
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 4, solutions to selected problems

Q1 Write in terms of the density functions, what it means for distributions of B(1/2) and (B(1/2), B(3/2)) to be
consistent.

Literally this means
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which can be simplified.

Q2 Show that the process (Xk(t) − t, t ≥ 0) is a martingale for (a) k = 1 and X the Poisson process with unit rate,
(b) k = 2 and X the BM.

For t > s ≥ 0 write X(t)− t = (X(s)− s) + [(X(t)−X(s)− (t− s)]. Take the conditional
expectation given X(s)− s; for the Poisson process the right-hand side becomes X(s)− s. The
conditioning on Fs (natural filtration) gives the same, since the process is Markovian.

In the Brownian case use the decomposition B(t) = B(s) + [B(t)−B(s)], where the terms are
independent.

Q4 For constants µ, σ > 0 the process Bµ,σ(t) := µt + σB(t) is ‘a Brownian motion with drift µ and diffu-
sion/volatility σ’. Show that Bµ,σ is Gaussian, find its mean and covariance functions. Also find the quadratic
variation of the process on [0, t].

Let X(t) = Bµ,σ(t) for shorthand. It is enough to show that

k∑
j=1

αiX(ti)

has one-dimensional normal distribution for any choice of times and coefficients. But this fol-
lows from the analogous property of the BM. We have from the properties of the BM

EX(t) = µt, VarX(t) = σ2 min(s, t)

and 〈X〉(t) = σ2t.

Q5 The process B◦(t) := B(t) − tB(1), t ∈ [0, 1], is known as the Brownian bridge. Find the covariance function
of B◦. Is this process Gaussian? Markov? Martingale? Explain your answers.

The covariance function is, for s < t,

Cov(B◦(s), B◦(t)) = s(1− t),

as follows from the Brownian covariance function. The process is Gaussian, as in Q4.

The Markov property can be derived from the joint density formula forB◦(ti), i = 1, · · · , k−1:
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p(ti − ti−1, xi − xi−1),

where 0 = t0 < t1 < · · · < tk−1 < tk = 1, x0 = 0, xk = 1 and p(t, x) is the N (0, t) density.
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Alternatively, note that solution to the the stochastic differential equation

dX(t) =
X(t)

1− t
dt+ dB(t), X(0) = 0,

is a Gaussian process with mean zero and the covariance as above. Hence it is a Brownian
bridge. Hence this process is Markovian, and is not a martingale.

Q6 Prove that B(t) has no limit as t → ∞ almost surely. Hint: it is enough to show that B(n) − B(n − 1) is not a
Cauchy sequence, n ∈ N.

p := P(|B(n)−B(n−1)| > 1) > 0 implies that the independent events |B(n)−B(n−1)| > 1
occur infinitely often. Hence the sequence B(n) does not converge,

Q7 Show that lim supt→∞B(t)/
√
t =∞. [Hint: use Kolmogorov’s 0-1 law.]

Let (tn) be any positive increasing sequence with tn → ∞. The random variables Xn =
B(tn)−B(tn−1) (where t0 = 0) are independent, and B(tn) = X1 + · · ·+Xn. Write
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=
X1 + · · ·+Xm√
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+
Xm+1 + · · ·+Xn√

tn
.

As n → ∞ the first term vanishes, hence Y := lim supn→∞B(tn)/
√
tn is measurable with

respect to the tail σ-algebra T of the sequence X1, X2, · · · . This σ-algebra T has only events
of probability 0 and 1 by Kolmogorov’s 0-1 law., therefore P(Y = ∞) should be either 0 or 1.
Now, {Y ≥M} ∈ T for any integer M > 0,

{Y ≥M} ⊃
∞⋂
n=1

∞⋃
m=n

{B(tm) ≥M
√
tm},

and thus, using that B(t) has N (0, t) distribution,

P(Y ≥M) ≥ P

(
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)
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√
tn}) = 1− Φ(M) > 0.

Since this probability is not 0, we conclude that P(Y ≥M) = 1. Letting M →∞ gives

P(Y =∞) = P

(
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)
= 1.
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