Q1 Write in terms of the density functions, what it means for distributions of $B(1 / 2)$ and $(B(1 / 2), B(3 / 2))$ to be consistent.

Literally this means
$\frac{1}{\sqrt{2 \pi \cdot \sqrt{\frac{1}{2}}}} \exp \left(\frac{-x^{2}}{2 \cdot \frac{1}{2}}\right)=\frac{1}{\sqrt{2 \pi \cdot \sqrt{\frac{1}{2}}}} \exp \left(\frac{-x^{2}}{2 \cdot \frac{1}{2}}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sqrt{\frac{3}{2}-\frac{1}{2}}}} \exp \left(\frac{-(y-x)^{2}}{2 \cdot\left(\frac{3}{2}-\frac{1}{2}\right)}\right) \mathrm{d} y$
which can be simplified.
Q2 Show that the process $\left(X^{k}(t)-t, t \geq 0\right)$ is a martingale for (a) $k=1$ and X the Poisson process with unit rate, (b) $k=2$ and X the BM.

For $t>s \geq 0$ write $X(t)-t=(X(s)-s)+[(X(t)-X(s)-(t-s)]$. Take the conditional expectation given $X(s)-s$; for the Poisson process the right-hand side becomes $X(s)-s$. The conditioning on \mathcal{F}_{s} (natural filtration) gives the same, since the process is Markovian.
In the Brownian case use the decomposition $B(t)=B(s)+[B(t)-B(s)]$, where the terms are independent.

Q4 For constants $\mu, \sigma>0$ the process $B_{\mu, \sigma}(t):=\mu t+\sigma B(t)$ is 'a Brownian motion with drift μ and diffusion/volatility σ^{\prime}. Show that $B_{\mu, \sigma}$ is Gaussian, find its mean and covariance functions. Also find the quadratic variation of the process on $[0, t]$.
Let $X(t)=B_{\mu, \sigma}(t)$ for shorthand. It is enough to show that

$$
\sum_{j=1}^{k} \alpha_{i} X\left(t_{i}\right)
$$

has one-dimensional normal distribution for any choice of times and coefficients. But this follows from the analogous property of the BM. We have from the properties of the BM

$$
\mathbb{E} X(t)=\mu t, \quad \operatorname{Var} X(t)=\sigma^{2} \min (s, t)
$$

and $\langle X\rangle(t)=\sigma^{2} t$.
Q5 The process $B^{\circ}(t):=B(t)-t B(1), t \in[0,1]$, is known as the Brownian bridge. Find the covariance function of B°. Is this process Gaussian? Markov? Martingale? Explain your answers.
The covariance function is, for $s<t$,

$$
\operatorname{Cov}\left(B^{\circ}(s), B^{\circ}(t)\right)=s(1-t)
$$

as follows from the Brownian covariance function. The process is Gaussian, as in Q4.
The Markov property can be derived from the joint density formula for $B^{\circ}\left(t_{i}\right), i=1, \cdots, k-1$:

$$
\frac{1}{p(1,1)} \prod_{i=1}^{k} p\left(t_{i}-t_{i-1}, x_{i}-x_{i-1}\right)
$$

where $0=t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=1, x_{0}=0, x_{k}=1$ and $p(t, x)$ is the $\mathcal{N}(0, t)$ density.

Alternatively, note that solution to the the stochastic differential equation

$$
d X(t)=\frac{X(t)}{1-t} d t+d B(t), \quad X(0)=0
$$

is a Gaussian process with mean zero and the covariance as above. Hence it is a Brownian bridge. Hence this process is Markovian, and is not a martingale.

Q6 Prove that $B(t)$ has no limit as $t \rightarrow \infty$ almost surely. Hint: it is enough to show that $B(n)-B(n-1)$ is not a Cauchy sequence, $n \in \mathbb{N}$.
$p:=\mathbb{P}(|B(n)-B(n-1)|>1)>0$ implies that the independent events $|B(n)-B(n-1)|>1$ occur infinitely often. Hence the sequence $B(n)$ does not converge,

Q7 Show that $\lim \sup _{t \rightarrow \infty} B(t) / \sqrt{t}=\infty$. [Hint: use Kolmogorov's 0-1 law.]
Let $\left(t_{n}\right)$ be any positive increasing sequence with $t_{n} \rightarrow \infty$. The random variables $X_{n}=$ $B\left(t_{n}\right)-B\left(t_{n-1}\right)$ (where $t_{0}=0$) are independent, and $B\left(t_{n}\right)=X_{1}+\cdots+X_{n}$. Write

$$
\frac{B\left(t_{n}\right)}{\sqrt{t_{n}}}=\frac{X_{1}+\cdots+X_{m}}{\sqrt{t_{n}}}+\frac{X_{m+1}+\cdots+X_{n}}{\sqrt{t_{n}}} .
$$

As $n \rightarrow \infty$ the first term vanishes, hence $Y:=\lim \sup _{n \rightarrow \infty} B\left(t_{n}\right) / \sqrt{t_{n}}$ is measurable with respect to the tail σ-algebra \mathcal{T} of the sequence X_{1}, X_{2}, \cdots. This σ-algebra \mathcal{T} has only events of probability 0 and 1 by Kolmogorov's $0-1$ law., therefore $\mathbb{P}(Y=\infty)$ should be either 0 or 1 . Now, $\{Y \geq M\} \in \mathcal{T}$ for any integer $M>0$,

$$
\{Y \geq M\} \supset \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{B\left(t_{m}\right) \geq M \sqrt{t_{m}}\right\}
$$

and thus, using that $B(t)$ has $\mathcal{N}(0, t)$ distribution,

$$
\left.\mathbb{P}(Y \geq M) \geq \mathbb{P}\left(\bigcup_{m=n}^{\infty}\left\{B\left(t_{m}\right) \geq M \sqrt{t_{m}}\right\}\right) \geq \mathbb{P}\left(B\left(t_{n}\right) \geq M \sqrt{t_{n}}\right\}\right)=1-\Phi(M)>0
$$

Since this probability is not 0 , we conclude that $\mathbb{P}(Y \geq M)=1$. Letting $M \rightarrow \infty$ gives

$$
\mathbb{P}(Y=\infty)=\mathbb{P}\left(\bigcap_{M=1}^{\infty}\{Y \geq M\}\right)=1
$$

