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Abstract—Band-pass filters are useful in a wide range of economigsearcher begin by specifying characteristics of these

contexts. This paper develops a set of approximate band-pass filters fE ; ; ; _
illustrates their application to measuring the business-cycle componen?g lical components. Our procedures isolate business-cycle

macroeconomic activity. Detailed comparisons are made with sevef@mponents in a straightforward way, transforming the
alternative filters commonly used for extracting business-cycle compgtacroeconomic data by applying particular moving aver-

nents. ages that are implied by these defining characteristics.
Technically, we develop approximate band-pass filters that
are constrained to produce stationary outcomes when ap-

THE STUDY of business cycles necessarily begins witplied to growing time serie3.
the measurement of business cycles. The seminal contriFor the empirical applications in this paper, we adopt the
bution of Burns and Mitchell (1946) was influential partlydefinition of business cyclesuggested by the procedures
because it provided a comprehensive catalogue of thed findings of NBER researchers like Burns and Mitchell.
empirical features of the business cycles of develop&tirns and Mitchell specified that business cycles were
countries, notably the United States. However, their work wg¥clical components of no less than six quarters (eighteen
also important because it developed methods for measuriRgnths) in duration, and they found that U.S. business
business cycles that could be used by other research@fgles typically last fewer than 32 quarters (eight years). We
working with other countries or other sample periods. adopt these limits as our definition of the business cycle. We
Contemporary students of the business cycle still face tABply our method to several major quarterly postwar U.S.
same basic issue as Burns and Mitchell did fifty years ad#ine series, including output and inflation.
How should one isolate the cyclical component of an Defining the business cycle as fluctuations with a speci-
economic time series? In particular, how should one separfigsl range of periodicities results in a particular two-sided
business-cycle elements from slowly evolving secular tren@¥Vving average (a linear filter). In the particular case of the
and rapidly varying seasonal or irregular components? TNBER definition of the business cycle, the desired filter is a
decomposition used by Burns and Mitchell is no longer ipand-pass filter, i.e., a filter that passes through components
common use, due both to its complexity and its Centr@f the time series with periodic fluctuations between six and
element of judgmerttln its place, modern empirical macro-32 quarters, while removing components at higher and lower
economists employ a variety of detrending and smoothifi¢quencies. However, the exact band-pass filter is a moving
techniques to carry out trend-cycle decompositions. The®¢erage of infinite order, so an approximation is necessary
decompositions are frequently ad hoc in the sense that fRepractical applications. Thus, a central problem addressed
researcher requires only that the detrending proceddiéthis paperis how to constructa good approximation to the
produce a stationary business-cycle component, but does@imal filter (i.e., the filter that accomplishes the business-
otherwise explicitly specify the statistical characteristics écle decomposition specified by the researcher).
business cycles. Examples of techniques in common use ar#) approaching this problem of filter design, we require
application of two-sided moving averages, first-differencing)at our method meet six objectivés:irst, as suggested
removal of linear or quadratic time trends, and application 8Pove, the filter should extract a specified range of periodici-
the Hodrick-Prescott (1980) filter. Many recent studies usdig@s and otherwise leave the properties of this extracted
battery of such methods to measure business cycles. component unaffected. Second, we require that the ideal
In our view, this proliferation of techniques for measurin§§and-pass filter should not introduce phase shift, i.e., that it
business cycles has resulted from a lack of attention to @@t alter the timing relationships between series at any
issue which Burns and Mitchell viewed as central: thiequency. These two objectives define an ideal moving
definition of a business cycle. In this paper, we develg®erage of the data with symmetric weights on leads and

methods for measuring business cycles that require that t@s. Third, we require that our method be an optimal
approximation to the ideal band-pass filter; we specify a

particular quadratic loss function for discrepancies between
Received for publication March, 1999. Revision accepted for publication
June, 1999.
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tion materials are available from the authors. Prescott (1980) filter, and then extract business-cycle components by
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Burns-Mitchell procedure, using the business-cycle dating algorithm wfore detail later in the paper.
Bry and Boschan (1981). Two recent examples are King and PlossérThese requirements are very similar to those that Prescott (1986)
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576 THE REVIEW OF ECONOMICS AND STATISTICS

the exact and approximate filter. Fourth, we require that thgerested in designing a business-cycle filter, i.e., a linear
application of an approximate band-pass must result infiker that eliminates very slow-moving (“trend”) components
stationary time series even when applied to trending dagend very high-frequency (“irregular”) components while retain-
Given the large body of empirical work that suggests theg intermediate (“business-cycle”) components.

presence of stochastic trends in economic time series, wét has long been understood that moving averages alter the
design our filters so that they will make the filtered timeelative importance of the periodic components in a time
series stationary if the underlying time series is integrated séries. (See, for example, Harvey (1981, ch. 3).) If the time
order one or two. (Equivalently, we impose the requiremesgriesy; is stationary, then we can use frequency-domain
that the approximate filter's frequency response is exacttyethods to consider these implications of applying moving
zero at the zero frequency). This requirement also meamgerages. In this paper, we employ the frequency-domain
that our band-pass filters will eliminate quadratic determinianalysis to consider the design of linear filters, but we
tic trends from a time series. Fifth, we require that theltimately will undertake our filtering entirely in the time
method yield business-cycle components that are unrelatemmain (i.e., we will simply apply moving averages to
to the length of the sample period. Technically, this meansacroeconomic data). Thus, for readers who are simply
that the moving averages we construct are time invariant,imerested in the practical results of our filtering methods, the
that the coefficients do not depend on the point in theurrent section may be skimmed or skipped.

sample. Sixth, and finally, we require that our method be

operational. In the general filter-approximation problem, ) ) ] .

there is an important tradeoff involved: The ideal band-pa8s APPlying Moving Averages to Time Series

filter can be better approximated with the longer moving applying a moving average to a time serigsproduces a
averages, but adding more leads and lags also means () time serieg?, with

observations must be dropped at the beginning and end of

the sample, thus leaving fewer for analysis. We therefore K
experiment extensively with the application of our filter to y; = 2 aYi—k- @
macroeconomic time series and provide some guidance to k=-K

readers about the tradeoffs involved. We recommend that resea'g(a?- onvenience in the discussion below. we will write the
ers use moving averages based on three years of past dat ng average as a polynomial in thé lag operator
three years of future data, as well as the current observatiga_,) — 3K alk with L defined so thatkx, = x_, for
when working with both quarterly and annual time series. k="K ’ X
The organization of the paper is as follows. Section
describes the construction of approximate band-pass filt

In section Ill, we define our busine'ss-cy(':le filter a_nd a_pply ' One traditional use of moving averages has been to isolate
to postwar U.S. data. Further, we investigate the |mpI|cat|%r|) to eliminate trends in economic time series. If a symmet-

of changing the number of leads and lags used to constryget moving average has weights that sum to zero, i.e.,

the approximate filter for certain summary statistics, usirg a. = 0, then we show in appendix A that it has trend
—K ]

both postwar U.S. data a_md a specified stochastic daéﬁ?nination properties. That is, if the weights sum to zero,
generating process (for which we can compute the influe can always factaa(L) as

of the length of the moving average on population mo-

ments). In section IV, we contrast our business-cycle filterto 51y = (1 — L)(1 — L-Yy(L) )

the results of other commonly used procedures. In section V,

we provide a detailed comparison of two “HP” filters: thewhereys(L) is a symmetric moving average with— 1 leads

cyclical filter of Hodrick and Prescott (1980) and a high-passd lags. Symmetric moving averages with weights that sum

filter constructed using our methods. Particular attentiontis zero will thus render stationary series that contain quadratic

directed to two practical problems that researchers encourdeterministic trends (i.e., components of the form

using the Hodrick-Prescott method: unusual behavior af= vy + it + v.t?). Further, these moving averages can also

cyclical components near the end of the sample and timake stationary the stochastic trends that arise when a time series

choice of the smoothing parameter for data sampled at otlieea realization of an integrated stochastic process (of the (1) or

than the quarterly frequency. Section VI concludes the papé?) type in the lexicon of Engle and Granger (1987)).

with a brief review of the goals and findings of the paper.  Turning to analyzing the effect of filtering from a
frequency-domain perspective, the Cramer representation of

ositive and negative values kfWe will further specialize
ur attention to symmetric moving averages, i.e., those for
ich the weights are such that=a (fork =1, .. .K.

