical problems that researchers encounter
using the Hodrick-Prescott method: unusual behavior of
cyclical components near the end of the sample and the
choice of the smoothing parameter for data sampled at other
than the quarterly frequency. Section VI concludes the paper
with a brief review of the goals and findings of the paper.

II. Filter Design

This section describes the construction of moving aver-
ages that isolate the periodic components of an economic
time series that lie in a specific band of frequencies. That is,
in the jargon of time-series analysis, we are interested in
constructing band-pass linear filters. We are particularly

interested in designing a business-cycle filter, i.e., a linear
filter that eliminates very slow-moving (‘‘trend’’) components
and very high-frequency (‘‘irregular’’) components while retain-
ing intermediate (‘‘business-cycle’’) components.

It has long been understood that moving averages alter the
relative importance of the periodic components in a time
series. (See, for example, Harvey (1981, ch. 3).) If the time
seriesyt is stationary, then we can use frequency-domain
methods to consider these implications of applying moving
averages. In this paper, we employ the frequency-domain
analysis to consider the design of linear filters, but we
ultimately will undertake our filtering entirely in the time
domain (i.e., we will simply apply moving averages to
macroeconomic data). Thus, for readers who are simply
interested in the practical results of our filtering methods, the
current section may be skimmed or skipped.

A. Applying Moving Averages to Time Series

Applying a moving average to a time series,yt, produces a
new time seriesy*t, with

y*t 5 o
k52K

K

akyt2k. (1)

For convenience in the discussion below, we will write the
moving average as a polynomial in the lag operatorL,
a(L) 5 Sk52K

K akLk, with L defined so thatLkxt 5 xt2k for
positive and negative values ofk. We will further specialize
our attention to symmetric moving averages, i.e., those for
which the weights are such thatak 5 a2k for k 5 1, . . .K.

One traditional use of moving averages has been to isolate
or to eliminate trends in economic time series. If a symmet-
ric moving average has weights that sum to zero, i.e.,
Sk52K

K ak 5 0, then we show in appendix A that it has trend
elimination properties. That is, if the weights sum to zero,
we can always factora(L) as

a(L) 5 (1 2 L)(1 2 L21)c(L) (2)

wherec(L) is a symmetric moving average withK 2 1 leads
and lags. Symmetric moving averages with weights that sum
to zero will thus render stationary series that contain quadratic
deterministic trends (i.e., components of the form
tt 5 g0 1 g1t 1 g2t2). Further, these moving averages can also
make stationary the stochastic trends that arise when a time series
is a realization of an integrated stochastic process (of the I(1) or
I(2) type in the lexicon of Engle and Granger (1987)).

Turning to analyzing the effect of filtering from a
frequency-domain perspective, the Cramer representation of
a zero-mean stationary time seriesyt is

yt 5 e
2p

p
j(v) dv. (3)

That is, the time series is expressed as the integral of random
periodic components, thej(v), that are mutually orthogonal

576 THE REVIEW OF ECONOMICS AND STATISTICS

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/003465399558454 by University of Cambridge user on 29 August 2021



(Ej(v1)j(v2)8 5 0 for v1 Þ v2). In turn, the filtered time
series can be expressed as

y*t 5 e
2p

p
a(v)j(v) dv, (4)

where a(v) 5 Sh52K
K ahe2ivh is the frequency-response

function of the linear filter. (The frequency responsea(v)
indicates the extent to whichy*t responds toyt at frequency
v, in the sense thata(v) is the weight attached to the
periodic componentj(v).) Since the periodic components
j(v) are orthogonal, it follows that we can write the variance
of the filtered series as

var (y*t ) 5 e
2p

p
0a(v) 02fy(v) dv. (5)

where0a(v) 02 is the squared gain or transfer function of the
linear filter at frequencyv and fy(v) 5 var (j(v)) is the
spectral density of the seriesy at frequencyv. At a given
frequency, the squared gain thus indicates the extent to
which a moving average raises or lowers the variance of the
filtered series relative to that of the original series. The gain
0a(v) 0 is similarly the effect on the standard deviation at a
particularly frequency: We thus use it in various figures
below as a measure of the consequences of filtering.

In terms of our discussion below, it is important to note
that the frequency-response functiona(v) takes on a value
of zero at frequency zero if and only if we require that the
sum of the filter weights is zero (a(0) 5 Sh52K

K ahe2i0h 5 0 if
and only ifSh52K

K ah 5 0).
We turn next to the problem of designing filters to isolate

specific frequencies in the data. Our method is to use
frequency-domain logic to design a moving average that
emphasizes specified frequency bands, but we also require
that our business-cycle filter have the trend-elimination
properties discussed in this section, so that it can be
meaningfully applied to economic time series which are
nonstationary. We thus require that our business-cycle filter
has a frequency response function witha(0) 5 0.

B. The Low-Pass Filter

A basic building block in filter design is the low-pass
filter—a filter that retains only slow-moving components of
the data. An ideal symmetric low-pass filter, which passes
only frequencies2v # v # v, has a frequency-response
function given byb(v) 5 1 for 0v 0 # v, andb(v) 5 0 for
0v 0 . v. The frequency-domain implication of symmetry in
the weights is thatb(v) 5 b(2v).

Let b(L) 5 Sh52`
` bhLh denote the time-domain represen-

tation of this ideal low-pass filter. The filter weightsbh may
be found by the inverse Fourier transform of the frequency
response function

bh 5
1

2p
e

2p

p
b(v)eivh dv. (6)

Evaluating the integral above (see appendix B for the
details), the filter weightsbh for the ideal filter are

b0 5 v/p and bh 5 sin (hv)/hp for h 5 1, 2, . . . (7)

While the weights tend to zero ash becomes large, notice
that an infinite-order moving average is necessary to con-
struct the ideal filter. Hence, we are led to consider
approximation of the ideal filter with a finite moving average
a(L) 5 Sh52K

K ahLh; this approximating filter has a fre-
quency-response functionaK(v) 5 Sh52K

K ahe2ivh.

C. Approximation of Symmetric Filters

If one is considering the general problem of choosing an
approximate filter,aK(v), to approximate a specific filter
b(v), then a natural approximation strategy is to choose the
approximating filter’s weightsah to minimize

Q 5
1

2p
e

2p

p
0d(v) 02 dv, (8)

whered(v) 5 b(v) 2 aK(v) is the discrepancy arising from
approximation at frequencyv. This loss function attaches
equal weight to the squared approximation errors at different
frequencies.

There is a remarkable, general result for this class of
optimization problems: The optimal approximating filter for
given maximum lag length,K, is constructed by simply
truncating the ideal filter’s weightsbh at lag K. Thus, the
optimal approximate low-pass filter setsah 5 bh for h 5 0,
1, . . . ,K, andah 5 0 for h $ K 1 1, where the weightsbh are
those given in equation (7) above.

D. Construction of High-Pass and Band-Pass Filters

High-pass and band-pass filters are easily constructed
from low-pass filters. Before precisely defining these addi-
tional filters, we establish some notation that we use
throughout the rest of the paper. It is more natural for us to work
empirically using terms of periodicity of cycles than frequencies
(periodicity is related to frequency viap 5 2p/v). Thus, we let
LPK(p) denote the approximate low-pass filter that is truncated at
lag K and that passes components of the data with periodicity
greater than or equal top. Since the ideal filter involvesK 5 `,
the ideal low-pass filter is denotedLP`(p).

The ideal high-pass filterHP`( p) passes components of
the data with periodicity less than or equal top 5 32
(illustrated by the dashed line in figure 1).4 A low-pass filter
removes high-frequency cycles while retaining low ones, the

4 In this figure, as in others below, the horizontal axis is labeled ‘‘cycles
per period’’ and runs from 0 to 1/2. More traditionally, figures like these
run from 0 top, but we use our normalization since it makes it easy to
calculate the periodicity by taking the reciprocal of the value on the axis.
For example, the ‘‘cutoff frequency’’ for the high-pass filter corresponds to
a period ofp 5 32 time units (presumed to be quarters of a year in view of
empirical work below), and, hence,v 5 1/32 > 0.03. However, for the
analytical results below, we use the conventional definition that the
frequencyv has as its domain the interval2p # v # p.

