Q1 Write in terms of the density functions, what it means for distributions of B(1/2) and (B(1/2), B(3/2)) to be consistent.

Literally this means

$$\frac{1}{\sqrt{2\pi \cdot \sqrt{\frac{1}{2}}}} \exp\left(\frac{-x^2}{2 \cdot \frac{1}{2}}\right) = \frac{1}{\sqrt{2\pi \cdot \sqrt{\frac{1}{2}}}} \exp\left(\frac{-x^2}{2 \cdot \frac{1}{2}}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sqrt{\frac{3}{2} - \frac{1}{2}}}} \exp\left(\frac{-(y-x)^2}{2 \cdot \left(\frac{3}{2} - \frac{1}{2}\right)}\right) \mathrm{d}y,$$

which can be simplified.

Q2 Show that the process $(X^k(t) - t, t \ge 0)$ is a martingale for (a) k = 1 and X the Poisson process with unit rate, (b) k = 2 and X the BM.

For $t > s \ge 0$ write X(t) - t = (X(s) - s) + [(X(t) - X(s) - (t - s)]. Take the conditional expectation given X(s) - s; for the Poisson process the right-hand side becomes X(s) - s. The conditioning on \mathcal{F}_s (natural filtration) gives the same, since the process is Markovian.

In the Brownian case use the decomposition B(t) = B(s) + [B(t) - B(s)], where the terms are independent.

Q4 For constants $\mu, \sigma > 0$ the process $B_{\mu,\sigma}(t) := \mu t + \sigma B(t)$ is 'a Brownian motion with drift μ and diffusion/volatility σ '. Show that $B_{\mu,\sigma}$ is Gaussian, find its mean and covariance functions. Also find the quadratic variation of the process on [0, t].

Let $X(t) = B_{\mu,\sigma}(t)$ for shorthand. It is enough to show that

$$\sum_{j=1}^{k} \alpha_i X(t_i)$$

has one-dimensional normal distribution for any choice of times and coefficients. But this follows from the analogous property of the BM. We have from the properties of the BM

$$\mathbb{E}X(t) = \mu t$$
, $\operatorname{Var}X(t) = \sigma^2 \min(s, t)$

and $\langle X \rangle(t) = \sigma^2 t$.

Q5 The process $B^{\circ}(t) := B(t) - tB(1)$, $t \in [0, 1]$, is known as the Brownian bridge. Find the covariance function of B° . Is this process Gaussian? Markov? Martingale? Explain your answers.

The covariance function is, for s < t,

$$\operatorname{Cov}(B^{\circ}(s), B^{\circ}(t)) = s(1-t),$$

as follows from the Brownian covariance function. The process is Gaussian, as in Q4. The Markov property can be derived from the joint density formula for $B^{\circ}(t_i)$, $i = 1, \dots, k-1$:

$$\frac{1}{p(1,1)} \prod_{i=1}^{k} p(t_i - t_{i-1}, x_i - x_{i-1}),$$

where $0 = t_0 < t_1 < \cdots < t_{k-1} < t_k = 1, x_0 = 0, x_k = 1$ and p(t, x) is the $\mathcal{N}(0, t)$ density.

Alternatively, note that solution to the the stochastic differential equation

$$dX(t) = \frac{X(t)}{1-t}dt + dB(t), \quad X(0) = 0,$$

is a Gaussian process with mean zero and the covariance as above. Hence it is a Brownian bridge. Hence this process is Markovian, and is not a martingale.

Q6 Prove that B(t) has no limit as $t \to \infty$ almost surely. Hint: it is enough to show that B(n) - B(n-1) is not a Cauchy sequence, $n \in \mathbb{N}$.

 $p := \mathbb{P}(|B(n) - B(n-1)| > 1) > 0$ implies that the independent events |B(n) - B(n-1)| > 1 occur infinitely often. Hence the sequence B(n) does not converge,

Q7 Show that $\limsup_{t\to\infty} B(t)/\sqrt{t} = \infty$. [Hint: use Kolmogorov's 0-1 law.]

Let (t_n) be any positive increasing sequence with $t_n \to \infty$. The random variables $X_n = B(t_n) - B(t_{n-1})$ (where $t_0 = 0$) are independent, and $B(t_n) = X_1 + \cdots + X_n$. Write

$$\frac{B(t_n)}{\sqrt{t_n}} = \frac{X_1 + \dots + X_m}{\sqrt{t_n}} + \frac{X_{m+1} + \dots + X_n}{\sqrt{t_n}}.$$

As $n \to \infty$ the first term vanishes, hence $Y := \limsup_{n\to\infty} B(t_n)/\sqrt{t_n}$ is measurable with respect to the tail σ -algebra \mathcal{T} of the sequence X_1, X_2, \cdots . This σ -algebra \mathcal{T} has only events of probability 0 and 1 by Kolmogorov's 0-1 law., therefore $\mathbb{P}(Y = \infty)$ should be either 0 or 1. Now, $\{Y \ge M\} \in \mathcal{T}$ for any integer M > 0,

$$\{Y \ge M\} \supset \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{B(t_m) \ge M\sqrt{t_m}\},\$$

and thus, using that B(t) has $\mathcal{N}(0, t)$ distribution,

$$\mathbb{P}(Y \ge M) \ge \mathbb{P}\left(\bigcup_{m=n}^{\infty} \{B(t_m) \ge M\sqrt{t_m}\}\right) \ge \mathbb{P}(B(t_n) \ge M\sqrt{t_n}\}) = 1 - \Phi(M) > 0.$$

Since this probability is not 0, we conclude that $\mathbb{P}(Y \ge M) = 1$. Letting $M \to \infty$ gives

$$\mathbb{P}(Y = \infty) = \mathbb{P}\left(\bigcap_{M=1}^{\infty} \{Y \ge M\}\right) = 1.$$