Il.  Filter Design a zero-mean stationary time sengs
This section describes the construction of moving aver- -
ages that isolate the periodic components of an economicy: = f_ﬂ &(w) do. )

time series that lie in a specific band of frequencies. That is,
in the jargon of time-series analysis, we are interested Tiat is, the time series is expressed as the integral of random
constructing band-pass linear filters. We are particulangbheriodic components, thiw), that are mutually orthogonal
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MEASURING BUSINESS CYCLES WITH BAND-PASS FILTERS 577

(E&(w1)é(wp)’ = 0 for o1 # wy). In turn, the filtered time Evaluating the integral above (see appendix B for the
series can be expressed as details), the filter weightb, for the ideal filter are

yi= J‘:T () E(w) do, 4) bo=ow/m and b,=sin hw)hwforh=1,2,... (7)
While the weights tend to zero dsbecomes large, notice
where a(w) = 35 ae " is the frequency-responsethat an infinite-order moving average is necessary to con-
function of the linear filter. (The frequency respong@) struct the ideal filter. Hence, we are led to consider
indicates the extent to whigyf responds tay; at frequency approximation of the ideal filter with a finite moving average
o, in the sense that(w) is the weight attached to thea(L) = 3K _, a,L"; this approximating filter has a fre-
periodic componené(w).) Since the periodic componentsguency-response functie(w) = 3 ape~ieh,

¢(w) are orthogonal, it follows that we can write the variance

of the filtered series as C. Approximation of Symmetric Filters

" m If one is considering the general problem of choosing an
— 2
var (y1) = f—w () () do. ) approximate filterax (), to approximate a specific filter

, ) ) B(w), then a natural approximation strategy is to choose the
where|a(w) |2 is the squared gain or transfer function of th‘approximating filter's weighta, to minimize
linear filter at frequencyn and f(w) = var ¢(w)) is the

spectral density of the serigsat frequencyw. At a given 1 s
frequency, the squared gain thus indicates the extent toQ = Z—J:ﬂ\s(m)\zdw, (8)
which a moving average raises or lowers the variance of the m

filtered series relative to that of the original series. The nghereg(m) = B(w) — ax(w) is the discrepancy arising from
la(w)| is similarly the effect on the standard deviation at gpproximation at frequency. This loss function attaches
particularly frequency: We thus use it in various figuregqual weight to the squared approximation errors at different
below as a measure of the consequences of filtering. frequencies.

In terms of our discussion below, it is important to note There is a remarkable, general result for this class of
that the frequency-response functie(w) takes on a value gptimization problems: The optimal approximating filter for
of zero at frequency zero if and only if we require that thgjyen maximum lag lengthK, is constructed by simply
sum of the filter weights is zere(0) = Xf__yae '™ = 0if  truncating the ideal filter's weights, at lagK. Thus, the
and only if3f__a, = 0). optimal approximate low-pass filter seig= by, for h = 0,

We turn next to the problem of designing filters to isolatg =k, anda, = 0forh= K + 1, where the weights, are
specific frequencies in the data. Our method is to Ugfyse given in equation (7) above.
frequency-domain logic to design a moving average that
emphasizes specified frequency bands, but we also reqgre construction of High-Pass and Band-Pass Filters
that our business-cycle filter have the trend-elimination
properties discussed in this section, so that it can beHigh-pass and band-pass filters are easily constructed
meaningfully applied to economic time series which aféom low-pass filters. Before precisely defining these addi-
nonstationary. We thus require that our business-cycle filtégnal filters, we establish some notation that we use
has a frequency response function wii{®) = 0. throughout the rest of the paper. It is more natural for us to work

empirically using terms of periodicity of cycles than frequencies
(periodicity is related to frequency vig= 2w/w). Thus, we let
B. The Low-Pass Filter LPx(p) denote the approximate low-pass filter that is truncated at

lag K and that passes components of the data with periodicity

i A basu; building leCk in filter de5|gn is the low-pass reater than or equal o Since the ideal filter involvels = oo,
filter—a filter that retains only slow-moving components . o
the ideal low-pass filter is denote®..(p).

the data. An iQeaI symmetric low-pass filter, which PassesT iieal high-pass filtariP..(p) passes components of
only frequencies v = o = o, has a frequency-responseihe data with periodicity less than or equal po= 32

function given byB(w) = 1 for |o| < w, andp(w) = 0 for n(iIIustrated by the dashed line in figure 4A low-pass filter

lo| > w. The frequency-domain implication of symmetry i . . -
= . 4 removes high-frequency cycles while retaining low ones, the
the weights is tha(w) = B(—w).
Letb(L) = X;___biL" denote the time-domain represen- «p, his figure, as in others below, the horizontal axis is labeled “cycles
tation of this ideal low-pass filter. The filter weighigmay per period” and runs from 0 to 1/2. More traditionally, figures like these
be found by the inverse Fourier transform of the frequenéy} from 0 to, but we use our normalization since it makes it easy to
. Calculate the periodicity by taking the reciprocal of the value on the axis.
response function For example, the “cutoff frequency” for the high-pass filter corresponds to
a period ofp = 32 time units (presumed to be quarters of a year in view of
1 rx ) empirical work below), and, hence, = 1/32 = 0.03. However, for the
b,=— f B(m)e"”h do. (6) analytical results below, we use the conventional definition that the
2 Jom frequencyw has as its domain the intervatr < o < 7.
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FIGURE 1.—CONSTRAINEDAPPROXIMATE BAND-PASS FILTERS
A. Truncated Filter K=4 B. Truncated Filter K=8
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high-pass filter does the reverse task, and the original time setiest passes cycles betweprand g periods in length, for
is just the sum of its low-frequency and high-frequency compgiven truncation poink, wherep denotes the shortest cycle
nents. Thus, the high-pass filter weights are iy ath = 0 and length passed by the band-pass filter génote the longest
—b,ath = =1, 2, ... .Correspondingly, the optimalpproxi- cycle length (in figure 2p = 6 andq = 32). We construct
mate high-pass filterHPy(p), is simply constructed by BPx(p, q) by truncating the ideal band-pass filter.
truncating the weights dfiP..(p) = 1 — LPx(p).>

The ideal band-pass filter passes only frequencies in tBe Constraints on Specific Points
rangeso = |w| = . It is therefore constructed from two L .
low-pass filters with cutoff frequenciesande: We denote | 1€ Minimization problem described above may be
the frequency responses of these filter$és) and (). reformulated to recognize that certain points are of particular

Then, t t the desired band- f Cgjacern to the researcher. This approach to filter design has
forre;]n thg %an-%asesgfriﬁer’sa?reqpuaesr?c; eg:ggggggogse been advanced by Craddock (1957) in the statistics literature and

B(w) since this will give unit frequency response on th iscussed in the context of designing filters to eliminate trend by
frequency bands = |w| = ® and zero elsewhere. It is then ranger and Hatanaka (1964, section 8.4), but does not appear to

easy to derive the filter weights for a band-pass filter. If wave been much followed up on in applied work in economics.
let b, andb, be the filter weights for the low-pass filters with_ AS @n example of our approach, suppose that we want to
cutoffs andw, then the band-pass filter has weights— J€Sign a low-pass filter that places unit weight at the zero
by The dashed line in figure 2 plots an ideal band-pass filflsfduency éx(w) =1 at o = 0). This is equivalent to

that passes through cycles of length between 6 and "§8IUirng that the filter weights sum to unity (since

— — vK 0 — vK -
quarters, which corresponds to the Burns-Mitchell definitioh— @<(0) = i _ae&® = Z__aq). If we construct ap
of business-cycle frequencies. proximating low-pass filters in this way, then the correspond-

We use a similar notation for the approximate band-pa high-pass and band-pass filters will place zero weight at
filters to that developed above for the high- and low-pad%® 2ero frequency, and, as we have seen above, this will

filters: BPx(p, q) denotes our approximate band-pass filtdpean that they give rise to stationary time series when
applied to a range of nonstationary time sefies.