577MEASURING BUSINESS CYCLES WITH BAND-PASS FILTERS

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/003465399558454 by University of Cambridge user on 29 August 2021



high-pass filter does the reverse task, and the original time series
is just the sum of its low-frequency and high-frequency compo-
nents. Thus, the high-pass filter weights are 12 b0 ath 5 0 and
2bh at h 5 61, 2, . . . .Correspondingly, the optimalapproxi-
mate high-pass filter,HPK( p), is simply constructed by
truncating the weights ofHP`( p) 5 1 2 LPK( p).5

The ideal band-pass filter passes only frequencies in the
rangesv # 0v 0 # v. It is therefore constructed from two
low-pass filters with cutoff frequenciesv andv: We denote
the frequency responses of these filters asb(v) and b(v).
Then, to get the desired band-pass frequency response, we
form the band-pass filter’s frequency response asb(v) 2
b(v) since this will give unit frequency response on the
frequency bandsv # 0v 0 # v and zero elsewhere. It is then
easy to derive the filter weights for a band-pass filter. If we
let bh andbh be the filter weights for the low-pass filters with
cutoffsv andv, then the band-pass filter has weightsbh 2
bh. The dashed line in figure 2 plots an ideal band-pass filter
that passes through cycles of length between 6 and 32
quarters, which corresponds to the Burns-Mitchell definition
of business-cycle frequencies.

We use a similar notation for the approximate band-pass
filters to that developed above for the high- and low-pass
filters: BPK( p, q) denotes our approximate band-pass filter

that passes cycles betweenp and q periods in length, for
given truncation pointK, wherep denotes the shortest cycle
length passed by the band-pass filter andq denote the longest
cycle length (in figure 2,p 5 6 andq 5 32). We construct
BPK( p, q) by truncating the ideal band-pass filter.

E. Constraints on Specific Points

The minimization problem described above may be
reformulated to recognize that certain points are of particular
concern to the researcher. This approach to filter design has
been advanced by Craddock (1957) in the statistics literature and
discussed in the context of designing filters to eliminate trend by
Granger and Hatanaka (1964, section 8.4), but does not appear to
have been much followed up on in applied work in economics.

As an example of our approach, suppose that we want to
design a low-pass filter that places unit weight at the zero
frequency (aK(v) 5 1 at v 5 0). This is equivalent to
requiring that the filter weights sum to unity (since
1 5 aK(0) 5 Sk52K

K ake0 5 Sk52K
K ak). If we construct ap-

proximating low-pass filters in this way, then the correspond-
ing high-pass and band-pass filters will place zero weight at
the zero frequency, and, as we have seen above, this will
mean that they give rise to stationary time series when
applied to a range of nonstationary time series.6

5 This is implied by the result discussed in section II, B, that approxima-
tion of the ideal low-pass filter simply involves truncation of the ideal
filter’s weights at lagK.

6 Equivalently, one can consider the problem of approximating a desired
band-pass or high-pass filter subject to the constraint that the weights sum

FIGURE 1.—CONSTRAINEDAPPROXIMATEBAND-PASSFILTERS
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The constraint thataK(0) 5 1 may be incorporated as a
side condition to the minimization problem discussed above.
Using the results of appendix B, we find the following
modification of the optimal approximate filter weights,ah, as
functions of the weights of the ideal low-pass filter,bh,

ah 5 bh 1 u, (9)

whereu is a constant that depends on the specified maximum
lag length,K. That is, since we require that the filter weights
sum to one, (Sh52K

K ah 5 1), the normalizing constant isu 5
(1 2 Sh52K

K bh)/(2K 1 1). Thus, the constraint that the low-
pass filter places unit weight at the zero frequency results in
a relatively simple adjustment of the filter weights.

Similar adjustments are necessary when constructing
optimal truncated high-pass and band-pass filters subject to
constraints on the frequency-zero value of the frequency-
response function. As discussed above, the unconstrained
band-pass filter has weights that are the difference between
two low-pass filters; i.e., the weights arebh 2 bh wherebh is
the filter weight at lag/leadh for the upper-cutoff filter andbh

is the weight for the lower-cutoff filter. The constrained
band-pass filter involves the requirement that the sum of its
weights must be zero. Hence, the weights in the constrained

optimal band-pass filter are

(bh 2 bh) 1 (u 2 u), (10)

where u is the adjustment coefficient associated with the
upper-cutoff filter andu is the adjustment coefficient associ-
ated with the lower-cutoff filter. (See appendix B for
additional discussion of this point.) That is, the constrained
optimal Kth-order band-pass filter is simply the difference
between two constrained optimalKth-order low-pass filters.
Throughout the remainder of the paper, we consider only
band-pass filters with this zero-frequency constraint im-
posed. We use the notation defined above,BPK( p, q), to
denote our approximation to the ideal band-pass filter that
passes cycles between p and q periods.

F. The Effects of Truncation

This section explores the effect of changes in the maxi-
mum lag length,K, on the shape of the constrained low-pass
and high-pass filters. If we choose an approximating moving
average with maximum lag lengthK, implementing the filter
means that we lose 2K observations (i.e.,K leads andK
lags). There is no ‘‘best’’ value ofK; increasingK leads to a
better approximation to the ideal filter, but results in more
lost observations. Thus, the researcher will have to balance
these opposing factors: The best choice ofK in a particular

to zero (that the frequency response is zero at the zero frequency).
Accordingly, in appendix B, we study constrained approximation problems
with the generic constraintf 5 aK(0).

FIGURE 2.—CONSTRAINEDAPPROXIMATEHIGH-PASSFILTERS
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instance will depend on the length of the data period and the
importance attached to obtaining an accurate approximation
to the ideal filter. The next section will explore this trade-off
in the context of postwar U.S. macroeconomic time series.
In this section, however, we are simply concerned with
describing the effect of variations inK on the shape of the
approximating filters.

Figure 1 illustrates the effect of truncation on the shape of
the high-pass filter that has been constrained to have unit
weight at the zero frequency. The ideal filter is illustrated by
the dashed line in each panel; it passes frequenciesv that
correspond to cycles of length less than or equal to 32
quarters, assuming that the underlying data is measured
quarterly. This figure shows that there are important effects
on the shape of the approximate high-pass filter of changes
in K. WhenK 5 4 (so that the moving average covers only
the preceding and subsequent four quarters), there is a major
departure from the ideal filter. In particular, the approximate
filter admits substantial components from the range of
frequencies just below the cutoff frequency (v 5 p/16 or
v/sp 5

1
32 5 0.03 cycles per period). This phenomenon is

conventionally calledleakage:This term captures the notion
that the filter has passed through frequencies that the filter
was designed to suppress, including them with those the
filter was designed to retain. The approximating filter has
less than unit frequency response on the range just above the
cutoff frequency, which we can similarly define ascompres-
sion. Finally, when the index of cycles per period lies
roughly between 0.14 and 0.22, then there is a frequency
response of more than one-for-one, which we can define as
exacerbation.As the value ofK increases, the truncated filter
more closely approximates the true filter. WithK 5 8, the
problems of leakage, compression, and exacerbation have
been substantially reduced relative to theK 5 4 case.
Further reductions in these departures from the exact filter
are obtained withK 5 16 andK 5 32. These oscillatory
departures of the approximating filter from the exact filter
arise even when we do not impose the constraint thata(0) 5
0 and have been extensively studied in this context. They are
typically referred to as the Gibbs phenomenon, after the
researcher who initially stressed their importance.7

Figure 2 displays the frequency-response function for
approximate band-pass filters. As with the approximate
high-pass filters, there is substantial leakage, compression,
and exacerbation for smallest values ofK. The frequency
responses oscillate around zero above the higher-cutoff
frequency. The fact that there are some small negative
weights in the frequency response in these approximate

filters means that they do not exactly display the ‘‘no phase
shift’’ requirement that we impose on the ideal filter, but we
regard these departures as minor.8 The deviations from the
exact filter are attenuated with increases inK, so that these
again appear small byK 5 12. However, it is an empirical
question whether improvement in approximating the ideal
filter (by use of larger values ofK) leads to important
changes in a filtered time series or moments computed from
it. In section III below, we explore the effects of changes inK
on the behavior of filtered macroeconomic time series.

