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1 Lecture 1

1.1 Motivating examples

1.1.1 Heat equation

Circular chain of length N . Denote ut(j) the temperature of j-th piece at time
t ∈ Z+.

ut+1(j)− ut(j)︸ ︷︷ ︸
temperature increment at j

=
κ

2
[(ut(j + 1)− ut(j))− (ut(j − 1)− ut(j)))]

where 0 < x < 1.

 

Figure 1: Circular chain of length N .

What happens as t grows; particularly, as t→ ∞?

* ut =
1
N

∑N−1
j=0 ut(j) is preserved, i.e. equal to u0

* ut → u0

∗Corrections are most welcome
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More quantitative question: set u0 = Nδ0 andN ≫ 1, after how much time ut ≈
1? Is it N ,

√
N , N 2? The idea: fast and slow fluctuations. Fast fluctuations

get smoothed out fast. How to separate ut into scales, which could be analysed
separately?

Main trick is in using ep(j) = exp
(
2πijp
N

)
.

* “wavelength N
p ” but with arithmetic nuances

* character property: ep(j + k) = ep(j)ep(k)

Exercise 1. Check that there are no other characters.

Claim. ep form an orthogonal basis: 1
N

∑N−1
j= ep(j)eq(j) = δpq.

Expand

ut =
∑

ût(p)ep

ût(p) =
1

N

∑
ut(j)ep(j)

ut(j ± 1) =
∑

ût(p)ep(±1)ep(j)

hence,

ût+1(p)− ût(p) =
x

2
(ep(1) + ep(−1)− 2)ût(p)) .

All p are uncoupled, i.e. one equation for each p!

ût+1(p) = (1− x(1− cos
2πp

N
))ût(p) (1)

=⇒ ût(p) = (1− x(1− cos
2πp

N
))tû0(p).

Analysis:

◦ constants are proportional to e0, ût(0) = ūt, and, indeed, it does not
change

◦ the greater |p| is, the faster ût(p) → 0. The slowest one is ût(1) and
ût(−1):

|ût(1)| = (1− x(1− cos
2π

N
))tû0(1)

∼ 1− 2xπ2

N 2

∼ exp

(
−2xπ2

N 2

)
.

It takes ≲ N 2 steps to converge to ū0
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Exercise 2. Let u0 = Nδ0, then maxj |ut(j)− 1| =

{
≤ C exp

{−ct
N2

}
, t ≥ CN 2

≥ 1
2 , t ≤ 1

CN
2

A more realistic version t ∈ R+, x ∈ T (R? R2?)

(a) t ∈ R+, still on Z/nZ.

∂

∂t
ut(j) =

κ

2
[(ut(j + 1)− ut(j)) + ut(j − 1)− ut(j)]

Exercise 3. Develop this theory.

(b) x - continual
∂

∂t
ut(x) =

κ

2

∂2ut(x)

∂x2
or u̇t =

κ

2
u′′t .

T: periodic because ut(1) = ut(0) - ”circular rod”.

ep(x) = exp(2πipx) p ∈ Z

L2(T) = {f : T → C :

∫ 1

0

|f(x)|2 dx <∞}

Claim. ep form an orthonormal basis of L2(T).

Proof. ⟨ep, ep⟩ =
∫ 1

0 ep(x)ep(x) dx = δpq. Completeness: Weierstrass theorem.

Want: ut(x)
?
=
∑
ût(p)ep(x), where ût(p) = ⟨ut, ep⟩. Ignoring convergence et

al.:

e′′p(x) = −4π2p2ep(x)

=⇒ ˙̂ut(p) = −2π2p2ût(p)

=⇒ ût(p) = exp
(
−2π2p2t

)
ût(0)

ut(x) =
∑

exp
(
−2π2p2t

)
ep(x)

∫
u0(x)ep(y) dy

=

∫
u0(y)

∑
exp
(
−2π2t

)
ep(x− y)︸ ︷︷ ︸

Pt(x−y)

dy

= (Pt ∗ u0)(x)

◦ For t > 0, u̇t =
1
2u

′′
t
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◦ ut ⇒
t→∞

ū0, (Pt(y)
?→ 1) t→ ∞

◦ ut ⇒
t→+0

u0, (Pt(y)
??→ δ(y)) t → 0 (initial condition). We prove this

item in section 4 (example 17).

Difficulty: f =
∑
f̂(p)ep in L2, i.e.

∫ ∣∣∣f(x)−∑|p|≤k f̂(p)ep(x)
∣∣∣2 dx →

u→∞
0, but

not pointwise (or uniformly). We shall see an example:

Exercise 4. Solve the equation u̇t =
1
2u

′′, x ∈ [0, 12 ] with ut(0) = ut(
1
2) = 0.

Hint: extend ut(−x) = −ut(x), 0 ≤ x ≤ 1
2 .

Exercise 5. Pt(x) = 1√
2πt

∑∞
n=−∞ exp

(
−1

2
(x−n)2

t

)
. Hint: Gaussian integral,∫∞

−∞
(
−Aξ2 + iBξ

)
dξ =

√
π
4 exp

(
−B2

4A

)
, A > 0.

1.1.2 Equidistribution mod 1

α ∈ R/Q, {kα}, # {k ∈ {1, . . . , K} : {kα} ∈ I} ?
= |I|K + o(K)?, where I is an

arc. (Not hard to prove. What about {k2α}?)

Theorem 1 (Weyl). If P (x) is a polynomial of degree ≥ 1 with at least one
irrational coefficient, then {P (k)} is equidistributed mod 1.

Let denote µ as probability measure on T (δ0 for example), µt is a shift by
t, s.t.

∫
f(x) dµt =

∫
f(x+ t) dµ.