5 This is implied by the result discussed in section Il, B, that approxima-
tion of the ideal low-pass filter simply involves truncation of the ideal 6 Equivalently, one can consider the problem of approximating a desired
filter's weights at lagk. band-pass or high-pass filter subject to the constraint that the weights sum
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FIGURE 2.—CONSTRAINEDAPPROXIMATE HIGH-PASS FILTERS
A. Truncated Filter K=4 B. Truncated Filter K=8
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The constraint that(0) = 1 may be incorporated as aoptimal band-pass filter are
side condition to the minimization problem discussed above.
Using the results of appendix B, we find the following (b, — by) + e 9), (10)
modification of the optimal approximate filter weighas, as
functions of the weights of the ideal low-pass filtay, where 8 is the adjustment coefficient associated with the
upper-cutoff filter and is the adjustment coefficient associ-
a, = by + 6, (9) ated with the lower-cutoff filter. (See appendix B for
additional discussion of this point.) That is, the constrained
whered is a constant that depends on the specified maxim@ptimal Kth-order band-pass filter is simply the difference
lag length K. That is, since we require that the filter weightpetween two constrained optiméth-order low-pass filters.
sumto one, ¥f_ «a, = 1), the normalizing constantés= Throughout the remainder of the paper, we consider only
(1 — 3 _¢bp)/(2K + 1). Thus, the constraint that the low-band-pass filters with this zero-frequency constraint im-
pass filter places unit weight at the zero frequency resultsgbsed. We use the notation defined abdBBy(p, q), to
arelatively simple adjustment of the filter weights. denote our approximation to the ideal band-pass filter that
Similar adjustments are necessary when constructipgsses cycles between p and q periods.
optimal truncated high-pass and band-pass filters subject to
constraints on the frequency-zero value of the frequency-
response function. As discussed above, the unconstraifred The Effects of Truncation
band-pass filter has weights that are the difference betwee

. . . = Z Hhis section explores the effect of changes in the maxi-
two low-pass filters; i.e., the weights dvg— b, whereby, is P 9

the filter weight at lag/leat for the upper-cutoff filter ant, mum lag lengthK, on the shape of the constrained low-pass

i th iaht for the | & il Th ! Cznd high-pass filters. If we choose an approximating moving
IS the weight for the lower-cutoff filter. The constraine verage with maximum lag lengky implementing the filter
band-pass filter involves the requirement that the sum of

. : . . Means that we losek2observations (i.e.K leads andK
weights must be zero. Hence, the weights in the constraing s). There is no “best” value df: increasing leads to a

ritgtter approximation to the ideal filter, but results in more

to zero (that the frequency response is zero at the zero frequengy). . .
Accordingly, in appendix B, we study constrained approximation proble st observations. Thus, the researcher will have to balance

with the generic constrairi = ak(0). these opposing factors: The best choic&adh a particular
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instance will depend on the length of the data period and tfikers means that they do not exactly display the “no phase

importance attached to obtaining an accurate approximatimft” requirement that we impose on the ideal filter, but we

to the ideal filter. The next section will explore this trade-offegard these departures as mihidhe deviations from the

in the context of postwar U.S. macroeconomic time seriesxact filter are attenuated with increasexinso that these

In this section, however, we are simply concerned witdgain appear small b = 12. However, it is an empirical

describing the effect of variations iR on the shape of the question whether improvement in approximating the ideal

approximating filters. filter (by use of larger values oK) leads to important
Figure 1 illustrates the effect of truncation on the shape ofianges in a filtered time series or moments computed from

the high-pass filter that has been constrained to have uhitn section Ill below, we explore the effects of changeKin

weight at the zero frequency. The ideal filter is illustrated byn the behavior of filtered macroeconomic time series.

the dashed line in each panel; it passes frequentitsat

correspond to cycles of length less than or equal to & Why Filter in the Time Domain?

quarters, assuming that the underlying data is measure% h band filtering is th
quarterly. This figure shows that there are important effects©"€ congmon_ apprﬁag tod ban -palss |te|r|n999|s t ed
on the shape of the approximate high-pass filter of chandEeduency-domain method used by Hassler et al. (1994) an
in K. WhenK = 4 (so that the moving average covers onl ush et al. (1997). This method works as follows. First, one
the preceding and subsequent four quarters), there isam S a dlsErete Fou_ner transform of the' econqn;:c ](cj'a'ta,
departure from the ideal filter. In particular, the approximaf‘(@mpu“ngft“r(]e periodic ?ompone_nts associated with a finite
filter admits substantial components from the range 8 erer o “harmonic frequencies. Second, one ~zeros
out” the frequencies that lie outside of the band of interest.

frequencies just below the cutoff frequen /16 or . . .
N 1 _ ) quenay £ 'ghlrd, one computes the inverse Fourier transform to get the

w/sm = 3; = 0.03 cycles per period). This phenomenon i Co L - !
conventionally calledeakage:This term captures the notiontime-domain _flltergd ser_le_é,yl. .- Yil. We see two major
that the filter has passed through frequencies that the filtls V\{backs with _th|s epr|C|_tIy frequency_—dome}m procedure,
was designed to suppress, including them with those fgative to our time-domain method. First, since there are
filter was designed to retain. The approximating filter hd&€ly “stochastic trends” in most economic time series,
less than unit frequency response on the range just above Hang from un!t roo'g compon'ents, It s necessary to first
cutoff frequency, which we can similarly define @mpres- etrend the series prior to takmg th(_e Fourier transform: In
sion. Finally, when the index of cycles per period |ie§rder to acc_ompllsh bandjpass filtering, one must therefore
roughly between 0.14 and 0.22, then there is a frequerlBKe @ choice of detrending method. Working with annual
response of more than one-for-one, which we can define9g4a. Hassler et al. use the Hodrick-Prescott filter with
exacerbationAs the value oK increases, the truncated filterl0_fOr this initial detrending step. Working with quarterly
more closely approximates the true filter. WKh= 8, the Qata, RL.’S‘.h. etal. argue for a much larger vabuef(lo,_OOO)_
problems of leakage, compression, and exacerbation h%?/et_he initial detrending step so as to avoid distorting
been substantially reduced relative to tke= 4 case. usiness-cycle outcomes. Second, the results of the fre-

Further reductions in these departures from the exact filf$fency-domain method at all dates are dependent on the
are obtained wittK = 16 andK = 32. These oscillatory sample lengthT. Consider, for example, the “business

departures of the approximating filter from the exact filtYCle” outcome § obtained from a study of quarterly
arise even when we do not impose the constraintdt@t= €conomic data in a study of lengih, e.g., the observation

0 and have been extensively studied in this context. They & cycIi%aI o%tput in |19|70:2,ho_btained du%inghdaéa through
typically referred to as the Gibbs phenomenon, after tHgo>- When the sample length is extendetiahe discrete

researcher who initially stressed their importafce. Fourier transform ofys, y,, . . . yr| must be recomputed and

Figure 2 displays the frequency-response function sgach of its elements will change. Consequently, so too will
approximate band-pass filters. As with the approxima?é“:h of the elements of the inverse Fourier transform of the

high-pass f”ter_s’ there is substantial leakage, COMPressIOiyy, reasoning is as follows. The frequency-response funct{a) is
and exacerbation for smallest valueskaf The frequency an imaginary number at each frequency, which can be written in polar form
responses oscillate around zero above the higher-cutsi(«w)e ), whereg(w) = |a(w)|is the gain andh(w) is the phase shift.

Our approximate filter’s frequency-response function is always real-valued
frequency. The fact that there are some small negatlg ce it is symmetric. But, to represent a negative value of the frequency

weights in the frequency response in these approximaé€ponse, since gain is positive, the implied phase shift musthavhich
makese—i) = —1, (This phase shift is similar to that which arises when

7A formal analysis of the Gibbs phenomenon as it derives fro’;zglae considers the seriesy,: In order to represent it in terms of the

truncation for the unconstrained filter proceeds as follows. (See,

Ieegrgp{lj‘er;ngogrr;san\i é&gé‘lég hé ?l)lt)erF i:;itt,hthFe OHHQrC at\:ia(\)r?sfp rocedui’e Areasons. First, the negative values of the frequency response are numeri-
K ik _g ' . ; arte) = cally small. Second, it appears to be an artifact of the mathematical
- €7 = sin (K + L)w/2)/sin (/2). ‘Second, frequency-response;qnyention that gain is defined positive, rather than actually reflecting a
function of the truncated filter 8 (0) = | B()(w — W) du, using the  translation of the series through time. If gain had alternatively been defined
fact that the Fourier transform of a product is the convolution of the Fourigy admit negative values, then there would be no phase shift implied by a
transforms. Thus, the Gibbs phenomon arises as a consequence ofn#gative frequency response. (If this alternative definition had been
oscillatory nature of the truncation “window(i (w). employed, then there would also be no phase shiftyfrelative toy;.)