G. Why Filter in the Time Domain?

One common approach to band-pass filtering is the
frequency-domain method used by Hassler et al. (1994) and
Rush et al. (1997). This method works as follows. First, one
takes a discrete Fourier transform of the economic data,
computing the periodic components associated with a finite
number of ‘‘harmonic’’ frequencies. Second, one ‘‘zeros
out’’ the frequencies that lie outside of the band of interest.
Third, one computes the inverse Fourier transform to get the
time-domain filtered series,5ỹ1 . . . ỹT6. We see two major
drawbacks with this explicitly frequency-domain procedure,
relative to our time-domain method. First, since there are
likely ‘‘stochastic trends’’ in most economic time series,
arising from unit root components, it is necessary to first
detrend the series prior to taking the Fourier transform: In
order to accomplish band-pass filtering, one must therefore
make a choice of detrending method. Working with annual
data, Hassler et al. use the Hodrick-Prescott filter withl 5
10 for this initial detrending step. Working with quarterly
data, Rush et al. argue for a much larger value (l 5 10,000)
in the initial detrending step so as to avoid distorting
business-cycle outcomes. Second, the results of the fre-
quency-domain method at all dates are dependent on the
sample lengthT. Consider, for example, the ‘‘business
cycle’’ outcome ỹt obtained from a study of quarterly
economic data in a study of lengthT1, e.g., the observation
on cyclical output in 1970:2, obtained using data through
1985. When the sample length is extended toT2, the discrete
Fourier transform of5y1, y2, . . .yT6 must be recomputed and
each of its elements will change. Consequently, so too will
each of the elements of the inverse Fourier transform of the

7 A formal analysis of the Gibbs phenomenon as it derives from
truncation for the unconstrained filter proceeds as follows. (See, for
example, Koopmans (1974, ch. 6).) First, the truncation procedure atK
leads and lags is viewed as a filter, with Fourier transformcK(v) 5
Sk52K

K e2ivk 5 sin ((2K 1 1)v/2)/sin (v/2). Second, frequency-response
function of the truncated filter isbK(v) 5 e2p

p
b(µ)cK(v 2 µ) dµ, using the

fact that the Fourier transform of a product is the convolution of the Fourier
transforms. Thus, the Gibbs phenomon arises as a consequence of the
oscillatory nature of the truncation ‘‘window’’cK(v).

8 Our reasoning is as follows. The frequency-response functiona(v) is
an imaginary number at each frequency, which can be written in polar form
asg(v)e2if(v), whereg(v) 5 0a(v) 0 is the gain andf(v) is the phase shift.
Our approximate filter’s frequency-response function is always real-valued
since it is symmetric. But, to represent a negative value of the frequency
response, since gain is positive, the implied phase shift must be6p, which
makese2if(v) 5 21. (This phase shift is similar to that which arises when
one considers the series2yt: In order to represent it in terms of the
standard definitions of gain and phase, it must be viewed as having a gain
of 1 and a phase shift of6p). We view these departures as small for two
reasons. First, the negative values of the frequency response are numeri-
cally small. Second, it appears to be an artifact of the mathematical
convention that gain is defined positive, rather than actually reflecting a
translation of the series through time. If gain had alternatively been defined
to admit negative values, then there would be no phase shift implied by a
negative frequency response. (If this alternative definition had been
employed, then there would also be no phase shift of2yt relative toyt.)

580 THE REVIEW OF ECONOMICS AND STATISTICS

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/003465399558454 by University of Cambridge user on 29 August 2021



filtered series, i.e., the cyclical observations,5ỹ1, . . . ỹT6.
Thus, the outcome for cyclical output in 1970:2 will
necessarily be different when data is added from 1986 to
1994. This time variation violates the fifth requirement that
we discussed in section I above—a requirement that we
share with Prescott (1986).

III. Measuring Business Cycles

This section explores several empirical issues raised by
the foregoing discussion of approximate band-pass filters.
As discussed earlier, an ideal business-cycle filter is defined
to be theBP̀ (6, 32) filter, and its optimal approximation is
the BPK(6, 32) filter for 0, K , `. First, we describe the
effect of changes in the truncation pointK on moments
computed from a specified data-generating process. Second,
we explore the effect of variation inK on moments
computed from several macroeconomic time series.

A. Effect of Variation inK on an AR(1) Process

A useful way to explore the approximation error induced
by application of the approximate band-pass filter is to
compute moments for a known stochastic process using both the
ideal and approximate versions of our business-cycle filter,
BPK(6, 32). We examine the effect of variation inK on the
autocovariances of the followingfirst-order autoregression:

xt 5 0.95xt21 1 et

with se set so that the variance ofxt is 100 as a convenient
normalization (i.e.,se 5 100p (1 2 0.952)). Table 1 gives
the autocovariances ofxt for the ideal business-cycle filter
and for several approximations to this filter (i.e., several
values ofK).9 The first point to be made is that the band-pass
filter (exact or approximate) substantially lowers the vari-
ance of the series (the autocovariance at lag 0), from a base
of 100 to at most about 13.5. Looking next at how the
variance of filteredxt varies with the details of the approxi-
mation, we see that, whenK is small (so that the moving
average covers only a few observations), the approximate
filter produces a filtered series whose variance is much
smaller than the true or ‘‘exact’’ variance of 13.5. The
approximation error for the filtered series’ variance becomes
quite small onceK $ 12. These findings can be understood
by recalling that theK 5 4 approximation to the ideal filter
involved both leakage and compression near the cutoff
frequency. (See figure 2.) For variables possessing Grang-
er’s (1966) typical spectral shape, such as this highly
persistent AR(1) process, the effect of the compression is to
filter out large components of frequencies for which there is
substantial power in the original time series. AsK rises and
the accuracy of the approximate filter improves, this prob-

lem becomes smaller. Interestingly, the variance computed
from the approximate filter does not converge monotonically
to the true variance asK rises. However, the departures from
the true value are small for large values ofK. A similar
picture emerges for the other autocovariances: Small values
of K generally produce autocovariances smaller, in absolute
value, than those produced by the ideal filter. Throughout,
the approximation error is small forK $ 12.

B. Empirical Effects of Variation inK

This subsection explores the effect of the length of the
moving average on summary statistics for several postwar
U.S. time series. To provide some information about how
one’s view of the macroeconomic ‘‘facts’’ might depend on
K, we have computed a set of summary statistics for several
U.S. postwar quarterly macroeconomic time series using a
range of values forK. Table 2 presents statistics on standard
deviations, serial correlation coefficients, and contemporane-
ous correlations with GNP forK 5 54, 8, 12, 16, 206. Through-
out the table, moments are computed for the time period
associated with the shortest filtered time series (i.e., the
K 5 20 filter), so differences in moments are not due to
differences in the sample period. Summary statistics are also
presented for three other filters: a centered moving average,
the first-difference filter, and the Hodrick-Prescott fil-
ter—but we defer discussion of these results until section IV.

Table 2-A shows that one commonly used measure of
volatility—the standard deviation—is sensitive to the choice
of K. Specifically, the measured volatility of every time
series studied is about half as large for the lowest value of K
(K 5 4) compared with the value generated by the largest
value of K (K 5 32). This table shows that there is little
effect of increases inK on the standard deviations of the
filtered time series forK $ 12. These results are consistent
with the results obtained above for the AR(1): Small values
of K yielded low variances, while a good approximation was
obtained forK $ 12.

9 These autocovariances were not generated from Monte Carlo experi-
ments.They are population moments and were computed by applying the
approximate band-pass filter’s transfer function,0aK(v) 02, to the spectral density
of the first-order autoregression and thennumerically integrating the result.

TABLE 1.—EFFECT OFK ON MOMENTS OF AN AR(1) PROCESS

Autocovariance at Lag:

K 0 1 2 4 8

2 0.23 0.07 20.10 0.00 0.00
3 1.43 0.89 20.05 20.64 0.00
4 4.07 3.11 1.00 22.01 0.01
6 8.45 7.23 4.09 22.66 21.69
8 9.14 7.91 4.75 22.30 22.32

12 13.08 11.78 8.43 0.79 23.41
16 12.58 11.28 7.91 0.33 23.59
20 12.10 10.77 7.37 20.30 24.42
24 12.19 10.86 7.44 20.28 24.60
32 13.01 11.67 8.22 0.42 24.23
48 13.08 11.72 8.25 0.38 24.48
60 13.00 11.64 8.15 0.26 24.68
90 13.10 11.74 8.23 0.31 24.73

exact 13.51 12.14 8.60 0.59 24.74
no filter 100.00 95.00 90.25 81.45 66.34
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Table 2-B presents serial correlation coefficients. As with
the standard deviations, the serial correlations of the filtered
time series depend onK. In particular, this measure of
persistence is uniformly lower for the smallest value ofK,
compared with the largest. The reason, once again, can be
traced to the effects of leakage and compression for smallK

on the filtered time series. Since the most-persistent compo-
nents of economic time series occur at the lower frequencies,
the effect of compression in particular is to reduce the
measured persistence of the filtered time series. As with
standard deviations, the problem is most severe forK 5 4,
and there is little change forK $ 12.

