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Abstract 

Productivity growth and R&D intensity differ substantially across U.S. manu- 
facturing industries. Possible causes include industry differences in technological 
opportunity, market size, and appropriability of innovations. I embed these hy- 
potheses in an endogenous growth model B la Romer (1990). Under each hypoth- 
esis I find that R&D-intensive industries do not deserve a higher R&D tax credit. 
I also find that the hypotheses have different predictions for the cross-industry 
correlation between research intensity and research productivity. A large market 
and a high degree of appropriability raise the private value of an innovation; in 
equilibrium firms spend more on R&D per innovation. In contrast, technological 
opportunities are exploited to the point that R&D spent on the marginal innova- 
tion is equal across industries. Using data on R&D, productivity growth, and new 
products I find that R&D-intensive industries have fewer new products per dollar 
of R&D and average TFP growth relaiive to research intensity. The market size 
and technological opportunity hypotheses together can explain these facts. 

1 Introduction 

Productivity growth rates differ substantially across U.S. industries. In a 
sample of 450 U.S. manufacturing industries, average annual productivity 
growth over 1959 to 1989 ranges from -3.6% (!) in electron tubes to 10.7% 
in electronic computing equipment. ’ The standard deviation of the industry 
growth rates is 1.2%. Why do industries differ in their rate of productiv- 
ity growth? I focus on explanations involving R&D and innovation. The 
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industrial organization literature stresses three hypotheses for differences in 
industry research intensity (R&D/Sales): technological opportunity, market 
size, and appropriability.2 

The technological opportunity hypothesis, associated with Scherer (1965) 
and Rosenberg (1974), holds that industries differ in the fertility of research. 
For example, designing faster computer chips has recently seemed easier than 
designing lighter steel. Adams (1993) and Evenson (1993) argue that ba- 
sic research conducted in government labs and in universities “recharges” 
commercial research. Depending on these basic research results, commer- 
cial opportunities can be plentiful or scarce. For example? breakthroughs in 
solid-state physics have created commercial opportunities in semiconductors 
in the last thirty years. 

The market-size hypothesis, espoused by Griliches and Schmookler (1963) 
ad Schmookler (1966), holds that innovations entail upfront R&D costs that 
depend little on the number of times the innovation is eventually used. A 
larger market makes the R&D easier to privately recoup, so larger indus- 
tries should attract more R&D. Some versions of this hypothesis, owing to 
Schumpeter ( 1950), hold that the proper measure of scale is firm rather than 
industry size. 

The appropriability hypothesis holds that industries differ in the extent 
to which innovators can capture the social returns to their innovations. Levin 
et al. (1987) conduct surveys of R&D managers to gauge appropriability and 
its sources. Industries such as pharmaceuticals report high appropriability; 
industries such as food processing bemoan a lack of appropriability. Levin et 
al. also find that appropriability derives less from legal protection (patents, 
copyrights, and trademarks) than from secrecy combined with learning by 
doing in production. 

To develop implications of these hypotheses, I embed them in an en- 
dogenous growth model ri la Romer (1990). Comparing the decentralized 
equilibrium to the social optimum, I find that industry differences in techno- 
logical opportunity and market size do not widen the gap between the social 
and private returns to R&D, and industries with poor appropriabilit,y are 
more likely to undertake too little R&D. Thus, contrary to the presumption 
in policy circles, none of the hypotheses imply that R&D-intensive industries 
deserve a higher R&D tax credit. Indeed, the appropriability hypothesis im- 
plies that less R&D-intensive industries (e.g., potato chips) deserve a larger 
credit than do more R&D-intensive industries (e.g., computer chips).3 

I further find that the hypotheses have divergent predictions for research 

%ee the survey by Cohen and Levin (1989). 
31n his comme nts on this paper, Craig Burnside points out that industries with little 

appropriability may be R&D intensive if they also have extremely good technological 
opportunities. 
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productivity across industries, where research productivity refers to inno- 
vative output per dollar of R&D. The technological opportunity hypothesis 
implies no systematic variation in research productivity across industries, 
whereas the other two hypotheses predict, that research-intensive industries 
will have low research productivity. The intuition is that a large market, 
and a high degree of appropriability raise the private value of an industry’s 
innovations. In equilibrium firms are willing to spend more on R&D per 
innovation. In contrast, plentiful technological opportunities attract R&D 
to the point where the marginal innovation is no easier to generate than 
in industries with less plentiful opportunities.4 I compare these competing 
predictions to U.S. industry data on R&D, productivity, and new products. 
In the model marginal research productivity is conveniently proportional to 
average research productivity, which is observable. 

A number of previous studies have estimated the impact of technological 
opportunity, market sizq t, and appropriability on industry research intensity, 
including Scherer (19823, Pakes and Schankerman (1984), Levin et al. (19&j), 
and Jaffe (1986, 1988). Most of these studies feature regressions of industry 
research intensity on (say) measures of industry technological opportunity. 
As surveyed by Cohen and Levin (1989), the canonical finding is that one- 
half of industry differences in research intensity can be attributed to available 
measures. The present, paper complements these studies by testing the im- 
plications of the hypotheses for the correlation between industry research 
intensity and research productivity. No direct measures of technological op- 
portunity, market size, or appropriability are used.5 

The rest of the paper proceeds as follows. Section 2 extends Romer’s en- 
dogenous growth model to multiple industries, highlighting the role of tech- 
nological opportunity, market size, a,nd appropriability parameters in deter- 
mining industry research intensity, research productivity, and productivit;y 
growth. Section 3 contrasts the socially optimal allocation to the equilib- 
rium allocation derived in Section 2. Section 4 provides evidence on the 
hypotheses. The evidence points to the market-size hypothesis. 