ndard definitions of gain and phase, it must be viewed as having a gain
1 and a phase shift of ). We view these departures as small for two
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filtered series, i.e., the cyclical observatiofig, ... ¥r/. TaBLE 1.—EFFECT OFK ON MOMENTS OF ANAR(1) PROCESS
Thus, the outcome for cyclical output in 1970:2 will Autocovariance at Lag:
necessarily be different when data is added from 1986 to 0 1 > 2 8
1994. This time variation violates the fifth requirement that . 023 Py 010 .00 .00
we d|sc.ussed in section | above—a requirement that we 3 143 089  —-005 _0.64 0.00
share with Prescott (1986). 4 4.07 3.11 1.00 -201 0.01
6 8.45 7.23 409 -2.66 -1.69
: : 8 9.14 7.91 475  -2.30 -2.32
[ll.  Measuring Business Cycles 12 13.08 11.78 8.43 079 _a41
. . Ll - 16 12.58 11.28 7.91 0.33 —3.59
This section t_axplorgs several emplrlcal issues ralsgd by 5 1210 10.77 737 030 a2
the foregoing discussion of approximate band-pass filters. 24 12.19 10.86 7.44  -0.28 —4.60
As discussed earlier, an ideal business-cycle filter is defined i; ig-gé ﬁ% g-gg g-gg *i-ig
to be theBP..(6, 32) filter, and its optimal approximation is 60 13.00 1164 815 026 —468
the BP«(6, 32) filter for 0< K < o, First, we describe the 90 13.10 11.74 8.23 031 —4.73
effect of changes in the truncation poikt on moments exé}ﬁ: lég-gé ;52-33 gg-gg 82-22 _4'&?34
computed from a specified data-generating process. Secand? ™" : : : : ;
we explore the effect of variation ilK on moments
computed from several macroeconomic time series.
A. Effect of Variation irk on an AR(1) Process lem becomes smaller. Interestingly, the variance computed

om the approximate filter does not converge monotonically
the true variance d§rises. However, the departures from
true value are small for large values Kf A similar

A useful way to explore the approximation error induce
by application of the approximate band-pass filter is

compute moments for a known stochastic process using both

ideal and approximate versions of our business-cycle filtgﬁ,CKurzﬁg::lrlgei;%;iheegs?oego%lgﬁgﬁgggirrfaensérsmilb\slillﬂfes
BP«(6, 32). We examine the effect of variation it on the 9 y P ’

autocovariances of the followirfiggst-order autoregression: value, thar_l tho'se produ_ced by the ideal filter. Throughout,
the approximation error is small fé¢ = 12.
Xt = 0'95(t—1 + €t
B. Empirical Effects of Variation i

with o, set so that the variance &fis 100 as a convenient ) .
normalization (i.e.o. = 100* (1 — 0.9%)). Table 1 gives This subsection explores the effect of the length of the

the autocovariances of for the ideal business-cycle filterMOViNg average on summary statistics for several postwar
and for several approximations to this filter (i.e., severkl-S: time series. To provide some information about how
values ofK).9 The first point to be made is that the band-pa&¥'€’s view of the macroeconomic “facts” might depend on
filter (exact or approximate) substantially lowers the varfs: We have computed a set of summary statistics for several
ance of the series (the autocovariance at lag 0), from a bike: POStwar quarterly macroeconomic time series using a
of 100 to at most about 13.5. Looking next at how thEAnge of values foK. Table 2 presents statistics on standard
variance of filterec varies with the details of the approxi_deviations, serial correlation coefficients, and contemporane-
mation, we see that, whei is small (so that the moving OUS correlations with GNP fdt = {4, 8, 12, 16, 20 Through-
average covers only a few observations), the approxim&dt the table, moments are computed for the time period
filter produces a filtered series whose variance is mugfisociated with the shortest filtered time series (i.e., the
smaller than the true or “exact” variance of 13.5. Th& = 20 filter), so differences in moments are not due to
approximation error for the filtered series’ variance becom@iferences in the sample period. Summary statistics are also
quite small oncé&K = 12. These findings can be understooerese_med _for three ot_her filters: a centereq moving average,
by recalling that th& = 4 approximation to the ideal filter the flrst—dlfference_ fllter,. and the Hodrlck-Pr_escot_t fil-
involved both leakage and compression near the cutigf—but we defer discussion of these results until section IV.
frequency. (See figure 2.) For variables possessing GranglaPle 2-A shows that one commonly used measure of
er's (1966) typical spectral shape, such as this highyylatlllty—the standard deviation—is sensitive to the choice
persistent AR(1) process, the effect of the compression is3b K- Specifically, the measured volatility of every time
filter out large components of frequencies for which there §$"1€s studied is about half as large for the lowest value of K
substantial power in the original time series. Wsises and (K = 4) compared with the value generated by the largest

the accuracy of the approximate filter improves, this pro¥alué of K K = 32). This table shows that there is little
effect of increases ik on the standard deviations of the
filtered time series foK = 12. These results are consistent

9 These autocovariances were not generated from Monte Carlo engﬁth the results obtained above for the AR(1): Small values
ments. They are population moments and were computed by applying t

approximate band-pass filter’s transfer functiap(w)|2, to the spectral density ofK _V'elded low variances, while a good approximation was
of the first-order autoregression and themerically integrating the result. - obtained folK = 12.
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TABLE 2.—EFFECT OF FILTERING ON MOMENTS. QUARTERLY DATA, 1947:1-1997:2
A. SrANDARD DEVIATIONS

K: Truncation Point for Band-Pass Filter

Moving Hodrick- First
Variable 4 8 12 16 20 Average Prescott Difference

GNP 0.95 1.49 1.75 1.71 1.71 2.07 1.82 1.08
Cons: durables 2.61 4.09 4.97 4.85 4.83 6.12 5.47 3.81
Cons: nondurables 0.60 0.99 1.15 1.13 1.09 1.37 1.23 0.76
Cons: durables 0.33 0.50 0.65 0.63 0.60 0.81 0.71 0.49
Investment 2.40 4.04 5.14 4.99 5.08 6.18 5.42 2.68
Hours per person 0.24 0.37 0.39 0.39 0.38 0.45 0.41 0.28
Employment 0.67 1.15 1.43 1.40 1.38 1.69 1.47 0.68
Exports 2.42 4.05 4.97 4.90 4.94 6.31 5.54 4.43
Imports 2.50 3.91 4.60 4.48 4.42 5.71 5.22 4.05
Net exports* 6.17 11.11 16.94 16.09 14.60 21.52 18.96 10.03
Gov't purchases 1.00 2.00 3.19 3.04 2.86 4.01 3.27 1.25
GNP deflator 0.29 0.59 0.95 0.90 0.80 1.20 0.91 0.64
Inflation* 0.58 0.82 1.01 0.99 1.01 1.45 1.32 1.50

Notes: Application of these filters involves loss of data points at both ends of the sample. For consistency, the moments reported are for tsarnpheagiP:+1992:2
(the longest period available for theK 20 bank-pass filter). The sample period for the hours variable is 194896:3. Except for starred variables, natural logs were taken
before filtering. See the Data Appendix for a description of data sources.

B. FRSFORDERAUTOCORRELATION

K: TRUNCATION POINT FOR BAND-PASS FILTER

MovING HobRICK- FIrRsT
VARIABLE 4 8 12 16 20 AVERAGE PRESCOTT DIFFERENCE
GNP 0.80 0.87 0.91 0.90 0.90 0.87 0.84 0.35
CONS. DURABLES 0.79 0.87 0.92 0.91 0.91 0.81 0.77 —-0.02
CONS. NONDURABLES 0.82 0.88 0.92 0.91 0.91 0.86 0.83 0.27
CONS. DURABLES 0.78 0.87 0.92 0.91 0.90 0.84 0.81 0.24
INVESTMENT 0.83 0.89 0.93 0.93 0.92 0.91 0.89 0.44
HOURS PER PERSON 0.80 0.86 0.88 0.88 0.88 0.81 0.78 0.26
EMPLOYMENT 0.84 0.89 0.93 0.92 0.92 0.92 0.91 0.70
EXPORTS 0.79 0.89 0.92 0.91 0.91 0.75 0.69 -0.19
IMPORTS 0.78 0.87 0.91 0.90 0.90 0.76 0.72 -0.09
NET EXPORTS 0.83 0.92 0.96 0.95 0.94 0.91 0.89 0.22
GOV’ T PURCHASES 0.84 0.95 0.97 0.97 0.96 0.95 0.94 0.33
GNPDEFLATOR 0.89 0.94 0.96 0.96 0.95 0.95 0.94 0.84
INFLATION* 0.64 0.87 0.89 0.89 0.89 0.49 0.40 -0.37