TABLE 2.—EFFECT OFFILTERING ON MOMENTS: QUARTERLY DATA, 1947:121997:2
A. STANDARDDEVIATIONS

Variable

K: Truncation Point for Band-Pass Filter
Moving
Average

Hodrick-
Prescott

First
Difference4 8 12 16 20

GNP 0.95 1.49 1.75 1.71 1.71 2.07 1.82 1.08
Cons: durables 2.61 4.09 4.97 4.85 4.83 6.12 5.47 3.81
Cons: nondurables 0.60 0.99 1.15 1.13 1.09 1.37 1.23 0.76
Cons: durables 0.33 0.50 0.65 0.63 0.60 0.81 0.71 0.49
Investment 2.40 4.04 5.14 4.99 5.08 6.18 5.42 2.68
Hours per person 0.24 0.37 0.39 0.39 0.38 0.45 0.41 0.28
Employment 0.67 1.15 1.43 1.40 1.38 1.69 1.47 0.68
Exports 2.42 4.05 4.97 4.90 4.94 6.31 5.54 4.43
Imports 2.50 3.91 4.60 4.48 4.42 5.71 5.22 4.05
Net exports* 6.17 11.11 16.94 16.09 14.60 21.52 18.96 10.03
Gov’t purchases 1.00 2.00 3.19 3.04 2.86 4.01 3.27 1.25
GNP deflator 0.29 0.59 0.95 0.90 0.80 1.20 0.91 0.64
Inflation* 0.58 0.82 1.01 0.99 1.01 1.45 1.32 1.50

Notes: Application of these filters involves loss of data points at both ends of the sample. For consistency, the moments reported are for the truncatedsample 1952:121992:2
(the longest period available for the K5 20 bank-pass filter). The sample period for the hours variable is 1947:121996:3. Except for starred variables, natural logs were taken
before filtering. See the Data Appendix for a description of data sources.

B. FIRST-ORDERAUTOCORRELATION

VARIABLE

K: TRUNCATION POINT FOR BAND-PASS FILTER
MOVING

AVERAGE

HODRICK-
PRESCOTT

FIRST

DIFFERENCE4 8 12 16 20

GNP 0.80 0.87 0.91 0.90 0.90 0.87 0.84 0.35
CONS: DURABLES 0.79 0.87 0.92 0.91 0.91 0.81 0.77 20.02
CONS: NONDURABLES 0.82 0.88 0.92 0.91 0.91 0.86 0.83 0.27
CONS: DURABLES 0.78 0.87 0.92 0.91 0.90 0.84 0.81 0.24
INVESTMENT 0.83 0.89 0.93 0.93 0.92 0.91 0.89 0.44
HOURS PER PERSON 0.80 0.86 0.88 0.88 0.88 0.81 0.78 0.26
EMPLOYMENT 0.84 0.89 0.93 0.92 0.92 0.92 0.91 0.70
EXPORTS 0.79 0.89 0.92 0.91 0.91 0.75 0.69 20.19
IMPORTS 0.78 0.87 0.91 0.90 0.90 0.76 0.72 20.09
NET EXPORTS* 0.83 0.92 0.96 0.95 0.94 0.91 0.89 0.22
GOV’T PURCHASES 0.84 0.95 0.97 0.97 0.96 0.95 0.94 0.33
GNPDEFLATOR 0.89 0.94 0.96 0.96 0.95 0.95 0.94 0.84
INFLATION* 0.64 0.87 0.89 0.89 0.89 0.49 0.40 20.37

C. CONTEMPORANEOUSCORRELATION WITHGNP

VARIABLE

K: TRUNCATION POINT FOR BAND-PASS FILTER
MOVING

AVERAGE

HODRICK-
PRESCOTT

FIRST

DIFFERENCE4 8 12 16 20

GNP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CONS: DURABLES 0.85 0.83 0.78 0.79 0.78 0.74 0.75 0.65
CONS: NONDURABLES 0.73 0.81 0.82 0.82 0.83 0.79 0.78 0.50
CONS: DURABLES 0.53 0.70 0.76 0.76 0.77 0.75 0.72 0.37
INVESTMENT 0.90 0.90 0.87 0.87 0.89 0.85 0.85 0.74
HOURS PER PERSON 0.85 0.85 0.83 0.83 0.84 0.80 0.80 0.69
EMPLOYMENT 0.81 0.81 0.83 0.83 0.82 0.83 0.82 0.72
EXPORTS 0.26 0.24 0.28 0.29 0.32 0.29 0.27 0.20
IMPORTS 0.74 0.80 0.77 0.77 0.79 0.72 0.71 0.35
NET EXPORTS* 20.44 20.45 20.41 20.41 20.45 20.38 20.39 20.18
GOV’T PURCHASES 0.20 0.12 0.18 0.17 0.11 0.19 0.17 0.24
GNPDEFLATOR 20.39 20.46 20.49 20.49 20.51 20.49 20.55 20.26
INFLATION* 20.06 0.05 0.14 0.12 0.18 0.09 0.05 20.17
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Table 2-C presents results for the contemporaneous
correlation of various aggregates with GNP, which is one
commonly used measure of the comovement of a variable
with the business cycle. This table shows that there is a
tendency for a variable’s correlation with GNP to increase as
K increases, although this is not uniformly true. As before,
there is a tendency for the estimated moments not to change
much forK $ 12. Overall, our results suggest that summary
statistics computed from the key macroeconomic time series
are largely invariant to further improvements in the approxi-
mate business-cycle filter beyondK 5 12.

C. Inspecting the Results for GNP

Figure 3 displays the results of applying five filters to the
natural logarithm of gross national product.10 Throughout
the four graphs, we use the band-pass business-cycle filter
with K 5 12 as our reference point: It is the dark line which
is present in all of the graphs. The common sample period
for these graphs is 1947.1–1997.1, but, since we useK 5 12,
we lose three years of data at each end of the plots for the
band-pass and high-pass filters.

The First-Difference Filter: Panel A of figure 3 shows
the quarterly growth rate of real GNP versus the band-pass
filter. The first-difference filter’s heavy weight on high-
frequency components of the data lead to the very jagged
appearance of the filtered time series. There is little correspon-
dence between the time series produced by the first-
difference and the band-pass filters.

The Hodrick-Prescott Filter: Panel B of figure 3 plots
Hodrick-Prescott filtered real GNP. There is a very close
correspondence between the cycles isolated by this filter and
those generated by the band-pass filter, although the Hodrick-
Prescott filtered series is somewhat less smooth.

The High-Pass Filter (HPK(32)): Panel C of figure 3
displays a high-pass filter constructed using our procedures
that isolates periodic components of 32 quarters (eight
years). We have chosen the sameK value for this filter as for
the reference band-pass filter, so that the panel simply
illustrates the effect of the smoothing of high-frequency
components introduced by our band-pass filter. For GNP, the
panel makes clear that this smoothing of irregular compo-
nents has little effect on the overall volatility.

The Deviation from Five-Year Moving Average Filter:
Finally, Panel D of figure 3 displays deviations from a
centered equally weighted moving average, which is a
detrending method long used by business-cycle researchers.
As with the Hodrick-Prescott filter and the high-pass filter, the

correspondence with the band-pass filter is quite close, with the
moving average filter being somewhat more volatile.

D. Inspecting the Results for Inflation

In figure 4, we present the results of applying the same
five filters to the inflation rate. As before, the dark line in
each panel is theBPK(6, 32) business-cycle filter.

The First-Difference Filter: Panel A of figure 4 shows
the quarterly growth rate of inflation versus the band-pass filter.
As before, the first-difference filter produces a highly volatile
time series that bears little resemblance to the band-pass filter.

