LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 3, solutions to selected problems

Ql

Q2

Q3

Q4

Suppose X, % ¢ for constant c. Show that X, % ¢. Hint: use functions
fe(@) =1~z —cle )+

to estimate P(|X,, — ¢| < €) from below.

The convergence in distribution | X, — | % 0 implies E(1—|X,—cle ')y — f.(c) = 1because
fe is a continuous function. But since f.(z) > 0 only for [z — ¢| < € we get

E(1 — X, — cle )4 > B(X, — ] <o),
hence this probability approaches 1 as n — oo.

Suppose >, E|X,,| < co. Using Chebyshev inequality and Borel-Cantelli lemma show that X, 230.

Recall that for numerical sequence, z,, — x means that |z, — x| > € does not hold for infinitely
many n, for every e. It is enough to ensure that this holds for some sequence of ¢; converging
to 0. For random variables, X,, *¥ X means that P(|X,, — X| > ¢ i.0.) = 0 for ¢, — 0.

We have by Chebyshev’s inequality and the assumption on convergence of the series

i]P’(|Xn| >e) < et iEXn < 00
n=1 n=1

By the Borel-Cantelli lemma we get
P(|X,| > € io.)=P(Ny_, U2 |X,| >¢€) =0.

Letting € = 1/k we get

PU {|Xn| > 1/k 1.0.}) =0,
which is the same as the convergence X,, =3 0.

Suppose that X, % X. Show that there exists subsequence (ny,) such that X,,, % X. By the convergence in

probability, it is possible to choose, using induction, n; < ny < --- so large that
P(|X,, — X| >k ) <k™? k=12--

Since .

D P(IX,, - X[ > k%) < oo,

k=1
the Borel-Cantelli lemma ensures that P(|X,,, — X| > k72 i.0.) = 0. Then also

P(|X,, — X|>¢€io.)=0

and so X, 2% X.
Suppose X,, — Y and X,, — Z. Prove that P(Y # Z) = 0. Using the result of Q3, choose n;’s to

achieve X, Ry, X, 2% Z. Then, of course, Y = Z a.s.
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Show that E[X,,41|F,] = X, holds if and only if E[X, 41 - 14] = E[X,, - 14] for every A € F,,. By definition

of the conditional expectation, E[Y'|F] is a F-measurable random variable such that
E(E[Y|F]1a) = E[Y'14]

for all A € F. Thus

E(E[X, 1| Folla) = E[Xn114] = E[X,14].

Now use that Y = Z a.s. for F-measurable Y, Z if and only if E[Y'14] = E[Z14] for A € F.

For martingale (X, ), show that E[X,,|F,,,] = X,,, for n > m. What are the analogues for sub- and supermartin-
gales?

Use the tower property and induction. The analogues are abvious.

Let &1,&2, ... berv’s with E |¢;| < oo and E[¢,,4+1|F,] = 0. Show that X,, = Y _, & is a martingale (with
Xy =0).

E[Xon 11| Fn] = E[Xo|Fo] + Elgni1|Fn] = X
by assumptions and because X, is F,,-measurable.

Two dice are rolled until a sum of 7 is thrown. Find the expectation of the sum of scores over all rolls.

The probability to roll X,, = 7 is 1/6. For 7 the number of rolls, then 7 is a stopping time
with E7 = 6. The mean score in one roll is E X,, = 3.5, hence the expected sum of scores if
6 - 3.5 = 21 by Wald’s identity.

Let&y,62,... beiid withE&; =0, X, =& +--- 4+ &,, 7 =min{n : X,, > 0}. Prove that E7 = 0.

We need to exclude the trivial case &, = 0 a.s. (when the claim is false).

Consider 0 = min{n > 1: &+ -+ + &, > x}, for some fixed z > 0. f Eo < oo, Wald’s
identity gives E(&,4- - -+&,) = 0, which is not true as this should be at least z-; hence E 0 = oc.

Now, given X; = —xz, 7 coincides with such o and has conditional expectation co. But then
E 7 = oo follows also unconditionally, because P(X; < 0) > 0.

Show that for submartingales (X,,), (Y;,) also (X,, A Y,,) is a submartingale.

Using E[X A Y|F] < E[X|F] and E[X A Y|F] < E[Y|F] yields

E[Xni1 A Yo Fo] SEXp|Fa] AEX | Fo] £ X AYn.