C. CONTEMPORANEOUSCORRELATION WITHGNP

K: TRUNCATION POINT FOR BAND-PASS FILTER

MovING HobRICK- FIrRsT
VARIABLE 4 8 12 16 20 AVERAGE PRescOTT  DIFFERENCE

GNP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CONS. DURABLES 0.85 0.83 0.78 0.79 0.78 0.74 0.75 0.65
CONS. NONDURABLES 0.73 0.81 0.82 0.82 0.83 0.79 0.78 0.50
CONS. DURABLES 0.53 0.70 0.76 0.76 0.77 0.75 0.72 0.37
INVESTMENT 0.90 0.90 0.87 0.87 0.89 0.85 0.85 0.74
HOURS PER PERSON 0.85 0.85 0.83 0.83 0.84 0.80 0.80 0.69
EMPLOYMENT 0.81 0.81 0.83 0.83 0.82 0.83 0.82 0.72
EXPORTS 0.26 0.24 0.28 0.29 0.32 0.29 0.27 0.20
IMPORTS 0.74 0.80 0.77 0.77 0.79 0.72 0.71 0.35
NET EXPORTS —0.44 —0.45 —-0.41 —-0.41 —-0.45 -0.38 -0.39 —-0.18

GOV’ T PURCHASES 0.20 0.12 0.18 0.17 0.11 0.19 0.17 0.24
GNPDEFLATOR -0.39 —0.46 -0.49 —-0.49 —-0.51 -0.49 —0.55 —-0.26

INFLATION* —0.06 0.05 0.14 0.12 0.18 0.09 0.05 -0.17

Table 2-B presents serial correlation coefficients. As withn the filtered time series. Since the most-persistent compo-
the standard deviations, the serial correlations of the filterednts of economic time series occur at the lower frequencies,
time series depend oK. In particular, this measure ofthe effect of compression in particular is to reduce the
persistence is uniformly lower for the smallest valuekof measured persistence of the filtered time series. As with
compared with the largest. The reason, once again, canstendard deviations, the problem is most severefer 4,
traced to the effects of leakage and compression for ¢tnaland there is little change fé¢ = 12.
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Table 2-C presents results for the contemporaneotmrespondence with the band-pass filter is quite close, with the
correlation of various aggregates with GNP, which is omaoving average filter being somewhat more volatile.
commonly used measure of the comovement of a variable
with the business cycle. This table shows that there isDa Inspecting the Results for Inflation
tendency for a variable’s correlation with GNP to increase as P g
K increases, although this is not uniformly true. As before, In figure 4, we present the results of applying the same
there is a tendency for the estimated moments not to charige filters to the inflation rate. As before, the dark line in
much forK = 12. Overall, our results suggest that summamyach panel is thBPx (6, 32) business-cycle filter.
statistics computed from the key macroeconomic time series

are largely invariant to further improvements in the approxi- The First-Difference Filter: Panel A of figure 4 shows

mate business-cycle filter beyokd= 12. the quarterly growth rate of inflation versus the band-pass filter.
As before, the first-difference filter produces a highly volatile
C. Inspecting the Results for GNP time series that bears little resemblance to the band-pass filter.

Figure 3 displays the results of applying five filters to the The Hodrick-Prescott Filter: Panel B of figure 4 plots

natural logarithm of gross national prodd%ﬂ'hroughout Hodrick-Prescott filtered real GNP. In contrast to the results
th'e four graphs, we use the baf‘d'pa.ss busmess'-cycle' f'B rGNP, there is a notable difference between the Hodrick-
with K = 12 as our reference point. Itis the dark line Wh'c.rll’rescott filter and the band-pass filter. The reason is that

is present in all of the graphs. The common sample peri lati Lo .
; . K ation contains important high-frequency components that
for these graphs is 1947.1-1997.1, but, since w €2, re passed by the Hodrick-Prescott filter, but that are

we lose three years of dat_a at each end of the plots for foved by the band-pass filter. GNP, by contrast, does not
band-pass and high-pass filters. have important variation at high frequencies.

The First-Difference Filter: Panel A of figure 3 shows : : i
the quarterly growth rate of real GNP versus the band-pacﬁ The High-Pass Filter (HIX(32)):
filter. The first-difference filter's heavy weight on high-P
frequency components of the data lead to the very jaggﬁ
appearance of the filtered time series. There is little correspQ
dence between the time series produced by the firs
difference and the band-pass filters.

Panel C of figure 4
gplays results for thélP;,(32) filter. Like the Hodrick-
rescott filter, this filter passes the high-frequency compo-
nts of inflation, leading to a more volatile filtered time
?'ries compared with that produced by the band-pass filter.

The Deviation from Five-Year Moving Average Filter:
. . ! Finally, Panel D of figure 4 displays deviations from a
HOETEES?(;ECI;Er(feils{g?;':r'gglr: c:ggel'rﬁe?; ﬂigu;evirsloctlz movinyg average. As wﬁh the Hodrri)ck)fErescott filter and the
" ery clogg h-pass filter, the correspondence with the band-pass filter
correspondence between the cycle§ isolated by this filter 30t o aker when we consider inflation compared with GNP,
those gen'erated by .the.band-pass filter, although the HOd”éﬁce again, the reason is that high-frequency variation is
Prescott filtered series is somewhat less smooth. much more important as a source of overall variation in

The High-Pass Filter (HR(32)): Panel C of figure 3 inflation, compared with GNP.

displays a high-pass filter constructed using our procedures

that isolates periodic components of 32 quarters (eight IV.  Comparison with Other Filters
years). We have chosen the salfhealue for this filter as for
the reference band-pass filter, so that the panel sim%l

lllustrates the effect of the smoothing of high-frequency, o ate each filter in terms of its ability to achieve the

components introduced by. our band-'pass f|_|ter. For GNP, (ﬁowing characteristics that we have argued are necessary
panel ma"?S clear that this smoothing _O_f irregular compgy; o “good” business-cycle filter: ability to remove unit

nents has little effect on the overall volatility. roots, absence of phase shift, and ability to isolate business-
cycle frequencies without reweighting the passed frequen-

_The Deviation f“’”? Flve—Yea_lr Moving Ave_rage FIIter'Cies. Further, since model evaluation involves comparison of
Finally, Panel D of figure 3 displays deviations from

. ' .. _odel moments with moments computed from the data, it is
centered equally weighted moving average, which is

detrending method long used by business-cycle researchO%SIrable that a business-cycle filter be easily (and consis-

As with the Hodrick-Prescott filter and the high-pass filter, th%rﬁtly) applied both to the data and to economic models.

This section compares the properties of our proposed
Msiness—cycle filter with other commonly used filtErgve

10\We used excerpts from the database provided with Stock and Watson'$ Our comparison is motivated, in part, by the fact that previous studies
(1999) extensive cataloging of U.S. business-cycle facts. Exact definitidresre shown that business-cycle statistics are quite sensitive to the
of variables are contained in replication materials available from thletrending procedure. (See, for example, Baxter (1991) and Kydland and
authors. Prescott (1990).)
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FIGURE 3.—THE EFFECTS OFALTERNATIVE FILTERS ONGDP

A First Difference vs. Band-pass(6,32) for K=12
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D. Deviation from Moving Average vs. Band-pass(6,32) for K=12
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A. Removal of Linear Trends this procedure. Primarily for this reason, this approach to

i i detrending has fallen out of favor in empirical macroeco-

_Although the removal of linear (or log-linear) trendg,omic investigations. Although this procedure does not

historically was a standard method for separating trenglgj,ce phase shift (nor does it reweight frequencies), the

from cycles, a large and growing body of evidence suggeg§iure to remove unit root components from the data means

that many macroeconomic time series contain unit rogfat linear detrending is undesirable for most macroeco-
(stochastic trend) components that would not be removed thgmic time series.
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FIGURE 4.—THE EFFECTS OFALTERNATIVE FILTERS ON INFLATION
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B. The First-Difference Filter

The first-difference filter extracts the cyclic compongnt
from a time seriey, as follows:yf = (1 — L)y Itis evident

585

because this filter is not symmetric, it alters timing relation-
ships between variables (i.e., there is substantial phase shift
for this filter). Second, this filter involves a dramatic

that this filter removes unit root components from the dategweighting of frequencies. Figure 5 panel A plots the gain
for this reason, use of the first-difference filter has bedunction for this filter; the first-difference filter reweights

popular in recent years. However, there are several problestongly toward the higher frequencies, while down-
with this filter with respect to the criteria listed above. Firstyeighting lower frequencies. If the goal of a business-cycle
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FiIGURE 5.—GaIN oF VARIOUS FILTERS RELATIVE TO HIGH-PASS FILTER (CUTOFF AT 32 QUARTERS)
A. First Difference B. Hodrick-Prescott (lambda=1600)
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filter is to isolate fluctuations in the data that occur betweditter is symmetric so there is no phase shift. Expanding
specific periodicities, without special emphasis on any particukguation (11) gives the following time-domain representa-
frequency, the first-difference filter is a poor choice. tion of the growth component extracted by the Hodrick-