2 A multi-industry endogenous growth model 

The three explanations for differing industry productivity growth and re- 
search intensity - technological opportunity, market size, and appropriabil- 
ity - are embedded here in an extension of Romer’s (1990) model. Two 

*This is analogous to capital being allocated to equate marginal products across coun- 
tries with (exogenously) different total factor productivity (TFP). Just like countries with 
higher TFP are more capital intensive, industries with better research opportunities are 
more research intensive. 

51 describe in detail below why I do not use industry size as a measure of market size. 
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industries are compared without loss of generality. Time subscripts are often 
suppressed to avoid clutter. 

Households maximize the present discounted value of momentary utility 

J O” e--pt cw-” - I(.& 
0 l--a 

subject to the budget constraint 

C+k<Y = wH + fK 

where C is consumption, I< is the infinitely-durable capital stock (the dot 
denoting rate of change), Y is final ou?put, w is the real wage, H is human 
capital, r is the real interest rate, p is the discount rate, and u is the inverse 
of the intertemporal elasticity of substitution. Households supply their fixed 
human capital inelastically. The labor market is competitive and pays the 
same wage to workers in all industries. The Euler equation for each household 
is 

m T-P 
c(t)= 0’ 

Firms produce the final good by combining 
Y2: 

y - y@yl-0 
- 1 2 

(2-l) 
intermediate goods Yr and 

(24 

with Q E (0,l). The parameter 19 governs nominal output shares for the 
respective intermediate goods and therefore serves as the market-size pa- 
rameter. These final good producers maximize instantaneous profits given 

ny = Y!YJ- - pY1 - qu,, 

where p and q are the prices of Yr and Y2 in terms of the final good Y, whose 
price at each instant is normalized to 1. All firms take p and q as given. 
Combining the first-order conditions for final good firms’ optimal choices of 
Yr and Y2 yields 

yz (1 -@Py, =- 
4 l 

(24 

The intermediate goods (Yr and Y2) are produced using human capital and 
physical capital. Conditional on available capital-good varieties, production 
of intermediate goods exhibits constant returns: 



where 1~‘s denote measures of capital-good varieties available to each industry 
and X’S denote quantities of capital goods rented. Labor’s share is o E 
(0,l). Capital-good types are imperfectly substitutable (1 < c c 00). Note 
that capital-good varieties are specialized to each industry. Though this is 
extreme, it is realistic in that empirical capital and materials flow matrices 
are quite spares: most industries buy most of their materials and capital 
from a few industries. Renting human capital from households and capital- 
good varieties from capital-good monopolists, intermediate-goods producers 
maximize instantaneous profits given by 

x1 (,)I-+&Ii+ _ 
J 

Al 
o pl(i)xl(i)di - WHY, 

ny2 = g;*[AA2 x2(j)1-11rdi]= - LA2 Pz(j)x,(j)dj - wHy2 

where the pf(.)‘s are rental rates on capital-good varieties. Each of the 
intermediate-goods markets is competitive, so buyers and sellers take p, q, 20, 

and the rental rates as given at each instant. The first-order conditions for 
these intermediate-good firms’ choices of human and physical capital inputs 
are 

W = pcrH;,-’ [iA1 xl(i)‘-‘l’&]~ 

P-5) 

Pdi) = PC1 xl (i)l-l/c&] e-lx1 (i)-‘1’ 

Each capital-good variety is produced by a monopolistic competitor. Va- 
rieties are designed by research firms that receive infinitely-lived patents on 
each design. For each design the research firm sells an exclusive production li- 
cense for the price f& or PA*, depending on the industry to which the design 
is specialized. Capital-good firms are legally barred from holding more than 
one license. To keep things simple and tractable this model neglects many 
well-documented features of innovation, such as imitation and obsolescence 
(see Pakes, 1986, and Caballero and Jaffe, 1993, for models and estimates). 
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Producing a unit of each capital good requires 1 unit of the final good 
Y. Since capital goods are infinitely durable, the monopolist incurs the 
production cost. once and then rents out its capital good forever after.6 The 
stock of capital is therefore 

J 
A1 

Ii’ = 
0 

Ignoring the sunk license fee, capital-good monopolists maximize 

n Xl(i) = p$)x*(i) - ?-Xl(i) 

@*8) 
l-i x2(j) = pz(j)z,(j) - 732w 

The capital-goods market is monopolistically competitive because of the 
Dixit-Stiglitz technology (2.4) d ownstream. Since capital-good varieties are 
symmetric in (2.4), all capital-good firms face the same price elasticity of 
demand (c) and charge the same markup. Since marginal cost (r) is also the 
same for each capital good, the rental rate on each variety is the same and 
is denoted ji. Inserting (2.6) into (2.8), the first-order condition (marginal 
revenue = marginal cost) for each capital good firm is 

(1 - l/C)F z= r. (2-9) 

By symmetry, equilibrium production and profits are the same for each va- 
riety of ~1 and the same for each variety of x2. Using (2.9) for 7‘ in (2.8), 
equilibrium profits (ignoring the patent license fee) for each capital-good 
monopolist are 

n Xl = $1 

(2.10) 

As shown, capital-good monopolists earn profits (excluding the one-time li- 
cense fee) equal to $% of their revenues. Note that in equilibrium the x’s 
can change over time. 

In Romer (1990) the license market is competitive and licenses are per- 
fectly enforced so research firms extract the present discounted value of 
(2.10). I assume instead that they can extract only the fraction 4 < 1 (the 
appropriability parameter) of the initial profits earned by licensees. Thus 
license fees for new varieties are simply 

-ince the z’s can be converted back into output, the equilibrium can entail falling x’s. 
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(2.11) 

PA2 = #2&z. 