The Hodrick-Prescott Filter: Panel B of figure 4 plots
Hodrick-Prescott filtered real GNP. In contrast to the results
for GNP, there is a notable difference between the Hodrick-
Prescott filter and the band-pass filter. The reason is that
inflation contains important high-frequency components that
are passed by the Hodrick-Prescott filter, but that are
removed by the band-pass filter. GNP, by contrast, does not
have important variation at high frequencies.

The High-Pass Filter (HPK(32)): Panel C of figure 4
displays results for theHP12(32) filter. Like the Hodrick-
Prescott filter, this filter passes the high-frequency compo-
nents of inflation, leading to a more volatile filtered time
series compared with that produced by the band-pass filter.

The Deviation from Five-Year Moving Average Filter:
Finally, Panel D of figure 4 displays deviations from a
moving average. As with the Hodrick-Prescott filter and the
high-pass filter, the correspondence with the band-pass filter
is weaker when we consider inflation compared with GNP.
Once again, the reason is that high-frequency variation is
much more important as a source of overall variation in
inflation, compared with GNP.

IV. Comparison with Other Filters

This section compares the properties of our proposed
business-cycle filter with other commonly used filters.11 We
evaluate each filter in terms of its ability to achieve the
following characteristics that we have argued are necessary
for a ‘‘good’’ business-cycle filter: ability to remove unit
roots, absence of phase shift, and ability to isolate business-
cycle frequencies without reweighting the passed frequen-
cies. Further, since model evaluation involves comparison of
model moments with moments computed from the data, it is
desirable that a business-cycle filter be easily (and consis-
tently) applied both to the data and to economic models.

10 We used excerpts from the database provided with Stock and Watson’s
(1999) extensive cataloging of U.S. business-cycle facts. Exact definitions
of variables are contained in replication materials available from the
authors.

11 Our comparison is motivated, in part, by the fact that previous studies
have shown that business-cycle statistics are quite sensitive to the
detrending procedure. (See, for example, Baxter (1991) and Kydland and
Prescott (1990).)
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A. Removal of Linear Trends

Although the removal of linear (or log-linear) trends
historically was a standard method for separating trends
from cycles, a large and growing body of evidence suggests
that many macroeconomic time series contain unit root
(stochastic trend) components that would not be removed by

this procedure. Primarily for this reason, this approach to
detrending has fallen out of favor in empirical macroeco-
nomic investigations. Although this procedure does not
induce phase shift (nor does it reweight frequencies), the
failure to remove unit root components from the data means
that linear detrending is undesirable for most macroeco-
nomic time series.

FIGURE 3.—THE EFFECTS OFALTERNATIVE FILTERS ONGDP
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B. The First-Difference Filter

The first-difference filter extracts the cyclic componentyt
c

from a time seriesyt as follows:yt
c 5 (1 2 L)yt. It is evident

that this filter removes unit root components from the data;
for this reason, use of the first-difference filter has been
popular in recent years. However, there are several problems
with this filter with respect to the criteria listed above. First,

because this filter is not symmetric, it alters timing relation-
ships between variables (i.e., there is substantial phase shift
for this filter). Second, this filter involves a dramatic
reweighting of frequencies. Figure 5 panel A plots the gain
function for this filter; the first-difference filter reweights
strongly toward the higher frequencies, while down-
weighting lower frequencies. If the goal of a business-cycle

FIGURE 4.—THE EFFECTS OFALTERNATIVE FILTERS ONINFLATION
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filter is to isolate fluctuations in the data that occur between
specific periodicities, without special emphasis on any particular
frequency, the first-difference filter is a poor choice.

C. The Hodrick-Prescott Filter

Use of the business-cycle filter proposed by Hodrick and
Prescott (1980) has grown dramatically in recent years,
especially in investigations involving the quantitative-
equilibrium approach to constructing aggregative models.
The properties of this filter were previously studied by King
and Rebelo (1993), and the following discussion borrows
heavily from their analysis.

The infinite-sample version of the Hodrick-Prescott filter
defines the cyclic component of a time seriesyt as follows:

yt
c 5 1 l(1 2 L)2(1 2 L21)2

1 1 l(1 2 L)2(1 2 L21)22 yt (11)

wherel is a parameter that penalizes variation in the growth
component. (For quarterly data, Hodrick and Prescott recom-
mend a value ofl 5 1600.) From this equation, we see that
the Hodrick-Prescott filter removes unit root components
from the data. (In fact, it will remove nonstationary compo-
nents that are integrated of order four or less.) Further, the

filter is symmetric so there is no phase shift. Expanding
equation (11) gives the following time-domain representa-
tion of the growth component extracted by the Hodrick-
Prescott filter. (See appendix A to King and Rebelo (1989)
for the derivation.):

yt
g 5

u1u2

l 1o
j50

`

(A1u 1
j 1 A2u2

j)yt2j

1 o
j50

`

(A1u1
j 1 A2u2

j)yt1j2
(12)

whereA1 andA2 depend onu1 andu2; the coefficientA1u1
j 1

A2u2
j is a real number for eachj; andA1 andA2 are complex

conjugates.12

As noted by King and Rebelo, the Fourier transform of the
cyclical component of the Hodrick-Prescott filter has a

12 Equation (12) makes it clear that the Hodrick-Prescott filter is a
two-sided moving average, as are several of the filters we consider. This
equation also shows that the moving average is of infinite order, so that in
empirical applications some approximation to this filter is required. We
discuss the issue of approximation of the Hodrick-Prescott filter in section
V below; the discussion here focuses on the exact Hodrick-Prescott filter.

FIGURE 5.—GAIN OF VARIOUS FILTERS RELATIVE TO HIGH-PASSFILTER (CUTOFF AT 32 QUARTERS)
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particularly simple form:

C̃(v) 5
4l(1 2 cos (v))2

1 1 4l(1 2 cos (v))2
. (13)

Thus, the cyclical component of the Hodrick-Prescott
filter places zero weight on the zero frequency (C̃(0) 5 0),
and close to unit weight on high frequencies
(C̃(p) 5 16l/(1 1 16l)). Figure 5-B plots the frequency-
response function of the Hodrick-Prescott filter forl 5
1600. Visually, this filter looks remarkably like an approxi-
mate high-pass filter with cutoff frequencyv 5 p/16 or 32
cycles per period.

In terms of the objectives that we specified for our filter
design problem, the Hodrick-Prescott cyclical filter has
several desirable features. First, no phase shift is introduced.
Second, it has trend-elimination properties: It places zero
weight at the zero frequency or, equivalently, contains
multiple differencing operations. Third, withl 5 1600, it
approximates the high-pass filterHP`(32) reasonably well
since its gain rises sharply from near zero to near unit in the
vicinity of the cutoff frequencyv 5 p/16. However, since
the Hodrick-Prescott filter of equation (4.2) is an infinite
order moving average, some modification is necessary in
order to apply it to data. We return to discussion of this topic
in section V below.

D. Moving Averages

Another widely used method of detrending economic
time series is to define the growth or trend component as a
two-sided or centered moving average, with the cyclic
component defined in the usual way as the deviation of a
particular observation from the trend line. That is, the
growth or trend component is formed as

yt
g 5

1

2K 1 1 o
j52K

K

yt2j . (14)

Thus, the cyclic component ofyt is generated asyt
c 5 a(L) yt

with a0 5 1 2 1/2K 1 1, andaj 5 a2j 5 1/2K 1 1 for j 5 1,
2, . . . ,K. This filter places zero weight at the zero frequency
sinceSak 5 0, and is symmetric. Figure 5-C plots the gain
for the centered moving-average filter for several values
of K.13

E. A High-Pass Filter

We have defined a high-pass business-cycle filter,HPK(32),
as a filter that passes components of the data with periodicity
less than or equal to 32 quarters. Figure 5-D plots the gain

for this filter for several values of K. As with the moving-
average filter, this filter yields a good approximation to an
ideal high-pass filter for sufficiently large values ofK (i.e.,
K $ 12).

F. Moment Implications

Table 2 shows how application of these alternative filters
affects moments computed from several postwar U.S. time
series. We focus on three sets of moments of particular
interest to business-cycle analysis: volatility, persistence,
and correlation with output.