Prescott filter. (See appendix A to King and Rebelo (1989)
C. The Hodrick-Prescott Filter for the derivation.):

Use of the business-cycle filter proposed by Hodrick and
Prescott (1980) has grown dramatically in recent years, g4 :@
especially in investigations involving the quantitative- y h W
equilibrium approach to constructing aggregative models. (12)
The properties of this filter were previously studied by King °
and Rebelo (1993), and the following discussion borrows + D) (A + ADL)Ys
heavily from their analysis. j=0

The infinite-sample version of the Hodrick-Prescott filter _
defines the cyclic component of a time sexgas follows: ~ WhereA; andA; depend orb; ande,; the coefficientA,6{ +

A03 is a real number for eaghandA; andA; are complex
ML — L)2(1 — L) conjugates?
yi = 5 —o M (12) As noted by King and Rebelo, the Fourier transform of the
I+M1-L)@2-L7) cyclical component of the Hodrick-Prescott filter has a

]

2 (A0 + ADDy:;

where\ is a parameter that penalizes variation in the growth

component. (For quarterly data, Ho_d”Ck and Prescott reCom: gqation (12) makes it clear that the Hodrick-Prescott filter is a

mend a value ok = 1600.) From this equation, we see thatvo-sided moving average, as are several of the filters we consider. This

the Hodrick-Prescott filter removes unit root Componenpguation also shows that the moving average is of infinite order, so that in
L . empirical applications some approximation to this filter is required. We

from the data. (In fact, it will remove nonstationary comp

\ Ogiscuss the issue of approximation of the Hodrick-Prescott filter in section
nents that are integrated of order four or less.) Further, ti@elow; the discussion here focuses on the exact Hodrick-Prescott filter.
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particularly simple form: for this filter for several values of K. As with the moving-
average filter, this filter yields a good approximation to an
~ AN(1 — cos ))? ideal high-pass filter for sufficiently large values Kf(i.e.,
(13) K=12).

YTy 4A\(1 — cos @))?

Thus, the cyclical component of the Hodrick-Prescoft Moment Implications
filter places zero weight on the zero frequen@(Q) = 0), o o
and close to unit weight on high frequencies Table 2 shows how application of these alternative filters

(E;(w) = 16\/(1 + 16))). Figure 5-B plots the frequency-aff?CtS moments computed from several postwar U.S._ time
response function of the Hodrick-Prescott filter for= Series. We focus on three sets of moments of particular
1600. Visually, this filter looks remarkably like an approxiinterest to business-cycle analysis: volatility, persistence,
mate high-pass filter with cutoff frequeney= w/16 or 32 and correlation with output.

cycles per period.

In terms of the objectives that we specified for our filter Volatility. Table 2-A presents volatility statistics. As
design problem, the Hodrick-Prescott cyclical filter hadiscussed earlier, the band-pass filter vith= 12 yields a
several desirable features. First, no phase shift is introducé@y good approximation to the ideal band-pass filter. For
Second, it has trend-elimination properties: It places zeltys reason, we regard the statistics computed withkthe
weight at the zero frequency or, equivalently, contairg) band-pass filter as the best measure of business-cycle
multiple differencing operations. Third, with = 1600, it volatility, and then compare the other filters to this bench-
approximates the high-pass filteiP..(32) reasonably well mark. Except for inflation (which we discuss separately
since its gain rises sharply from near zero to near unit in tR€low), a clear pattern emerges. The Hodrick-Prescott filter
vicinity of the cutoff frequency» = w/16. However, since Produces volatility statistics that exceed those of the ideal
the Hodrick-Prescott filter of equation (4.2) is an infinit®and-pass filter, although in many cases not by a large
order moving average, some modification is necessaryamount. The moving-average filter produces volatility statis-
order to apply it to data. We return to discussion of this topli€s that are larger still, although again the changes are not

in section V below. dramatic. The first-difference filter, by contrast, produces
volatility statistics that are smaller (in many cases, much
D. Moving Averages smaller) than those produced by the band-pass filter. Having

studied the gain functions of these filters, these results are
Another widely used method of detrending economigasy to understand. The Hodrick-Prescott and moving-
time series is to define the growth or trend component asgerage filters are rough approximations to a high-pass filter,
two-sided or centered moving average, with the cyclighich means that they retain some high-frequency volatility
component defined in the usual way as the deviation ofitgat is removed by the band-pass filter. These macroeco-
particular observation from the trend line. That is, thgomic time series do not have a great deal of power at high
growth or trend component is formed as frequencies, so including these components leads to only
small increases in the volatility of the filtered time series.
1 K The first-difference filter produces smaller measures of
yP = 2K + LE Yi-j- (14) volatility because it removes more of the low-frequency
==K components of the time series than the band-pass filter,
: . _ while reweighting the frequencies to emphasize the higher
Thus, the cyclic component gfis generated ag = a(L)y, frequencies. For all the variables studied except inflation,

withao = 1 — 1/K + 1, anda = a; = 1/K + 1 forj = 1, most of the power is at the lower frequencies
2,.... K. Thisfilter places zero weight at the zero frequency The pattern described above is reversed for inflation:

sinceXa, = 0, and is symmetric. Figure 5-C plots the gain

for the centered moving-average filter for several Valué—#ere, the first-difference filter produces the highest measure
of K 13 of cyclic volatility. As discussed in section IIl.D. above,

inflation contains sizable high-frequency components—
components that are emphasized by the first-difference filter.
This also explains why the moving-average and Hodrick-
We have defined a high-pass business-cycle fiteg,(32), Prescott filters produce significantly higher volatility mea-
as afilter that passes components of the data with periodicityres compared with the band-pass filter: The band-pass
less than or equal to 32 quarters. Figure 5-D plots the gdilter removes the high-frequency components, while these
alternative filters do not.

E. AHigh-Pass Filter

13The general shape of this filter is very similar to that of the . P -
approximate high-pass filter, plotted in figure 5-D, although the “side Persistence. Table 2-B presents statistics on the first-

lobes” are more exaggerated for the moving-average filter. order autocorrelation of filtered macroeconomic time series.
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As before, we take the band-pass filter (o= 12) as our This result is suggested by comparison of paf@=tdD of
benchmark. Compared with this benchmark, each of tfigure 5, discussed in section 1ll.B, above: The two series
other filters produces a lower measure of persistendeok very much like each other. In fact, the correlation of the
Excepting, once again, the inflation series, the differencedrick-Prescott cyclical component and th#P;,(32)

are relatively small for the moving-average and Hodricleyclical component is 0.994 over the common sample
Prescott filters. However, the first-difference filter producezeriod.

dramatically smaller measures of persistence compared with

the other filters. Once again, this is due to the fact that tBe The Hodrick-Prescott Filter in Finite Samples

first-difference filter removes more of the highly persistent, . . .
low-frequency components, and emphasizes the much—lesé\-ﬂany individuals currently use the Hodrick-Prescott filter
: ith A\ = 1600 for defining cyclical components of quarterly

persistent, high-frequency components. As before, the inf4: T ) : ionale for this. ai b
tion series behaves differently than the other time seri@ONOMIC time series. One main rationale for this, given by

because of its important high-frequency components. (WiieScott (1986), is that the filter is approximately a band-
iRass filter that passes cyclical components of periodicity

eater than eight years (32 quarters).

To apply the Hodrick-Prescott cyclical filter to data, one
strategy would be to truncate its weights at some fixeKlag
which would be analogous to our approximation of the ideal

statistics on the correlation between various macro variabfggd-pass filter. However, in actual practice, an alternative
and GNP. Once again, we find that the moving-average ai@cedure is typically used. This procedure has the appar-
Hodrick-Prescott filters produce statistics that are roughntY attraﬁtlve_z fe}ature that there |fs no loss of datr; from

similar to those computed using the band-pass filter. THEEMNG. That is, for a ime serieg for t = 1, ... T, the

first-difference filter produces correlations that are, in maryPdrick-Prescott procedure produces estimates of the cycli-

— 14
cases, significantly smaller (in absolute value). Overafi¢! component;fort=1,...T.
0 understand this outcome, it is useful to return to the

researchers using the band-pass filter, the moving-average: | derivati t th drick fil h
filter, or the Hodrick-Prescott filter on quarterly postwaf''9inal derivation of the Hodrick-Prescott filter as the

U.S. time series are likely to obtain a similar impression gelution to a specific econometric problem, which is essen-

the nature of business cycles. However, use of the firdally to fin_d the Op“mf’i' estimates of tren_d_ and cycle
difference filter will yield a markedly different view of the COrresponding to a particular known probability model. If

central business cycle “facts.” we lety; denote the trend component and continue tog/let

In general, the first-difference procedure produces filterd§n0te the cyclical component, this probability model is that
time series with lower volatility than those generated by ¢eend and cygle are driven by |_ndepenc_ient white noisgs (
band-pass filters or the Hodrick-Prescott filter. This is @€t respectively) and that their dynamics ar, = 1, and
direct consequence of the fact that the first-difference filtgz €. If one knows the relative magnitude of andor,

difference filter, the measured persistence of inflation o
actually negative.)