I leave open why research firms cannot fully appropriate downstream 
profits. Taken literally, capital-good firms earn pure profits equal to the 
fraction (1 - #) of their initial profits plus their subsequent profits. (Adding 
these lump-sum profits to the household budget constraint would not affect 
the equilibrium.) One explanation would be that some of the profits in (2.10) 
are dissipated by the legal costs of preventing patent and license infringement 
and that such costs vary by industry. 

A more realistic specification altogether would be finite patent protection. 
This would require keeping tract of the varieties for which patents had expired 
and the (higher) quantities at which they are produced because of marginal 
cost pricing. The length of “effective” patent protection would then play the 
role of 4. Alternatively, one could let each ca.pital-good producer’s monopoly 
power erode exponentially with the rate of decline playing the role of 4. 

So far I have described consumer-utility maximization, final-goods pro- 
duction, intermediate-goods production, and capital-goods production. What 
remains to be described is the creation of new varieties of capital goods. 
There are two research sectors, each specializing in new types of equipment 
for one of the intermediate-good industries. Innovation production for a 
research firm j in each sector follows 

(2.12)’ 

A,(j) = t&y>A, 
A2 

where A’s denote stocks of existing varieties, 6’s are technological opportunity 
parameters, H(j)‘s equal R&D workers hired by firm j, and H’s are R&D 
personnel summed over firms within each research sector. Note the knowl- 
edge spillovers in (2.12)‘: researchers are able to design more new varieties 
the greater the stock of varieties to learn from.7 There are no interindustry 
knowledge spillovers. Aggregating (2.12)’ to the research-sector level yields 

(2.12) 

7Knowledg p e s illovers limit appropriability in that they help other firms design va- 
rieties. Varieties are imperfect substitutes, however, so patents shield innovations from 
direct competition. 
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Romer (1990) features y = 1. With multiple research sectors and 7 = 1, 
however, any asymmetry produces a corner solution wherein all research takes 
place in a single research sector. Research sector-level diminishing returns at 
each point in time (y < 1) produce a more realistic prediction. Such sector- 
level diminishing returns might stem from duplication of research across firms 
within a research sector, as in Stokey (1995) and Kortum (1993). Griliches 
(1990) reports estimates of 7 in the patent literature that range from well 
below one to almost one.s 

Each research firm is atomistic and takes as given the price at which it 
can license each variety (2.11) and the level of human capital in its research 
sector. The latter means that each research firm faces constant returns de- 
spite the diminishing returns at the research-sector level. Research firms hire 
researchers to maximize 

subject to (2.12)‘. Since returns are constant at the research firm level, 
research firms earn zero profits in equilibrium. Their optimal choices of 
human capital (aggregated across research firms in each sector) satisfy 

(2.13) 

w=P 6H+A Ao 2 Aa * 2* 

Finally, the market for human capital clears: 

H= flyi +HY, -I-HA! +HA~. (2.14) 

The first-order conditions, definitions, and transition equations repre- 
sented by (2.1) through (2.14) are sufficient to’ characterize the steady-state 
growth equilibrium of this model. These equations can be reduced to seven 
equations in the seven unknowns r, g&, g& , Hyl , Hy2, HAM, HAM, where gZ de- 
notes the steady-state growth rate of variable z(g, = i/z). The equations 
are 

(2.15) 

H=HY~+H~,+HA~+HA~ (2.16) 

*OLS estimates of y are biased upward if industries and firms with better research 
opportunities (higher 6’s) undertake more R&D. 
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(2.17) 

P 

(2.18) 

Hy2 
1-e 

= eHyl. (2.19) 

2.1 I d t d’Jf n us ry 2 erences in technological opportunity 

Suppose 61 > 5’2 so that opportunities for innovation are better in research- 
sector 1 than in research-sector 2. That is, suppose the same amount of 
research input (researchers and stock of existing varieties) generates more 
new varieties in the first research sector. 
01 

Suppose also that 8 = i and 
= 02 so that market size and appropriability are the same across the two 

industries. By (2.19) 

HY2 

1-e 
= eHy, = Hyl. 

By (2.17) we then have 

Rearranging we get 

$c$ = [!p. 
2 

Since y < l,& > 6s implies HAM > HAM. That is, more researchers are 
hired in the sector with better technological opportunities.g Since wages and 

gThis result follows from Cobb-Douglas technology for combining intermediate goods 
to produce final output. With an elasticity of substitution sufficiently less than one, there 
may be less F&D done in the research sector with superior opportunities. Faster TFP 
growth industries have modestly rising nominal shares in the data, however, consistent 
with elastic demand. 
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the size of downstream markets are equal, more researchers means higher 
research intensity: 

* 
By= HA1 

WHAT 
- > 1. 

(14)Y HA2 

From the definitions in (2.18) we then have 

The allocation of researchers reinforces the better technological opportunities 
to produce faster growth of varieties in sector 1 than in sector 2. 

Now, define research productivity as the ratio of research output gA to 
research input WHA. Research productivities for the two intermediate-good 
industries are equalized despite differing technological opportunities: 

The intuition for this result is that the sector with better research oppor- 
tunities conducts more R&D to the point where the marginal productivity 
of a researcher is the same as in the sector with inferior opportunities. The 
upshot is that, if industries differ in their research intensity because of differ- 
ing technological opportunities, there will be no correlation between research 
intensity and research productivity. Since market size is equal, this holds 
even if industry research productivity is multiplied by downstream industry 
sales. 

Downstream, one intermediate good industry uses capital goods designed 
in sector 1 and the other those designed in sector 2. Using symmetry, the 
standard way of measuring the capital stock (e.g., Iill = Alq), and output 
definitions in (2.4), we have 

TFP growth is therefore proportional to the growth rate of varieties used 
by each intermediate-good industry. The faster growth of varieties in use 
translates into faster measured TFP growth in the first industry than in the 
second industry. 