Volatility. Table 2-A presents volatility statistics. As
discussed earlier, the band-pass filter withK $ 12 yields a
very good approximation to the ideal band-pass filter. For
this reason, we regard the statistics computed with theK 5
20 band-pass filter as the best measure of business-cycle
volatility, and then compare the other filters to this bench-
mark. Except for inflation (which we discuss separately
below), a clear pattern emerges. The Hodrick-Prescott filter
produces volatility statistics that exceed those of the ideal
band-pass filter, although in many cases not by a large
amount. The moving-average filter produces volatility statis-
tics that are larger still, although again the changes are not
dramatic. The first-difference filter, by contrast, produces
volatility statistics that are smaller (in many cases, much
smaller) than those produced by the band-pass filter. Having
studied the gain functions of these filters, these results are
easy to understand. The Hodrick-Prescott and moving-
average filters are rough approximations to a high-pass filter,
which means that they retain some high-frequency volatility
that is removed by the band-pass filter. These macroeco-
nomic time series do not have a great deal of power at high
frequencies, so including these components leads to only
small increases in the volatility of the filtered time series.
The first-difference filter produces smaller measures of
volatility because it removes more of the low-frequency
components of the time series than the band-pass filter,
while reweighting the frequencies to emphasize the higher
frequencies. For all the variables studied except inflation,
most of the power is at the lower frequencies.

The pattern described above is reversed for inflation:
Here, the first-difference filter produces the highest measure
of cyclic volatility. As discussed in section III.D. above,
inflation contains sizable high-frequency components—
components that are emphasized by the first-difference filter.
This also explains why the moving-average and Hodrick-
Prescott filters produce significantly higher volatility mea-
sures compared with the band-pass filter: The band-pass
filter removes the high-frequency components, while these
alternative filters do not.

Persistence. Table 2-B presents statistics on the first-
order autocorrelation of filtered macroeconomic time series.

13 The general shape of this filter is very similar to that of the
approximate high-pass filter, plotted in figure 5-D, although the ‘‘side
lobes’’ are more exaggerated for the moving-average filter.
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As before, we take the band-pass filter (forK $ 12) as our
benchmark. Compared with this benchmark, each of the
other filters produces a lower measure of persistence.
Excepting, once again, the inflation series, the differences
are relatively small for the moving-average and Hodrick-
Prescott filters. However, the first-difference filter produces
dramatically smaller measures of persistence compared with
the other filters. Once again, this is due to the fact that the
first-difference filter removes more of the highly persistent,
low-frequency components, and emphasizes the much-less-
persistent, high-frequency components. As before, the infla-
tion series behaves differently than the other time series,
because of its important high-frequency components. (With
the emphasis on these components provided by the first-
difference filter, the measured persistence of inflation is
actually negative.)

Correlation with GNP. Finally, Table 2-C provides
statistics on the correlation between various macro variables
and GNP. Once again, we find that the moving-average and
Hodrick-Prescott filters produce statistics that are roughly
similar to those computed using the band-pass filter. The
first-difference filter produces correlations that are, in many
cases, significantly smaller (in absolute value). Overall,
researchers using the band-pass filter, the moving-average
filter, or the Hodrick-Prescott filter on quarterly postwar
U.S. time series are likely to obtain a similar impression of
the nature of business cycles. However, use of the first-
difference filter will yield a markedly different view of the
central business cycle ‘‘facts.’’

In general, the first-difference procedure produces filtered
time series with lower volatility than those generated by the
band-pass filters or the Hodrick-Prescott filter. This is a
direct consequence of the fact that the first-difference filter
downweights the lower frequencies relative to the alterna-
tive filters. For the same reason, the first-difference filter
produces time series that exhibit much lower persistence
than those produced by other filters (see table 2-B) and
whose correlation with GNP is also much lower (table 2-C).

V. Comparing HPs

In this section, we undertake a detailed comparison of the
Hodrick-Prescott filter with high-pass filters constructed
using our approach. For the purposes of many users of the
Hodrick-Prescott filter, we shall conclude that our high-pass
filter is better in one important dimension: its ease of
application to data sampled at other-than-quarterly frequen-
cies.

A. The Quarterly HP Filters Can Be Very Close

The first observation is that ourHP12(32) filter and the
conventional Hodrick-Prescott filter give essentially similar
results for quarterly GNP, thus reinforcing the idea—
discussed in the previous section—that the Hodrick-Prescott
filter is a reasonable approximation to the band-pass filter.

This result is suggested by comparison of panelsC andD of
figure 5, discussed in section III.B, above: The two series
look very much like each other. In fact, the correlation of the
Hodrick-Prescott cyclical component and theHP12(32)
cyclical component is 0.994 over the common sample
period.

B. The Hodrick-Prescott Filter in Finite Samples

Many individuals currently use the Hodrick-Prescott filter
with l 5 1600 for defining cyclical components of quarterly
economic time series. One main rationale for this, given by
Prescott (1986), is that the filter is approximately a band-
pass filter that passes cyclical components of periodicity
greater than eight years (32 quarters).

To apply the Hodrick-Prescott cyclical filter to data, one
strategy would be to truncate its weights at some fixed lagK,
which would be analogous to our approximation of the ideal
band-pass filter. However, in actual practice, an alternative
procedure is typically used. This procedure has the appar-
ently attractive feature that there is no loss of data from
filtering. That is, for a time seriesyt for t 5 1, . . . T, the
Hodrick-Prescott procedure produces estimates of the cycli-
cal component,yt

c for t 5 1, . . .T.14

To understand this outcome, it is useful to return to the
original derivation of the Hodrick-Prescott filter as the
solution to a specific econometric problem, which is essen-
tially to find the optimal estimates of trend and cycle
corresponding to a particular known probability model. If
we letyt

t denote the trend component and continue to letyt
c

denote the cyclical component, this probability model is that
trend and cycle are driven by independent white noises (ht

andet respectively) and that their dynamics areD2tt 5 ht and
ct 5 et. If one knows the relative magnitude ofsh

2 andse
2,

then it is possible to extract estimates ofyt
t andyt

c at each
date of a finite samplet 5 1, . . .T. Further, these estimates
are simply weighted averages of the original data, so that the
cyclical component at datet is

yt
c 5 o

h51

T

dhtyh.

While this derivation makes the datet cyclical component
a moving average of the data, the linear filter is not time
invariant: The weights depend on the datet as well as the
lead/lag indexh. However, the algorithm that we use for

14 We implement the finite-sample Hodrick-Prescott filter as follows.
First, we stack the data into a column vectorY. Second, we define a matrix
G that links the corresponding column vector of ‘‘growth components,’’
YG, to the data:Y 5 GYG. Third, we compute the vector of ‘‘cyclical
components’’ asYC 5 Y 2 YG 5 (I 2 G21)Y. The matrixG is implied by
the equations that link the growth components to the data. The general
equation isyt 5 lyt12

g 2 4lyt11
g 1 (1 1 6l)yt

g 2 4lyt21
g 1 lyt22

g , but this
expression must be modified near the endpoints. For example, at the
beginning of the sample, we usey1 5 (1 1 l)y1

g 1 (22l)g2
g 1 (1 1 l)y3

g

and y2 5 (22l)y1
g 1 (1 1 5l)y2

g 1 (24l)y3
g 1 ly4

g, and comparable
modifications must be made near the end of the sample.
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computing the Hodrick-Prescott filter makes it easy to
recover the coefficientdht so that we can study their
properties. One feature that emerges is that, for each datet,
Sh51

T dht 5 0 so that, in this fashion, the time-varying linear
filter displays trend-elimination properties at every date.

To begin our more detailed look at the time-varying filter,
we compute the gain of the linear filterdt(L) 5 Sh51

T dhtL(h2t)

in figure 6 for a range of datest 5 (1, 2, 3), (4, 6, 8), (12, 16,
24), (32, 48, 60). These choices are motivated by the idea
that we are studying a quarterly sample period of postwar
size, so that there are about 180 observations, and we want to
explore the effects of time variation near the endpoints and
in the middle of the sample. (It is sufficient to look at the
initial values because there is a symmetry property to the
weights: d1T 5 dT1, etc.) These figures show that thedht

coefficients at the beginning of the sample period are such
that thedt(L) has very different properties than an exact
high-pass filter: The gain functions differ sharply from each
other fort 5 1, 2, 3 and from the gain of the exact high-pass
filter. (There is also phase shift near the endpoints, since
dt(L) is not close to being a symmetric linear filter fort close
to 1 orT.) But, as we move toward the middle of the sample
period, the gain of the filter differs less sharply from one
observation to the next, and the overall filter looks closer to
the ideal band-pass filter.