Correlation with GNP. Finally, Table 2-C provides

downweights the lower frequencies relative to the altern1€n it is possible to extract estimatesypfandy; at each

tive filters. For the same reason, the first-difference filtd@te of a finite sample= 1, ...T. Further, these estimates

produces time series that exhibit much lower persisten®E ;imply weighted averages of the original data, so that the
than those produced by other filters (see table 2-B) af¥Clical component at dates
whose correlation with GNP is also much lower (table 2-C).

.
C
V. Comparing HPs Yo hgl Chih-

In this section, we undertake a detailed comparison of the ) o .
Hodrick-Prescott filter with high-pass filters constructed hile this derivation makes the dateyclical component

using our approach. For the purposes of many users of ﬂ]énoving average of the data, the linear filter is not time

Hodrick-Prescott filter, we shall conclude that our high-pai%variam: The weights depend on the daies well as the

filter is better in one important dimension: its ease ofad/lag indexh. However, the algorithm that we use for

application to data sampled at other-than-quarterly frequen-

cies. “We implement the finite-sample Hodrick-Prescott filter as follows.
First, we stack the data into a column vecYoSecond, we define a matrix
. I that links the corresponding column vector of “growth components,”
A. The Quarterly HP Filters Can Be Very Close YS, to the data:'Y = Y. Third, we compute the vector of “cyclical
) ) ) ) components” a&© = Y — Y& = (I — I""1)Y. The matrixI" is implied by
The first observation is that owiP,,(32) filter and the the equations that link the growth components to the data. The general

conventional Hodrick-Prescott filter give essentially similaquation isy, = Ay, — 4y, + (1 + 6\)y{ — 4hy?; + Ay? ,, but this

results for quarterly GNP, thus reinforcing the idea_expression must be modified near the endpoints. For example, at the

. . . . . beginning of the sample, we uge= (1 + N)yJ + (—=2\)gd + (1 + N)y]
discussed in the previous section—that the Hodnck—Prescgﬁg Yo = (—20y8 + (1+50yd + (—4\)yd + Ayd and comparable
filter is a reasonable approximation to the band-pass filtedifications must be made near the end of the sample.
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FIGURE 6.—GAIN OF THE HODRICK-PRESCOTTFILTER IN FINITE SAMPLES
A. Observations 1,2,3 B. Observations 4,6,8
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computing the Hodrick-Prescott filter makes it easy tibis applied to a specific data-generating process. While it is
recover the coefficientd,, so that we can study theirfeasible to undertake this for standard macroeconomic
properties. One feature that emerges is that, for eachtdat@odels, we opted for the simpler procedure of evaluating the
3! ,dn = 0 so that, in this fashion, the time-varying lineaeffects of the filter on population variance of a first-order
filter displays trend-elimination properties at every date. autoregressiony = p y;-1 + & with 02 = 1 andp = 0.95.
To begin our more detailed look at the time-varying filteTable 3 gives the variance by observation with the time-
we compute the gain of the linear filtey(L) = 3 _,d, L")  varying weight version of the Hodrick-Prescott filter. (This
in figure 6 for a range of dates= (1, 2, 3), (4, 6, 8), (12, 16, variance should be viewed as calculated across many
24), (32, 48, 60). These choices are motivated by the idesalizations of the time series generated by this first-order
that we are studying a quarterly sample period of postwantoregressive process.) Although each observation has the
size, so that there are about 180 observations, and we warddme variance before filtering, time-variation in the filter
explore the effects of time variation near the endpoints aa@plied to the process leads to different variances across
in the middle of the sample. (It is sufficient to look at th@bservations. In fact, the change in the variance is not even
initial values because there is a symmetry property to theonotonic, as suggested by the gain patterns in Figure 6.
weights: d;t = dy4, etc.) These figures show that tlog This investigation thus suggests that the Hodrick-Prescott
coefficients at the beginning of the sample period are sufiber does not really generate as many useful estimates of the
that thed,(L) has very different properties than an exaatyclical component as there are data points. Since the filter
high-pass filter: The gain functions differ sharply from eacleights settle down after about the twelveth observation, it
other fort = 1, 2, 3 and from the gain of the exact high-passould seem natural to drop twelve observations from the
filter. (There is also phase shift near the endpoints, sinbeginning and end of the sample period. But, then, there
di(L) is not close to being a symmetric linear filter farlose would be little reason to prefer the Hodrick-Prescott filter to
to 1 orT.) But, as we move toward the middle of the sampleur high-pass filter for quarterly data.
period, the gain of the filter differs less sharply from one
obs_ervation to the next, and the overall filter looks closer 1 WP Filters at Other Data Frequencies
the ideal band-pass filter.
Another perspective on the extent of time variation in the Is the Hodrick-Prescott filter an adequate approximation
filter weights is afforded by considering the effectd§f) if to a high-pass filter when used with data sampled at other
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y TABLE gR_EFFEc; OF components of the data with cycles between nine and sixteen

ODRICK-FPRESCOTT FILTER H H

iaguiniiiiid i years—components that most researchers wo_uld not identify
as business-cycle components.) The approximation to the

Observation  Variance ideal band-pass filter is significantly better far = 10.
1 17.50 However, even tha = 10 filter contains significant leakage
g 15:8% as well as significant compressiéh.
4 9.72 The foregoing discussion concerned the properties of the
6 11.54 exact Hodrick-Prescott filter. In practice, however, a finite-
12 ig:gg moving-average approximation to this exact filter must be
16 15.76 used. Looking at a figure similar to figure 6 but designed for
24 15.89 annual data, we found that the finite-sample version of the
e o filter produces serious departures from the ideal filter for the
60 16.56 first three observations, but improves dramatically after the
90 16.56 fourth observation. We thus recommend dropping at least

three data points from each end of the sample when using the

Hodrick-Prescott filter on annual data, even if one chooses

frequencies? The answer to this question is important Yo_ 19, which is the same number of data points dropped by
researchers concerned with international and public finangg husiness-cycle filter.

questions: Very often, the data used by these researchers are
available only at the annual frequency. For our procedures, it VI. Summary and Conclusions
is clear how to move between different data frequencies. For
example, if we are considering results from the high-passThis paper develops a set of approximate band-pass filters
filter HP;,(32) with data at the quarterly frequency, then théesigned for use in a wide range of economic applications.
natural first filter to consider for annual dataH®;(8): We The empirical focus of the paper is on isolating cyclic
isolate the same frequencies (periodicities of eight years dfiftuations in economic time series, defined as cycles in the
higher), and we lose the same number of years of data at ##a between specified frequency bands. We make detailed
ends of the sample. comparisons of our band-pass business-cycle filter with
However, it is much less clear how to proceed with thether commonly used filters, and evaluate these alternative
Hodrick-Prescott method. The difficulty is that the Hodrickfilters in terms of their ability to isolate business-cycle
Prescott filter requires the researcher to specify the “smooffiictuations in the data. We found that linear detrending and
ing parameter,”\. For quarterly data, we found that= first-differencing the data are not desirable business-cycle
1600 produces a reasonable approximation to a high-p&lgrs. On the other hand, moving-average analysis and
filter. For annual data, current empirical practice is to usgodrick-Prescott filtering can, in some cases, produce
N = 400 or\x = 100. (For example, Backus and Kehoé&easonable approximations to an ideal business-cycle filter.
(1992) use\ = 100 in their study of international businesgiowever, the optimal approximate band-pass filter that we
cycles.) To investigate whether these values\ofield a develop in this paper is more flexible and easier to imple-
good approximation to a band-pass filter for annual data, Went than these filters and produces a better approximation
applied ourBP;(2, 8) filter and the HP filter for severalto the ideal filter. While the main motivation for and focus of
values of\ to U.S. annual GNF® The commonly used Our investigation is on construction of a business-cycle filter,
values ofA = 400 and\ = 100 did not produce a filteredthe results should be of more-general interest since the
time series for GNP that closely resembled that produced @§fining periodicities may be readily specified by a re-
the band-pass filtéf. However, setting. = 10 produced a Searcher and applied to data at any observation frequency.
much better correspondence between the Hodrick-Pres&sed on the results of this paper, we recommend three
and band-pass filters. Figure 7 plots the gain for ttidters for use with quarterly and annual macroeconomic
Hodrick-Prescott filter for the three values ofgainst the data.
ideal filter. This figure reveals why = 100 and\ = 400 For quarterly macroeconomic data, we recommend the
produce such different pictures for filtered GNP compard@Hrns-Mitchell band-pass filter, which admits frequency
with the optimal approximate band-pass filter: For thes@mponents between 6 and 32 quarters, itk 12. This
values of\, the Hodrick-Prescott filter is a poor approximaﬁlter removes low-frequency trend variation and smooths
tion to the ideal filter. In particular, these filters contain Bigh-frequency irregular variation, while retaining the major