2.2 Id t*dy n us 1 y 2 erences in market size 

Now suppose 8 > f where 0 is the Cobb-Douglas share of the first interme- 
diate good in final good production. Suppose also that 61 = 6, and $1 = 4, 
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so that technological opportunities and appropriability do not differ across 
the two research sectors. Proceeding as before, 

Since y < 1, the last inequality implies H ~~ > HAM. That is, more researchers 
work designing capital goods for the bigger intermediate-good market. Re- 
search intensity is also higher the larger the downstream market. That is, not 
only does market size encourage research, but research is elastic with respect 
to market size. Specifically, by rearranging (2.17) and (2.19) one obtains 

Q-A= 

BY 
'-"HAM 

(14)Y 1-e 

(2.20) 

Using the definition of growth rates in each sector, (2.18), 

More researchers serving the bigger market translates into faster innovation 
and productivity growth in sector 1 than in sector 2. 

Defining research productivity as above, we find that research productiv- 
ity is lower in the larger research sector (sector 1): 

The intuition for this result is that the larger downstream market attracts 
more R&D, which drives down research productivity because of diminish- 
ing returns in research. Each innovation has higher value when licensed to 
capital-good firms supplying a larger market, so despite lower research pro- 
ductivity the value of a marginal research dollar is equalized across research 
sectors. To recap, if industries differ in their productivity growth because 
of differing market size, there will be a negative correlation across industries 
between research intensity and research productivity. 

Though differences in market size produce differences in research produc- 
tivity, they do not produce differences in TFP growth relative to research 
intensity. That is, if we multiply industry research productivity by industry 
sales we find 

OY9A’ 
WHAT HA1 

(1 - O)Ye = & HAM [ 1 
T-1 

= IL’ 
2 
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The last equality follows j&n using (.&SO). As surveyed by Cohen and 
Levin (1989), a substantial empirical literature on firm size and research 
intensity has been inconclusive. In the present model the proper measure 
of scale is industry size. Firm size is indeterminate in research and in 
intermediate- and final-goods production because of perfect competition and 
constant returns to scale. The size of capital-good firm is pinned down: 
they are monopolistic competitors with revenues of px1 or px2. But a larger 
market does not necessarily make for larger capital-good producers, as the 
following (hopefully) makes clear. 

Suppose, in addition to the above assumptions (0 > i and symmetry of 
other parameters), that at some moment the stocks of capital-good varieties 
are equal (Al = As). At this moment greater production of the first interme- 
diate good (which follows from 8 > 4) implies x1 > x2. By (2.10) and their 
larger size (21 > 22), capital-good producers supplying the larger market 
earn greater ez post profits. From (2.11) the upstream research firms selling 
to the bigger capital-good firms charge higher license fees. Higher license fees 
stimulate more R&D for the larger market (at this moment Al + A2 so that 
the research sectors have equal stocks from which to learn). This is the in- 
tuition behind the market-size hypothesis, and at this moment capital-good 
firms supplying the larger market are indeed larger. But the greater research 
done for the larger market generates faster innovation (gA1 > a&), which in 
turn shrinks the market for each individual variety sold in the larger market 
(gZ1 < g=,). Eventually the capital-good producers serving the larger market 
are smaller! 

How can the larger downstream market induce greater research intensity 
if the market for each variety eventually becomes smaller? The answer lies 
in the endogeneity of the stock of varieties. The faster growth in this stock 
for the larger market lowers the cost of designing new varieties as shown in 
(2.12). That is, intertemporal knowledge spillovers facilitate the design of 
new varieties for the larger market even when the market for each variety 
is smaller. This highlights a testable implication of the model, namely, that 
patent value (PA) declines over successive vintages of patents, and me quickly 
the more research-intensive the industry. 

2 -3 Industry diflerences in appropriability 

Suppose #I > $2 so that research firms in sector 1 capture a bigger &action 
of the downstream profits generated by their innovations than do research 
firms in sector 2. Suppose also that 61 = 62 and 6 = $ so that technological 
opportunities and market size are equal. Proceeding as before, 
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Since y < 1, ~$1 > 42 implies HA, > HAM. That is, more researchers work 
in the sector where the returns to innovations are more appropriable. Since 
4 = $ the markets are of equal size and greater research means greater 
researih intensity. From the definition of growth rates in each sector (2.18), 

gA1 = 61 H;I, > S2 H;I, = gA2, 

We 
ity: 

have lower research productivity in the sector with greater appropriabil- 

= < 1. 

As with a larger market, greater appropriability means each innovation has 
a higher private value. The value of the marginal research product is equated 
across research sectors because sectors with a high private value of each 
innovation have low research productivity. To recap, if industries differ in 
their research intensity because of differing degrees of appropriability, there 
will be a negative correlation across industries between research intensity and 
research productivity. Since market size is equal, this holds even if industry 
research productivity is multiplied by downstream industry sales. 

3 Policy implications 

Do R&D-intensive industries deserve a higher R&D tax credit? To answer 
this question I compare socially optimal R&D to equilibrium R&D. The pre- 
vious section characterized the decentralized equilibrium so here I describe 
the socially optimal allocations. The social planner maximizes the Hamilto- 

subject to 

where A, ~1, and ~2 are shadow values of the stocks of physical capital and 
varieties. Note that the social planner cannot avoid duplication of research 
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(y < 1) but does internalize it. From the first-order conditions for the plan- 
ner’s problem one can show 

HY2 
1-e 

= eHy,. 