Another perspective on the extent of time variation in the
filter weights is afforded by considering the effect ofd(L) if

it is applied to a specific data-generating process. While it is
feasible to undertake this for standard macroeconomic
models, we opted for the simpler procedure of evaluating the
effects of the filter on population variance of a first-order
autoregression,yt 5 r yt21 1 et with se

2 5 1 andr 5 0.95.
Table 3 gives the variance by observation with the time-
varying weight version of the Hodrick-Prescott filter. (This
variance should be viewed as calculated across many
realizations of the time series generated by this first-order
autoregressive process.) Although each observation has the
same variance before filtering, time-variation in the filter
applied to the process leads to different variances across
observations. In fact, the change in the variance is not even
monotonic, as suggested by the gain patterns in Figure 6.

This investigation thus suggests that the Hodrick-Prescott
filter does not really generate as many useful estimates of the
cyclical component as there are data points. Since the filter
weights settle down after about the twelveth observation, it
would seem natural to drop twelve observations from the
beginning and end of the sample period. But, then, there
would be little reason to prefer the Hodrick-Prescott filter to
our high-pass filter for quarterly data.

C. HP Filters at Other Data Frequencies

Is the Hodrick-Prescott filter an adequate approximation
to a high-pass filter when used with data sampled at other

FIGURE 6.—GAIN OF THE HODRICK-PRESCOTTFILTER IN FINITE SAMPLES
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frequencies? The answer to this question is important to
researchers concerned with international and public finance
questions: Very often, the data used by these researchers are
available only at the annual frequency. For our procedures, it
is clear how to move between different data frequencies. For
example, if we are considering results from the high-pass
filter HP12(32) with data at the quarterly frequency, then the
natural first filter to consider for annual data isHP3(8): We
isolate the same frequencies (periodicities of eight years and
higher), and we lose the same number of years of data at the
ends of the sample.

However, it is much less clear how to proceed with the
Hodrick-Prescott method. The difficulty is that the Hodrick-
Prescott filter requires the researcher to specify the ‘‘smooth-
ing parameter,’’l. For quarterly data, we found thatl 5
1600 produces a reasonable approximation to a high-pass
filter. For annual data, current empirical practice is to use
l 5 400 or l 5 100. (For example, Backus and Kehoe
(1992) usel 5 100 in their study of international business
cycles.) To investigate whether these values ofl yield a
good approximation to a band-pass filter for annual data, we
applied ourBP3(2, 8) filter and the HP filter for several
values of l to U.S. annual GNP.15 The commonly used
values ofl 5 400 andl 5 100 did not produce a filtered
time series for GNP that closely resembled that produced by
the band-pass filter.16 However, settingl 5 10 produced a
much better correspondence between the Hodrick-Prescott
and band-pass filters. Figure 7 plots the gain for the
Hodrick-Prescott filter for the three values ofl against the
ideal filter. This figure reveals whyl 5 100 andl 5 400
produce such different pictures for filtered GNP compared
with the optimal approximate band-pass filter: For these
values ofl, the Hodrick-Prescott filter is a poor approxima-
tion to the ideal filter. In particular, these filters contain a
great deal of leakage from low frequencies. (That is, the
l 5 100 andl 5 400 filters pass through nearly all of the

components of the data with cycles between nine and sixteen
years—components that most researchers would not identify
as business-cycle components.) The approximation to the
ideal band-pass filter is significantly better forl 5 10.
However, even thel 5 10 filter contains significant leakage
as well as significant compression.17

The foregoing discussion concerned the properties of the
exact Hodrick-Prescott filter. In practice, however, a finite-
moving-average approximation to this exact filter must be
used. Looking at a figure similar to figure 6 but designed for
annual data, we found that the finite-sample version of the
filter produces serious departures from the ideal filter for the
first three observations, but improves dramatically after the
fourth observation. We thus recommend dropping at least
three data points from each end of the sample when using the
Hodrick-Prescott filter on annual data, even if one chooses
l 5 10, which is the same number of data points dropped by
our business-cycle filter.

VI. Summary and Conclusions

This paper develops a set of approximate band-pass filters
designed for use in a wide range of economic applications.
The empirical focus of the paper is on isolating cyclic
fluctuations in economic time series, defined as cycles in the
data between specified frequency bands. We make detailed
comparisons of our band-pass business-cycle filter with
other commonly used filters, and evaluate these alternative
filters in terms of their ability to isolate business-cycle
fluctuations in the data. We found that linear detrending and
first-differencing the data are not desirable business-cycle
filters. On the other hand, moving-average analysis and
Hodrick-Prescott filtering can, in some cases, produce
reasonable approximations to an ideal business-cycle filter.
However, the optimal approximate band-pass filter that we
develop in this paper is more flexible and easier to imple-
ment than these filters and produces a better approximation
to the ideal filter. While the main motivation for and focus of
our investigation is on construction of a business-cycle filter,
the results should be of more-general interest since the
defining periodicities may be readily specified by a re-
searcher and applied to data at any observation frequency.
Based on the results of this paper, we recommend three
filters for use with quarterly and annual macroeconomic
data.

For quarterly macroeconomic data, we recommend the
Burns-Mitchell band-pass filter, which admits frequency
components between 6 and 32 quarters, withK 5 12. This
filter removes low-frequency trend variation and smooths
high-frequency irregular variation, while retaining the major
features of business cycles. Some macroeconomists, particu-
larly those who have extensively used the Hodrick-Prescott
filter, may prefer to employ the high-pass filter, which

15 Since the shortest detectable cycle in a time series is one that lasts two
periods, the annual business-cycle filter passes components with cycle
length between two and eight years. Note that, in this case, the band-pass
filter is equivalent to a high-pass filter.

16 This finding was not altered by increasing theK parameter from 3 to 6.

17 Hassler et al. (1994) also argue thatl 5 10 is the appropriate value for
the smoothing parameter when applying the Hodrick-Prescott filter to
annual data.

TABLE 3.—EFFECT OF

HODRICK-PRESCOTTFILTER

WITH TIME-VARYING WEIGHTS

Observation Variance

1 17.50
2 12.01
3 9.97
4 9.72
6 11.54
8 13.70

12 15.64
16 15.76
24 15.89
32 16.54
48 16.56
60 16.56
90 16.56
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admits frequency components between 2 and 32 quarters
with K 5 12. Essentially, this filter removes the trend
variation without removing the higher-frequency irregular
variation in the series. Relative to the Hodrick-Prescott
method, this filter does involve dropping three years of data
at the beginning and end of the sample; we have seen,
however, that this loss is more apparent than real because the
weights in the Hodrick-Prescott filter are rapidly changing
near the ends of the sample, resulting in substantial distor-
tions of these cyclical observations. The filter weights are
provided in the first two columns of table 4.

For annual macroeconomic data, band-pass and high-pass
business-cycle filters are equivalent. We accordingly recom-
mend a single filter that admits periodic components be-

tween two and eight years, withK 5 3. The filter weights are
given in the last column of table 4.

We have applied the filters constructed in this paper in
various research contexts, which provides an additional
demonstration of their flexibility and usefulness. For ex-
ample, Baxter (1994) uses the methods of this paper to study
the relationship between real exchange-rate differentials and
real interest rates at low frequencies (trend components),
medium frequencies (business-cycle components) and high
frequencies (irregular components). She concludes that prior
studies have missed interesting relationships between these
variables because a concern for producing stationary data
led researchers to use the first-difference filter. This proce-
dure emphasized irregular (high-frequency) components
where little relationship exists at the expense of the business-
cycle components where a striking, positive relationship
emerges. In another application, King and Watson (1994)
show that the ‘‘Phillips correlations’’ (defined as a negative
correlation of inflation and unemployment) appear strong at
the business-cycle frequencies even though they are hard to
see in the original inflation and unemployment time series.
This latter investigation uses monthly data and thus defines
the business-cycle periodicities as 18 months to 96 months.
It thus highlights one important strength of our approach: It
is easy to alter the filter construction when the sampling
frequency changes.