great deal of leakage from low frequencies. (That is, tfieatures of business cycles. Some macroeconomists, particu-
\ = 100 and\ = 400 filters pass through nearly all of thdarly those who have extensively used the Hodrick-Prescott

filter, may prefer to employ the high-pass filter, which
15 Since the shortest detectable cycle in a time series is one that lasts two
periods, the annual business-cycle filter passes components with cycle
length between two and eight years. Note that, in this case, the band-paSHassler et al. (1994) also argue that 10 is the appropriate value for
filter is equivalent to a high-pass filter. the smoothing parameter when applying the Hodrick-Prescott filter to
16 This finding was not altered by increasing th@arameter from 3 to 6. annual data.
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FIGURE 7.—ALTERNATIVE ANNUAL HODRICK-PRESCOTTFILTERS
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admits frequency components between 2 and 32 quarteveen two and eight years, wikh= 3. The filter weights are
with K = 12. Essentially, this filter removes the trendjiven in the last column of table 4.
variation without removing the higher-frequency irregular We have applied the filters constructed in this paper in
variation in the series. Relative to the Hodrick-Prescofarious research contexts, which provides an additional
method, this filter does involve dropping three years of dag@monstration of their flexibility and usefulness. For ex-
at the beginning and end of the sample; we have se@mple, Baxter (1994) uses the methods of this paper to study
however, that this loss is more apparent than real becausetHerelationship between real exchange-rate differentials and
weights in the Hodrick-Prescott filter are rapidly changingeal interest rates at low frequencies (trend components),
near the ends of the Sample, reSUlting in substantial dlstﬁfedmm frequencies (business_cyde Components) and h|gh
tions of these cyclical observations. The filter weights afgaquencies (irregular components). She concludes that prior
provided in the first two columns of table 4. ~ studies have missed interesting relationships between these
For annual macroeconomic data, band-pass and high-pggsanles because a concern for producing stationary data
business-cycle filters are equivalent. We accordingly recofgy researchers to use the first-difference filter. This proce-
mend a single filter that admits periodic components bgg e emphasized irregular (high-frequency) components
where little relationship exists at the expense of the business-
cycle components where a striking, positive relationship
emerges. In another application, King and Watson (1994)
show that the “Phillips correlations” (defined as a negative

TABLE 4.—MOoVING AVERAGE WEIGHTS FOR
BusINEsscYCLE FILTERS

Lag BP(6,32) BP(2,32) BP(2,8) , _ ;
correlation of inflation and unemployment) appear strong at
2 8%(7)‘71 - 00(-)9547215 - 0%176‘1 the business-cycle frequencies even though they are hard to
2 0.0838 —0.0559 ~0.1351 see in the _originz_;ll in_flation and unemployment time seri_es.
3 -0.0521 —0.0539 —0.0510 This latter investigation uses monthly data and thus defines
. ol Tooels the business-cycle periodicities as 18 months to 96 months.
6 —0.0422 —0.0440 It thus highlights one important strength of our approach: It
; 8-8816 *8-8292 is easy to alter the filter construction when the sampling
.0015 —0.034
9 —0.0279 00297 frequency changes. _ _ o
10 —0.0501 —0.0244 In conclusion, the primary goal of this paper was to “build
11 —0.0423 —0.0190 a better mousetrap”—that is, to develop an approach to
12 -0.0119 -0.0137

filtering economic time series that is fast, flexible, and easy
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to implement_ Our goal in this undertaking is to encourag#atson, M. W., “Business Cycle Duration and Postwar Stabilization of the
empirical researchers to adopt a common approach to lzJAigconomy’"Amer'ca” Economic Revie#4 (March, 1994),
filtering, which will greatly aid in replication and compari-

son of results across researchers.
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To accomplish this integration in particular contexts, we employ the facthe first-order conditions are

that
1 o k ’
1 pn S 0= — e iwj ®) — akefimk do
— | ewiWdy=1 forj=k % 2m f*“ Be) k;K
2 Jom
+ ifﬂ B(w) — i ae "k € do + \
1 T o 2w k=-K
— e Wdw =0 forj+k
2 Jom

K
N 0= :EKak—d)

(For example, these facts imply thgt = (1/2w) ffﬂ X y(w)eh dw =

(1/2w) f_ﬂ1T [Zh-_.gne*"eedw = gy, which is a “reality check” of where— K=j=K.
sorts.) We use these facts and the Fourier integral repeatedly in our analysis
below, given that we design the optimal filter in the frequency domain an&estrictions on the Filter Weights From the First-Order Conditions
must derive the filter weights.
Repeatedly using the facts that (~2|rb2ff11 e—io(j—k)do = 1forj =k
Application to Deriving Weights for the Ideal Low-Pass Filter and (1/27) x fﬂ e-ioi-¥ do = 0 for j # k, the K + 1 first-order

The Fourier integral of the ideal low-pass fil(w) implies that the conditions with respect ta can be expressed as
filter coefficients satisfy

0=2(0 - a) + \.

1 px ) 1 5 .
by = o f,w B(w)e”" dw = P f,; " do, (For an example of this process, the term (-ﬂ)/i“ﬁ 3K ae kel dm
is equal to (1/z) ffﬂ a do = &)
where the second line derives from the fact @) = 1 for |o| = w and Thus, if there is no constraint ar(0) so thaik = 0, then it follows that
B(w) = 0 for|w| > ®. Hence, it follows that the optimal approximate filter simply involves truncation of the ideal

filter's weights.

If there is a constraint om(0), then\ must be chosen so that the
constraint is satisfied. For this purpose, it is useful to write the FOCs as
a, = by, + 0, whered = \/2. Then, requiring that(0) = SK__,a, = $, we
find that the required adjustment is

alel

bozziﬂﬂdw:

b= [ Bt = —| =@l — sin (ah)
h =" WBmew:—_—e‘” =—sin (o K
2% 2w [ih 5 wh b 2 by
h=—-K
where the last equality follows froni &in (x) = e* — e, b= K+1
The Filter Design Problem in the Frequency Domain Conclusions and Extensions
The problem is to minimiz& = 1/2w f_“ﬂ |3(w) |2 dw, with §(w) being We have derived the general result discussed in the text. Construction of

the discrepancy between the exact and approximating filters at frequeﬁ'&,optim_al approximating filter contains two steps: truncation of the ideal
», 3(w) = B(w) — a(w). Some versions of the problem discussed in thlilter's weights and addition of the correction tefmFurther, the form of
text require that the approximating filter take on a specified value at tHHS correction process makes clear the origins of some of the observations
zero frequency, which we represent @®) = &. (Equivalently, since Made in the main text which are not explicitly derived here. For example,
e° = 1, this restriction iSX__,a, = ¢.) To solve this as a constrained-t1€ same logic implies that the constrainédh-order approximate
maximization problem, we fcﬁ?n the Lagrangidn, = — Q + AN[«(0) — ¢] band-pass filter is the difference between two constraikédorder

which may be expressed alternatively as approximate low-pass filters. Since the ideal band-pass filter weights are
simply differences between the weights of two low-pass filters; by, it
1 K K , follows that the weights for an optimal truncated band-pass filter are
Lo _fﬂ [B(‘”) _ 2 ae k| |B(w) — E ae k| do (bn — bn) — [Eﬁ:_,K(bh — bp))/[2K + 1]. As this may be rearranged as
2m o Kok Kok fbn + [1 — 3K _ybul/[2K + 1]} — (b, + [1 — SF__ by/[2K + 1]}, it fol-

K
> a-—o

K=—K

filter are simply the difference in the weights of the two constrained
Kth-order low-pass filters.

] lows that the weights of the optimal, constrained approximate band-pass
+ A .
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