This is the same as (2.19), meaning the equilibrium ratio of workers in the 
two intermediate-good industries is optimal. One can also show that the 
socially optimal allocation of researchers across research sectors is 

t@,H;,1 = (1 - 19)&H;1;~. (34 
In contrast, the decentralized equilibrium allocation is, from (2.16) and (2.19), 

In Romer (1990) there is no duplication of research, and innovators cap- 
ture all of the profits of capital-goods monopolists. But researchers do not 
internalize the impact of their innovations on future research productivity 
(intertemporal knowledge spillovers). And capital-good monopolists do not 
price discriminate, leaving some surplus flowing to consumers. As Romer 
(1990) shows, these forces unambiguously imply that too little R&D is done 
in the decentralized equilibrium of his model. 

Here innovators capture only the fraction 4 < 1 of initial profits earned by 
capital-goods monopolists, so they capture even less of the surplus created by 
each new variety. Firms, however, do not internalize the negative impact of 
their efForts on other researchers through duplication (y < 1). Whether too 
little or too much R&D is done on balance hinges on the value of parameters 
such as y, #, and e. Stokey (1995) and Jones and Williams (1995) investigate 
these issues. 

Since it is ambiguous whether too little or too much R&D is done, we do 
not know whether an R&D tax credit or an R&D surtax is warranted. We 
can infer, though, whether certain industries should be favored, Consider 
a tax credit T applies to R&D spending (research firms’ wage bill) which is 
financed by lump-sum taxes on households. Instead of (2.13) the first-order 
conditions for research firms are 

~(1 - Q) = P&H~,‘A2. 

Using (3.3), the analogue to (3.2) is 

dl~W;I,’ = 432P - W,H;I,’ 

1 - 71 l-72 . (3.4) 
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To reduce (3.4) to (3.1) and thereby induce the optimal relative number of 
researchers in the two industries, the research tax credits must satisfy 

1 - 71 41 -=- 

l--2 d2’ 
(3.5) 

Since 8 and the S’s do not appear in (3.5), industries that are more R&D- 
intensive because of a bigger market or better technological opportunities do 
not deserve a higher R&D tax credit (or a lower surtax). Bigger markets and 
better technological opportunities raise equilibrium and optimal R&D in the 
same proportion; research firms find bigger markets and better technological 
opportunities privately attractive, so they pursue them to the same extent 
that the social planner would. Condition (3.5) also tells us that industries 
which are more R&D-intensive because of better appropriability (higher +) 
should receive a Eower R&D tax credit. I.e., 41 > 42 implies ~1 < 72 because 
poor appropriability discourages private R&D relative to the optimum level. 
In short, none of the hypotheses imply that R&D-intensive industries deserve 
a more generous R&D tax credit. 

4 Evidence on research intensity and research productivity 

Industry R&D data are not easy to come by. The NSF-Census Survey care- 
fully aasigns R&D to industries but covers only 25 2.5 digit SICs. I thus rely 
on two more disaggregated sources of R&D data: 3-digit data aggregated 
from Compustat firms and Scherer’s (1984) 3.5 digit data based on the Fed- 
eral Trade Commission (FTC) survey of 443 firms. Both of these sources 
skew heavily toward large firms, with Compustat covering only companies 
listed on U.S. stock exchanges. The allocation of Compustat-firm R&D to 
industries is also suspect; the FTC data are better in this regard, breaking 
firm data into 276 3.5 digit industries. In the SEC 10-K filings from which 
Compustat data derives, firms indicate their primary 4-digit industry. But 
the primary industry often accounts for only a plurality of firm sales. To 
attenuate this problem while preserving degrees of freedom, I aggregate the 
Compustat data to the 3-digit level.” 

I consider two measures of innovative output - total factor productivity 
(TFP) growth and new products. The NBER Productivity Database con- 
tains TFP data at the 4-digit level based on U.S. Census Bureau surveys of 
manufacturing establishments. For the data on new products I extend the 
dataset that I used in Klenow (1994). This dataset consists of counts of new 
products from company news releases compiled since 1985 by Information 
Access Company. In my earlier paper I discuss at length the shortcomings of 

“Scherer (1984) reports that the average manufacturing corporation had 33% of its 
1972 employment outside of its primary S-digit field. 
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these announcements as a measure of the true flow of new products, as well 
as problems with using new product counts as a proxy for innovative output. 

Tables 1 and 2 provide a sampling of the data, listing the 20 most research- 
intensive industries at the 2-digit and S-digit levels, respectively. Motor 
vehicles, computer hardware, and drugs together carry out 43% of total R&D. 
The distribution of new products is correlated with that of R&D, but not 
perfectly so. comparatively little R&D goes into each new software product; 
the opposite is true for each new car and aircraft model. This could mean that 
the private value of a new car or aircraft design exceeds that for new software, 
say because the social returns are more easily appropriated. Alternatively 
the “step size,” or innovative output, represented by each new product might 
vary across these industries, an issue to which I return below. 

Table 1: 
Research Intensity 

Top 20 a-Digit Industries 

% of % of all 
SICd R&D/Sales all R&D New Products A TFP 
36 Inatrumcntr and related products 5.6% 7.4% 17.2% 1 .O% 
35 Industrial machinery and equipment 5.0 16.7 25.6 5.3 
36 Electric and electronic equipment 4.9 14.2 22.6 2.0 
28 Chemicala and allied products 4.8 15.4 4.? 1.2 
37 Transportation equipment 3.3 25.0 0.7 03 
73 Buaineds services 3.1 1.6 19.4 
39 Misc. manufacturing 1.8 0.2 0.5 0.6 
3x Communications Rubber and plastics products 1.6 1.4 0.6 5.0 2.6 1.2 

0.3 
07 Engineering and mgmt. services 1.4 0.3 0.0 

ii 
Paper and allied products 

? 
1.1 

Fabricated metsl products 
;:I: 

::t ‘i,_ X:3 oO:t 
32 
13 

Stone, clay, snd glaar product6 0.3 
Oil end extraction 

: 0.0 0.5 
gan 0.0 0.S 0.0 

20 Petroleum ond coal produetr 
20 Food and kindred productr 82 

4.8 0.3 1.1 
2.2 

33 Primsry metal inrludtrier 
i:: 

0.7 2: 
16 Heavy condtruction 

0”:: 
0.1 0.0 

x: Furniture and Rxtured inrtitrrtinns 
Nondrpoditory 

0.5 0.5 0.1 OS 0.5 
0.7 0.0 

Sum over the 20: top 00.6 00.3 

Sourced: R&D and Sales: All Compuatat firms, 1983 to 1992. 
8 of New Products: Information Access 1985 company, to 1064. 
ATFP (Total Factor Productivity Growth): NBER Database, 1985 to 1989. 

