
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 3, solutions to selected problems

Q1 Suppose Xn
d→ c for constant c. Show that Xn

P→ c. Hint: use functions

fε(x) = (1− |x− c|ε−1)+

to estimate P(|Xn − c| ≤ ε) from below.

The convergence in distribution |Xn−c|
d→ 0 implies E(1−|Xn−c|ε−1)+ → fε(c) = 1 because

fε is a continuous function. But since fε(x) > 0 only for |x− c| < ε we get

E(1− |Xn − c|ε−1)+ ≥ P(|Xn − c| ≤ ε),

hence this probability approaches 1 as n→∞.

Q2 Suppose
∑∞
n=1 E |Xn| <∞. Using Chebyshev inequality and Borel-Cantelli lemma show that Xn

a.s.→ 0.

Recall that for numerical sequence, xn → x means that |xn− x| > ε does not hold for infinitely
many n, for every ε. It is enough to ensure that this holds for some sequence of εk converging
to 0. For random variables, Xn

a.s.→ X means that P(|Xn −X| > εk i.o.) = 0 for εk → 0.

We have by Chebyshev’s inequality and the assumption on convergence of the series

∞∑
n=1

P(|Xn| ≥ ε) ≤ ε−1
∞∑
n=1

EXn <∞

By the Borel-Cantelli lemma we get

P(|Xn| > ε i.o.) = P(∩∞m=1 ∪∞n=m |Xn| > ε) = 0.

Letting ε = 1/k we get

P(∪∞k=1{|Xn| > 1/k i.o.}) = 0,

which is the same as the convergence Xn
a.s.→ 0.

Q3 Suppose that Xn
P→ X . Show that there exists subsequence (nk) such that Xnk

a.s.→ X . By the convergence in

probability, it is possible to choose, using induction, n1 < n2 < · · · so large that

P(|Xnk
−X| > k−2) < k−2, k = 1, 2, · · ·

Since
∞∑
k=1

P(|Xnk
−X| > k−2) <∞,

the Borel-Cantelli lemma ensures that P(|Xnk
−X| > k−2 i.o.) = 0. Then also

P(|Xnk
−X| > ε i.o.) = 0

and so Xnk

a.s.→ X .

Q4 Suppose Xn
P→ Y and Xn

P→ Z. Prove that P(Y 6= Z) = 0. Using the result of Q3, choose nk’s to

achieve Xnk

a.s.→ Y , Xnk

a.s.→ Z. Then, of course, Y = Z a.s.
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Q5 Show that E[Xn+1|Fn] = Xn holds if and only if E[Xn+1 · 1A] = E[Xn · 1A] for every A ∈ Fn. By definition

of the conditional expectation, E[Y |F ] is a F-measurable random variable such that

E(E[Y |F ]1A) = E[Y 1A]

for all A ∈ F . Thus

E(E[Xn+1|Fn]1A) = E[Xn+11A] = E[Xn1A].

Now use that Y = Z a.s. for F-measurable Y, Z if and only if E[Y 1A] = E[Z1A] for A ∈ F .

Q6 For martingale (Xn), show that E[Xn|Fm] = Xm for n ≥ m. What are the analogues for sub- and supermartin-
gales?

Use the tower property and induction. The analogues are abvious.

Q7 Let ξ1, ξ2, . . . be r.v.’s with E |ξj | < ∞ and E[ξn+1|Fn] = 0. Show that Xn =
∑n
k=1 ξk is a martingale (with

X0 = 0).

E[Xn+1|Fn] = E[Xn|Fn] + E[ξn+1|Fn] = Xn

by assumptions and because Xn is Fn-measurable.

Q9 Two dice are rolled until a sum of 7 is thrown. Find the expectation of the sum of scores over all rolls.

The probability to roll Xn = 7 is 1/6. For τ the number of rolls, then τ is a stopping time
with E τ = 6. The mean score in one roll is EXn = 3.5, hence the expected sum of scores if
6 · 3.5 = 21 by Wald’s identity.

Q10 Let ξ1, ξ2, . . . be i.i.d. with E ξj = 0, Xn = ξ1 + · · ·+ ξn, τ = min{n : Xn ≥ 0}. Prove that E τ =∞.

We need to exclude the trivial case ξn = 0 a.s. (when the claim is false).

Consider σ = min{n > 1 : ξ2 + · · · + ξn ≥ x}, for some fixed x > 0. If Eσ < ∞, Wald’s
identity gives E(ξ2+· · ·+ξσ) = 0, which is not true as this should be at least x; hence Eσ =∞.

Now, given X1 = −x, τ coincides with such σ and has conditional expectation ∞. But then
E τ =∞ follows also unconditionally, because P(X1 < 0) > 0.

Q12 Show that for submartingales (Xn), (Yn) also (Xn ∧ Yn) is a submartingale.

Using E[X ∧ Y |F ] ≤ E[X|F ] and E[X ∧ Y |F ] ≤ E[Y |F ] yields

E[Xn+1 ∧ Yn+1|Fn] ≤ E[Xn+1|Fn] ∧ E[Xn+1|Fn] ≤ Xn ∧ Yn.
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