Q1 Suppose $X_{n} \xrightarrow{d} c$ for constant c. Show that $X_{n} \xrightarrow{\mathbb{P}} c$. Hint: use functions

$$
f_{\epsilon}(x)=\left(1-|x-c| \epsilon^{-1}\right)_{+}
$$

to estimate $\mathbb{P}\left(\left|X_{n}-c\right| \leq \epsilon\right)$ from below.
The convergence in distribution $\left|X_{n}-c\right| \xrightarrow{d} 0$ implies $\mathbb{E}\left(1-\left|X_{n}-c\right| \epsilon^{-1}\right)_{+} \rightarrow f_{\epsilon}(c)=1$ because f_{ϵ} is a continuous function. But since $f_{\epsilon}(x)>0$ only for $|x-c|<\epsilon$ we get

$$
\mathbb{E}\left(1-\left|X_{n}-c\right| \epsilon^{-1}\right)_{+} \geq \mathbb{P}\left(\left|X_{n}-c\right| \leq \epsilon\right)
$$

hence this probability approaches 1 as $n \rightarrow \infty$.
Q2 Suppose $\sum_{n=1}^{\infty} \mathbb{E}\left|X_{n}\right|<\infty$. Using Chebyshev inequality and Borel-Cantelli lemma show that $X_{n} \xrightarrow{\text { a.s. }} 0$.
Recall that for numerical sequence, $x_{n} \rightarrow x$ means that $\left|x_{n}-x\right|>\epsilon$ does not hold for infinitely many n, for every ϵ. It is enough to ensure that this holds for some sequence of ϵ_{k} converging to 0 . For random variables, $X_{n} \xrightarrow{\text { a.s. }} X$ means that $\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon_{k}\right.$ i.o. $)=0$ for $\epsilon_{k} \rightarrow 0$.
We have by Chebyshev's inequality and the assumption on convergence of the series

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right| \geq \epsilon\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \mathbb{E} X_{n}<\infty
$$

By the Borel-Cantelli lemma we get

$$
\mathbb{P}\left(\left|X_{n}\right|>\epsilon \text { i.o. }\right)=\mathbb{P}\left(\cap_{m=1}^{\infty} \cup_{n=m}^{\infty}\left|X_{n}\right|>\epsilon\right)=0
$$

Letting $\epsilon=1 / k$ we get

$$
\mathbb{P}\left(\cup_{k=1}^{\infty}\left\{\left|X_{n}\right|>1 / k \text { i.o. }\right\}\right)=0
$$

which is the same as the convergence $X_{n} \xrightarrow{\text { a.s. }} 0$.
Q3 Suppose that $X_{n} \xrightarrow{\mathbb{P}} X$. Show that there exists subsequence $\left(n_{k}\right)$ such that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$. By the convergence in probability, it is possible to choose, using induction, $n_{1}<n_{2}<\cdots$ so large that

$$
\mathbb{P}\left(\left|X_{n_{k}}-X\right|>k^{-2}\right)<k^{-2}, \quad k=1,2, \cdots
$$

Since

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}-X\right|>k^{-2}\right)<\infty
$$

the Borel-Cantelli lemma ensures that $\mathbb{P}\left(\left|X_{n_{k}}-X\right|>k^{-2}\right.$ i.o. $)=0$. Then also

$$
\mathbb{P}\left(\left|X_{n_{k}}-X\right|>\epsilon \text { i.o. }\right)=0
$$

and so $X_{n_{k}} \xrightarrow{\text { a.s. }} X$.
Q4 Suppose $X_{n} \xrightarrow{\mathbb{P}} Y$ and $X_{n} \xrightarrow{\mathbb{P}} Z$. Prove that $\mathbb{P}(Y \neq Z)=0$. Using the result of Q 3 , choose n_{k} 's to achieve $X_{n_{k}} \xrightarrow{\text { a.s. }} Y, X_{n_{k}} \xrightarrow{\text { a.s. }} Z$. Then, of course, $Y=Z$ a.s.