Before proceeding it is important to distinguish industries in the model 
from those in the Standard Industrial Classification. In the model an “indus- 
try” is defined by the boundaries of knowledge spillovers. This corresponds 
more to the technology classes used by the U.S. Patent Office, which differ 
notoriously from SICs. For this reason Jaffe (1986, 1988) measures tech- 
nological distance among a sample of firms using the extent to which they 
patent in similar classes rather than proximity as defined by SICs. I follow 
the literature in eschewing SIC sales as a measure of the size of the market 
for the type of R&D done in each SIC.ll 

“In his comments on this paper, Craig Burnside shows that, if market size is observable, 
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Re~rk!YntZsit y 
Top 20 J-Digit Industries 

9% of % of all 
SIC3 R&D/Sales all R&D New Products A TFP 
293 Drugs 9.3% 7.4% 1.1% 1.4% 
367 Electronic components 8.1 2.3 9.2 3.6 
366 Communications equipment 8.0 3.3 8.2 1.3 
357 Computer and office equipment 7.2 15.6 13.3 9.9 
737 Computer software 7.1 1.4 20.3 
386 Photographic equipment 6.4 3.,a 1.0 1.4 
382 Measuring and controlling devices 5.5 1.6 11.4 0.2 
35.5 Special industrial machinery 5.3 0.3 2.2 -0.1 
384 Medical instruments and supplies 5.1 0.8 2.1 0.9 
365 Household audio & video equipment 5.Q 1.2 0.8 3.6 
138 Oil and field services gas 4.6 0.4 0.0 
381 Search and navigation equipment 4.3 1.2 0.6 0.3 
267 Misc. converted products paper 4.3 0.8 0.0 
369 Mix. electrical equipment 4.2 0.3 0.4 0.5 
376 Guided missiles and vehicles apace 3.7 1.1 0.0 0.2 
372 Aircraft and parts 3.5 3.6 0.1 0.5 
282 Plastics materials and synthetics 3.4 1.9 1.0 2.3 
371 Motor vehiclea and equipment 3.3 20.0 0.5 1.1 
285 Painta and allied products 2.8 0.3 0.2 0.8 

Sum over the top 20: 67.3 72.4 

Sources: R&D and Salea: All Compuatat firma. 1983 to 1992. 
# of New Products: Information Access Company, 1985 to 1994. 
ATFP (Total Factor Productivity Growth): NBER Database, 1985 to 1969. 

I now test the indirect implications of the three hypotheses for the cor- 
relation between research intensity and research productivity. Since none of 
the datasets are perfect and no two are entirely compatible,12 I estimate the 
relationship between research intensity and research productivity in three 
separate ways, none of which equates SIC size with market size. 

Test 1: Compustat R&D and NBER TFP 
As discussed by Bound et al. (1984), in 1972 the SEC issued new 10-K 

reporting requirements for R&D. The Compustat sample consequently starts 
in 1972. The NBER Productivity Database covers the years 1959 to 1989. 
The Bureau of Labor Statistics (1989), surveying the literature relating R&D 
to productivity, reports a lag of one to three years between R&D spending and 
its initial impact on productivity. I therefore match Compustat R&D data 

the technological opportunity and appropriability parameters can be identified from the 
data on R&D intensity and research productivity. With the parameter values in hand, one 
could decompose the variance of industry R&D intensity due to each hypothesis (ranges 
since the decomposition is not unique). Burnside provides calculations using SIC sales 
as a proxy for market size. Using patent data one could implement his strategy using a 
measure of market size based on Jaffe’s methodology. 

12For example, the R&D data are from firms whereas the productivity data are from 
establishments; the latter are less diversified and therefore more reliably assigned to in- 
dustries. The Census classifies R&D labs as auxiliary establishments. Fortuitously for 
our purposes, this means R&D inputs have not been netted out in the NBER’s TFP 
calculations. 
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from 1972 to 1987 with NBER TFP data from 1974 to 1989. I aggregate the 
NBER 4-digit manufacturing industries and the Compustat-firm level data 
to the S-digit level.13 

Since measured TFP growth is driven by new varieties in the model, I use 
TFP growth to measure innovative output. But since SICs do not, correspond 
to industries in the model sense, using scale-free measure of innovative output 
such as TFP growth requires scaling R&D by sales in each SIC. The model 
predicts, for example, that large markets stimulate R&D intensity and TFP 
growth. Even if an SIC has nothing to do with an industry in the model 
sense, if its component firms tend to be in large markets then they should 
be R.&D intensive and exhibit low (scaled) research productivity. I therefore 
calculate 

( 

R&D ATFP 
Corr Sales’) z > 

(4-l ) 

where research intensity is averaged over 1972 to 1987 and TFP growth is 
averaged over 1974 to 1989 for each 3-digit industry. I take time averages 
here and subsequently to help purge series of cyclical components, e.g., cycli- 
cal TFP growth induced by unmeasured changes in factor utilization. Note 
that industries doing no R&D must be excluded since their research produc- 
tivity is undefined. The sample consists of the 116 R&D-performing 3-digit 
manufacturing industries over 1972 to 1987. This sample selection on the ba- 
sis of R&D spending, like classical measurement error in research intensity, 
negatively biases the estimated correlation. 