In conclusion, the primary goal of this paper was to ‘‘build
a better mousetrap’’—that is, to develop an approach to
filtering economic time series that is fast, flexible, and easy

FIGURE 7.—ALTERNATIVE ANNUAL HODRICK-PRESCOTTFILTERS

TABLE 4.—MOVING AVERAGE WEIGHTS FOR

BUSINESS-CYCLE FILTERS

Lag BP(6,32) BP(2,32) BP(2,8)

0 0.2777 0.9425 0.7741
1 0.2204 20.0571 20.2010
2 0.0838 20.0559 20.1351
3 20.0521 20.0539 20.0510
4 20.1184 20.0513
5 20.1012 20.0479
6 20.0422 20.0440
7 0.0016 20.0396
8 0.0015 20.0348
9 20.0279 20.0297

10 20.0501 20.0244
11 20.0423 20.0190
12 20.0119 20.0137
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to implement. Our goal in this undertaking is to encourage
empirical researchers to adopt a common approach to
filtering, which will greatly aid in replication and compari-
son of results across researchers.
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APPENDIX

A. Trend-Elimination Properties

In this appendix, we demonstrate that symmetric moving-average filters
can render stationary economic time series with deterministic and stochas-
tic trends. In particular, we consider the filtera(L) 5 Sk52K

K akLk on which
we impose two conditions: that the coefficients sum to zero,a(1) 5
Sk52K

K ak 5 0; and that the filter is symmetric,ak 5 a2k. Using these
conditions, we rewrite the moving average as

a(L) 5 o
k52K

K

akLk 5 o
k52K

K

akLk 2 ak 5 o
k51

K

ak(Lk 1 L2k 2 2),

where the first equality follows from the sum of coefficients require-
ment and the second follows from the symmetry assumption. The
individual terms (Lk 1 L2k 2 2) can be rewritten as2(1 2 Lk)(1 2 L2k).
Using the additional fact that (12 Lk) 5 (1 2 L)[1 1 L 1 L2 1 . . .Lk21],
a little bit of algebra demonstrates that [11 L1 1 · · ·1 Lk21]
[1 1 L21 1 · · ·1 L2(k21)] is equal to Sh52(k21)

(k21) (k 2 0h 0 )Lh. Hence, we
conclude that

a(L) 5 2o
k51

K

ak[(1 2 L2k)(1 2 L2k)]

5 2(1 2 L)(1 2 L21)cK(L),

with cK(L) being a symmetric moving average withK 2 1 leads and lags,
which is defined bycK(L) 5 5Sk51

K akSh52(k21)
(k21) (k 2 0h 0 )Lh]6. SincecK(L) is

a finite-term moving average, it does not alter the stationarity properties of
any series to which it is applied.

We have shown that any symmetric moving filtera(L) whose weights
sum to zero contains a backward difference (12 L) and a forward
difference (12 L21). Consequently,a(L) has the ability to render station-
ary I(2) stochastic processes and quadratic deterministic trends.

APPENDIX

B. Optimal Approximation

In this appendix, we consider the optimal approximation of an ideal
symmetric linear filter by aKth-order symmetric moving average. We pose
the filter design problem in the frequency domain.

Preliminaries

Consider a filterg(L) 5 Sh52`
` ghLh with square-summable weights. The

filter and its frequency-response functiong(v) are a Fourier transform pair.
Operationally, this means that the frequency-response function can be
obtained from the filter weights by the Fourier sum,

g(v) 5 o
h52`

`

ghe2ivh.

The filter weights can be obtained from the frequency-response function
by the Fourier integral,

gh 5
1

2p
e

2p

p
g(v)eivh dv.
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To accomplish this integration in particular contexts, we employ the facts
that

1

2p
e

2p

p
e2iv( j2k) dv 5 1 for j 5 k

1

2p
e

2p

p
e2iv( j2k) dv 5 0 for j Þ k.

(For example, these facts imply thatgh 5 (1/2p) e2p

p
3 g(v)eivh dv 5

(1/2p) e2p

p
[Sh52`

` ghe2ivh]eivhdv 5 gh, which is a ‘‘reality check’’ of
sorts.) We use these facts and the Fourier integral repeatedly in our analysis
below, given that we design the optimal filter in the frequency domain and
must derive the filter weights.

Application to Deriving Weights for the Ideal Low-Pass Filter

The Fourier integral of the ideal low-pass filterb(v) implies that the
filter coefficients satisfy

bh 5
1

2p
e

2p

p
b(v)eivh dv 5

1

2p
e

2v

v
eivh dv,

where the second line derives from the fact thatb(v) 5 1 for 0v 0 # v and
b(v) 5 0 for 0v 0 . v. Hence, it follows that

b0 5
1

2p
e

2v

v
dv 5

v

p

bh 5
1

2p
e

2p

p
b(v)eivh 5

1

2p 3
1

ih
eivh4

2v

v

5
1

ph
sin (vh)

where the last equality follows from 2i sin (x) 5 eix 2 e2ix.

The Filter Design Problem in the Frequency Domain

The problem is to minimizeQ 5 1/2p e2p

p
0d(v) 0 2 dv, with d(v) being

the discrepancy between the exact and approximating filters at frequency
v, d(v) 5 b(v) 2 a(v). Some versions of the problem discussed in the
text require that the approximating filter take on a specified value at the
zero frequency, which we represent asa(0) 5 f. (Equivalently, since
e0 5 1, this restriction isSk52K

K ak 5 f.) To solve this as a constrained-
maximization problem, we form the Lagrangian,L 5 2 Q1 l[a(0) 2 f],
which may be expressed alternatively as

L 5 2
1

2p
e

2p

p 3b(v) 2 o
k52K

K

ake2ivk4 3b(v) 2 o
k52K

K

ake2ivk48 dv

1 l 3 o
k52K

K

ak 2 f4 .

The first-order conditions are

aj : 0 5
1

2p
e

2p

p
e2ivj 3b(v) 2 o

k52K

k

ake2ivk48 dv

1
1

2p
e

2p

p 3b(v) 2 o
k52K

K

ake2ivk4 eivj dv 1 l

l : 0 5 o
k52K

K

ak 2 f

where2 K # j # K.

Restrictions on the Filter Weights From the First-Order Conditions

Repeatedly using the facts that (1/2p) e2p

p
e2iv( j2k) dv 5 1 for j 5 k

and (1/2p) 3 e2p

p
e2iv( j2k) dv 5 0 for j Þ k, the 2K 1 1 first-order

conditions with respect toaj can be expressed as

0 5 2(bj 2 aj) 1 l.

(For an example of this process, the term (1/2p) e2p

p
[Sk52K

K ake2ivk]eivj dv

is equal to (1/2p) e2p

p
aj dv 5 aj .)

Thus, if there is no constraint ona(0) so thatl 5 0, then it follows that
the optimal approximate filter simply involves truncation of the ideal
filter’s weights.

If there is a constraint ona(0), thenl must be chosen so that the
constraint is satisfied. For this purpose, it is useful to write the FOCs as
ah 5 bh 1 u, whereu 5 l/2. Then, requiring thata(0) 5 Sh52K

K ah 5 f, we
find that the required adjustment is

u 5

f 2 o
h52K

K

bh

2K 1 1
.

Conclusions and Extensions

We have derived the general result discussed in the text. Construction of
the optimal approximating filter contains two steps: truncation of the ideal
filter’s weights and addition of the correction termu. Further, the form of
this correction process makes clear the origins of some of the observations
made in the main text which are not explicitly derived here. For example,
the same logic implies that the constrainedKth-order approximate
band-pass filter is the difference between two constrainedKth-order
approximate low-pass filters. Since the ideal band-pass filter weights are
simply differences between the weights of two low-pass filters,bh 2 bh it
follows that the weights for an optimal truncated band-pass filter are
(bh 2 bh) 2 [Sh52K

K (bh 2 bh)]/[2K 1 1]. As this may be rearranged as
5bh 1 [1 2 Sh52K

K bh]/[2K 1 1]6 2 5bh 1 [1 2 Sh52K
K bh/[2K 1 1]6, it fol-

lows that the weights of the optimal, constrained approximate band-pass
filter are simply the difference in the weights of the two constrained
Kth-order low-pass filters.
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