Q5 Show that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$ holds if and only if $\mathbb{E}\left[X_{n+1} \cdot 1_{A}\right]=\mathbb{E}\left[X_{n} \cdot 1_{A}\right]$ for every $A \in \mathcal{F}_{n}$. By definition of the conditional expectation, $\mathbb{E}[Y \mid \mathcal{F}]$ is a \mathcal{F}-measurable random variable such that

$$
\mathbb{E}\left(\mathbb{E}[Y \mid \mathcal{F}] 1_{A}\right)=\mathbb{E}\left[Y 1_{A}\right]
$$

for all $A \in \mathcal{F}$. Thus

$$
\mathbb{E}\left(\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] 1_{A}\right)=\mathbb{E}\left[X_{n+1} 1_{A}\right]=\mathbb{E}\left[X_{n} 1_{A}\right] .
$$

Now use that $Y=Z$ a.s. for \mathcal{F}-measurable Y, Z if and only if $\mathbb{E}\left[Y 1_{A}\right]=\mathbb{E}\left[Z 1_{A}\right]$ for $A \in \mathcal{F}$.
Q6 For martingale $\left(X_{n}\right)$, show that $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{m}\right]=X_{m}$ for $n \geq m$. What are the analogues for sub- and supermartingales?

Use the tower property and induction. The analogues are abvious.
Q7 Let ξ_{1}, ξ_{2}, \ldots be r.v.'s with $\mathbb{E}\left|\xi_{j}\right|<\infty$ and $\mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=0$. Show that $X_{n}=\sum_{k=1}^{n} \xi_{k}$ is a martingale (with $X_{0}=0$).

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}
$$

by assumptions and because X_{n} is \mathcal{F}_{n}-measurable.
Q9 Two dice are rolled until a sum of 7 is thrown. Find the expectation of the sum of scores over all rolls.
The probability to roll $X_{n}=7$ is $1 / 6$. For τ the number of rolls, then τ is a stopping time with $\mathbb{E} \tau=6$. The mean score in one roll is $\mathbb{E} X_{n}=3.5$, hence the expected sum of scores if $6 \cdot 3.5=21$ by Wald's identity.

Q10 Let ξ_{1}, ξ_{2}, \ldots be i.i.d. with $\mathbb{E} \xi_{j}=0, X_{n}=\xi_{1}+\cdots+\xi_{n}, \tau=\min \left\{n: X_{n} \geq 0\right\}$. Prove that $\mathbb{E} \tau=\infty$.
We need to exclude the trivial case $\xi_{n}=0$ a.s. (when the claim is false).
Consider $\sigma=\min \left\{n>1: \xi_{2}+\cdots+\xi_{n} \geq x\right\}$, for some fixed $x>0$. If $\mathbb{E} \sigma<\infty$, Wald's identity gives $\mathbb{E}\left(\xi_{2}+\cdots+\xi_{\sigma}\right)=0$, which is not true as this should be at least x; hence $\mathbb{E} \sigma=\infty$. Now, given $X_{1}=-x, \tau$ coincides with such σ and has conditional expectation ∞. But then $\mathbb{E} \tau=\infty$ follows also unconditionally, because $\mathbb{P}\left(X_{1}<0\right)>0$.

Q12 Show that for submartingales $\left(X_{n}\right),\left(Y_{n}\right)$ also $\left(X_{n} \wedge Y_{n}\right)$ is a submartingale.
Using $\mathbb{E}[X \wedge Y \mid \mathcal{F}] \leq \mathbb{E}[X \mid \mathcal{F}]$ and $\mathbb{E}[X \wedge Y \mid \mathcal{F}] \leq \mathbb{E}[Y \mid \mathcal{F}]$ yields

$$
\mathbb{E}\left[X_{n+1} \wedge Y_{n+1} \mid \mathcal{F}_{n}\right] \leq \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \wedge \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \leq X_{n} \wedge Y_{n}
$$