Table 3 shows the outcome of Test 1. Reassuringly, industry average re- 
search intensity and industry average TFP growth are positively correlated 
across industries (.31 with a standard error of .13).14 The correlation between 
industry research intensity and scaled industry research productivity is pos- 
itive but statistically insignificant (.09, s.e. .06). This finding dovetails most 
closely with the technological opportunity hypot h&s and, because r&arch 
productivity is scaled by sales, the market-size hypothesis. Recall, too, there 
are reasons to believe the estimate is biased negatively. \Ir 

Test 2: Scherer’s R&D and NBER TFP 
Scherer’s ( 1984) R&D data have two principal advantages over the Com- 

pustat R&D data. First, the FTC survey from whence it comes has firms 
break their R&D into line of business, raising our confidence in the industry. 
Second, Scherer reallocated the R&D from “industry of origin” to “indus- 
try of use.” He computed “R&D used” as the sum of an industry’s own 

131 weight Cdigit TFP growth by real gross output. 
‘*The means and correlation are estimated simultaneously using GMM with a weighting 

matrix that yields estimates robust to heteroscedasticity. (Industries have varying numbers 
of Compustat firms, perhaps giving rise to heteroscedasticity.) 
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Table 3: 
Correlations with Industry Research Intensity 

Test 1: 
ATFP 

.314 

A1’r.r 
R&D/Sales 

.088 
Compustat R&D, 1972 to 1987 
NBER TFP, 1974 to 1989 
116 S-digit mfg. industries 

(.130) (.059) 

Test 2: 
Scherer “Use” R&D, 1974 
NBER TFP, 1975 to 1979 
144 3.5-digit mfg. industries 

.292 ,082 
(.144) (.lOO) 

#NewProducts # NewPToducts 
Sales R&D 

Test 3: .383 -.126 
Compustat R&D, 1983 to 1992 (.085) (.021) 
New Products, 1985 to 1994 
187 3-digit industries 

I: Compustat R&D, 1983 to 1992 .269 - ,097 
New Products, 1985 to 1994 (.061) (.030) 
342 large companies 

Notes: All entries are correlations with research intensity defined as 
R&D/Sales. A denotes log first differences. TFP = Total Factor Productiv- 
ity. 
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process R&D and the product R&D carried out by the industry’s suppliers 
upstream.” Gordon (1990) and Griliches (1994) stress that price indices 
typically overstate industry inflation because they insufficiently incorporate 
new and improved products. Since price indices serve as output deflators 
in the NBER Database, industry TFP growth is mismeasured. But new 
producer goods may contribute to measured productivity downstream. If so 
then Scherer’s R&D by industry of use better aligns innovative input with 
the TFP measure of innovative output. r6 Scherer’s methodology also blends 
nicely with the model in Section 2 above, wherein upstream research and 
production of capital goods drive an industry’s productivity growth. 

The Scherer data, based on the 1974 FTC survey, cover 144 3.5-digit 
manufacturing industries. To allow for lags in the impact of R&D on TFP 
growth, I match Scherer’s data to industry average TFP growth over 1975 
to 1979 from the NBER Database, calculated after aggregating the NBER 
4digit manufacturing industries to Scherer’s 3.5-digit industries. 

Table 3 shows the outcome of Text 2. Results are reported for R&D by 
industry of use, the results being much the same with R&D by industry of 
origin (!). Industry research intensity and industry TFP growth are positively 
(and marginally significantly) correlated across the 144 industries (29, s.e. 
.14). The correlation between industry research intensity and scaled industry 
research productivity is, as in Test 1, positive but insignificant (.OS, s.e. .lO). 
As with Test 1, the results favor the technological opportunity and market- 
size hypotheses. Also like Text 1, the use of scaled research productivity 
means SICs need not have anything to do with markets in the model sense, 

Test 3: Compustat R&D and new products 
Given the multitude of hazards in measuring TFP growth and tracing the 

impact of upstream R&D on downstream TFP growth, I consider another 
measure of innovative output that can, with some confidence, be linked to 
innovative input. This measure is U.S. new product counts over 1985 to 
1994, classified by the industry of the company releasing the product. An 
added attraction of these data is that they encompasses nonmanufacturing 
industries. The luster is dulled by the fact that not all R&D is devoted to 
product innovation. I match these new product data to Compustat R&D 
data over 1983 to 1992. 

Although the model in Section 2 calls for the growth rate of product 

15SchePer used patent information to estimate the share of process vs. product R&D for 
each industry and also to estimate a technology flow input-output matrix. 

ieTFP data for electronic computing equipment (SIC 3573), however, are based on 
hedonic price indices that better incorporate quality changes. As a result some computer- 
product innovation contributes to TFP growth in SIC 3573 rather than in downstream 
industries. Griliches (1994) expre 
all industries. 

sses concern about applying hedonics to some but not 
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variety, I only have data on the ~-IOU, of new products. In the absence of data 
on the stock of existing products, I use the ratio of new products to R&D as 
a measure of research productivity, which is strictly valid only if the stock of 
varieties is the sa.me across industries. The correlation I examine is 

R&D #NewProducts 
(4.2) 

Differences in the stock of varieties across industries that are uncorrelated 
with R&D intensity will bias this correlation toward zero. Note that, unlike 
TFP growth per dollar of R&D, #New Products per dollar of R&D need not 
be scaled by sales. This test is valid even when SICs do not correspond to 
industries in the model sense. For (4.2) research intensity is averaged over 
1983 to 1992 and the ratio of new products to R&D is averaged over 1985 to 
1994 for each S-digit industry. Since research productivity is only defined for 
industries doing some R&D, the sample consists of the 187 S-digit industries 
(75 outside of manufacturing) doing some R&D over 1983 to 1992. 

Table 3 shows the outcome of Test 3. Results are reported for all in- 
dustries. The restilts for manufacturing industries alone are qualitatively 
the same. Industry research intensity and industry “new product intensity” 
(the ratio of new products to sales) are positively and significantly correlated 
across the 187 industries (.38, s.e. .09). The correlation between industry 
research intensity and industry research productivity is significantly negative 
(-.13, s.e. .02): research-intensive industries introduce fewer new products 
per dollar of R&D. This result coincides with the market-size and appropri- 
ability hypotheses. Firms in research-intensive industries would be willing to 
spend more R&D per new product if they reap greater rents per new product 
through a larger market or better appropriability. 

Since both the Compustat R&D data and the Information Access new 
product data are available at the firm level, the correlation between research 
intensity and research productivity can also be calculated at the firm level. 
This correlation will shed light on whether firm differences in research inten- 
sity are me consistent with differing technological opportunity, market size, 
or appropriability. To keep the task manageable, I considered only the 1000 
largest R&D performing Compustat firms measured by 1992 sales. Of these, 
342 announced new products that appeared in the new product dataset. The 
correlation is much the same whether the sample of 1000 or 342 is consid- 
ercd. For the sample of new-product introducers, the correlation between 
firm R&D intensity and firm new-product intensity is .27 (s.e. .06). The cor- 
relation between firm R&D intensity and new products per dollar of R&D is 
-.lO (.03). Hence the firm-level evidence also points to the market-size and 
appropriability ,hypotheses. 

An alternative interpretation of this industry and firm evidence is that 
the “step size” of each new product (variety added or quality improved) is 
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larger in research-intensive industries. But we have reason to expect the op- 
posite. Suppose industries differ in the fixed costs of introducing inventions. 
Industries with lower such costs would choose greater research intensity and 
a smaller step size, biasing the estimated correlation away from its true neg- 
ative value toward zero. 

I hasten to add that these Test 3 results do not comprise evidence against 
the technological-opportunity hypothesis. The hypotheses are not mutually 
exclusive, so the negative correlation between research intensity and research 
productivity suggests only some role for market size and/or appropriability. 
Differing technological opportunity may explain some or even the bulk of the 
pattern of industry research-intensity. Indeed, the correlations are quite low, 
suggesting that variations in technological opportunity may be more impor- 
tant than variations in the other parameters. And the results remain subject 
to the caveat that measurement error in R&D would push the estimated 
correlation in the direction predicted by the market-size and appropriability 
hypotheses. 

To summarize, Tests 1 and 2 point to industry differences in technolog- 
ical opportunity and market size, and Test 3 suggests differences in market 
size and appropriability. The market-size and technological-opportunity hy- 
potheses together can explain all of the results. 

5 Conclusion 

Industry differences in productivity growth and research intensity are sub- 
stantial. TO try to explain them I constructed a multi-industry endogenous 
growth model with industries differing in technological opportunities, market 
size, and appropriability. For this model I showed the following: None of the 
hypotheses imply that R&D-intensive industries deserve a higher R&D tax 
credit. Industries with better technological opportunities for innovation are 
more research-intensive but have no higher research productivity. “Larger” 
industries and industries with better appropriability of returns from innova- 
tion are more research-intensive and have lower research productivity. 

I then examined U.S. industry data on R&D, productivity growth, and 
new products to test the competing hypotheses. Using TFP growth, the ev- 
idence points to the technological opportunity and market-size hypotheses: 
there is no systematic correlation across industries between research inten- 
sity (R&D divided by sales) and scaled research productivity (research output 
divided by research intensity). Using new products, the evidence dovetails 
with the market-size and appropriability hypotheses: research intensity is 
negatively correlated with new products per dollar of R&D. But this last 
correlation is low, suggesting a big role for differences in technological oppor- 
tunity. Since the technological-opportunity and market hypotheses together 
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can explain all of the findings, these results provide no support for favoring 
the R&D of one industry over another. 

The approach taken here with industries could also be taken with coun- 
tries. In a cross-section, country research intensity could be related to country 
research productivity. For a given country, research intensity and research 
productivity could be compared before and after a trade liberalization as 
a test of the importance of market size .17 Or, to test the appropriability 
hypothesis, research intensity and research productivity could be compared 
before and after a reform of intellectual property right such as took place in 
Singapore in 1987. 

Solow (1957) attributed his productivity residual to technological change. 
Evidence in Greenwood et al. (1995) and Klenow (1995) suggest specif- 
ically technological change embodied in capital goods. To try to get in- 
side Solow’s black box of technological change, this paper has modeled and 
tested innovation-based explanations for industry Solow residuals. But the 
hypotheses themselves are black boxes, albeit smaller ones. Technological op- 
portunity for an industry could reflect government-financed industry R&D 
or spillovers from academic research. Market size ~CX an industry could re- 
late not only to downstream preference and technology parameters but also 
to trade policies and government purchases. Appropriability for an industry 
cod encompass tax rates on industry sales and inputs, along with intellec- 
tual property protection. In short, much work remains to be done on the 
sources of industry variation in technological opportunity, market size, and 
appropriability. 

17Ades and Glaeser (1994) present evidence that LDC country growth in the 20th cen- 
tury and U.S. state growth in the 19th century are higher the larger the market. Jones 
(1995) finds that R&D intensity has risen over the postwar period in many rich countries 
with the scale of the market, but that TFP growth has fallen rather than accelerated. 
Young (1995) constructs a model which preserves the effect of market size on R&D inten- 
sity while eliminating its effect on TFP growth. 
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