TKµ =
1

K

(
µ+ µα + µ2α + · · ·+ µ(K−1)α

)
,

becomes uniform (similarly to the solution of the heat equation), but in a weaker
sense.

Reminder (Weak convergence). Set ν̂(p) =
∫
e−p dν (ν is not in L2(T), but we

should not be dogmatic). νk → ν ⇐⇒ ∀p ≥ 1ν̂k(p) → ν̂(p).

For the uniform distribution: m̂es(p) = 0 for p ̸= 0.

T̂Kµ(p) =
1

K

K−1∑
k=0

exp(−2πikpα) =
1− exp(−2πikpα)

K(1− exp(−2πikpα))
→

k→∞
0.

This is quantative: depends on the approximability of α by rationals. But how
to bound |TKµ(I)− |I||?
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Theorem 2 (Erdős–Turán). Let µ be a probability measure on T. Then for
any N ≥ 1.

sup
I

|µ(I)− |I|| ≤ C

{
1

N
+

N∑
p=1

|µ̂(p)|
p

}
We prove Erdős–Turán theorem in section 5.

For µk = TKµ: assume ∀p ∈ Z⧹{0}, ∥pα∥ def
= dist(pα,Z) ≥ α

|P |τ , for some

a, τ > 0 (for α =
√
2 we can take τ = 1). Naive:

N∑
p=1

|µ̂k(p)|
p

≤
N∑
p=1

2

pK

1

2− 2 cos(2πpα)

≤
N∑
p=1

2

apK

√
2π

∥pα∥
≤ 2π

aK

N∑
p=1

1

p1−τ

≤ Cτ

aK
N τ

Equate, 1
N = Cτ

aKN
τ =⇒ N τ+1 = aK

Cτ
=⇒ N =

(
aK
Cτ

) 1
τ+1

. Thus:

sup
I

|µk(I)− |I|| ≤ C ′
τ

1

(aK)τ+1
.

The bound is not very sharp! Ideal is 1
K , which is inachievable, but we expect

logK
K for τ = 1. Better idea would be to use dyadic chunks. W.l.o.g. we assume

that N = 2M − 1.

min
2m−1≤p≤2m−1

∥pα∥ ≥ a

2mτ

Although, this cannot be achieved for all p! If ∥pα∥, ∥p′α∥ ≤ 2l−1a
2mτ , for some

l ≤ mτ , p ̸= p′. Then: ∥∥∥∥(p− p′)α ≤ 2la

2mτ

∥∥∥∥
=⇒ a

|p− p′|τ
≤ 2la

2mτ

=⇒ |p− p′| ≥ 2m−l/τ ,
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i.e. there are ≤ 2l/τ + 1 such p-s. We get:

C
M∑

m=1

[
mτ∑
l=1

2l/τ
(
2la

2mτ

)−1

+ 2ma−1

]
1

2m

= Ca−1
M∑

m=1

[
2m(τ−1)

mτ∑
l=1

2l(
1
τ−1)

]

≤ C ′a−1
M∑

m=1

[
1 + 2m(τ−1)

{
m, τ = 1

1, τ > 1

]

≤ C ′′a−1

{
M 2, τ = 1

2M(τ−1), τ > 1

≤ C ′′′a−1

{
log2N

N τ−1

min
N

[
a−1

K

{
log2N

N τ−1
+

1

N

]
∼

{
log2 K
K , τ = 1 can be improved to the logK

K
1

K1/τ , τ > 1 sharp!

Conclusion:

sup
I

∣∣∣∣|I| − 1

K
#{1 ≤ k ≤ K : {kα} ∈ I}

∣∣∣∣ ≲
{

log2 K
K , τ = 1

K−1/τ , τ > 1

Exercise 6. For ϵ1, . . . , ϵk i.i.d. ±1, show that

 

Figure 2: Random steps of length α on the rod.

sup
I

∣∣∣∣∣∣∣∣∣∣
P


{

K∑
k=1

ϵkα

}
︸ ︷︷ ︸
fraction part

−|I|



∣∣∣∣∣∣∣∣∣∣
≤ Ca

Kτ/2

(under the same assumption on α)
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2 Lecture 2

2.1 Construction

Recall that T = R/2πZ, and ep(x) = e2πipx

f ∈ L1(T) 7−→ f̂(p) =

∫
f(x)ep(x) dx , (Fourier coefficients of f)

Set {ep} forms an orthonormal basis of f ∈ L2(T), therefore:∫
|f |2 dx =

∑∣∣∣f̂(p)∣∣∣2 (2)∫
fg dx =

∑
f̂(p)ĝ(p) (3)

Example 1. êq(p) = δpq.

Example 2. f(x) = x, 0 ≤ x < 1

f̂(p) =

∫ 1

0

x exp(−2πipx) dx

=

x
exp(−2πipx)

−2πipx

∣∣∣∣1
0

+ 1
2πip

∫ 1

0 exp(−2πipx) dx = i
2πp , p ̸= 0

1
2 , p = 0

=⇒
∑
p=1

1

p2
=
π2

6

Exercise 7. Compute f̂ for f(x) =

{
1, |x| ≤ a

2

0, a
2 < x ≤ 1

2

.

The definition of Fourier coefficients is not always general enough. Some-
times we want to consider more general functions, such as the Dirac δ-function
δ(x), s.t. δ(x) ≥ 0, δ(x) = 0, for x ̸= 0, s.t.

∫
δ(x) dx = 1. Mathematically∫

δ(x)f(x) dx = f(0) functional on C(T).
A function g in L1(T) defines a functional on C(T) by ϕg(f) =

∫
fg dx.

We now shall define the Fourier coefficients of measures and even more general
objects.

Let B ⊂ L1(T) be a nice space of functions, e.g. L2(T), Lp(T) for p < ∞,
C(T), Ck(T), or C∞(T).

Definition 1. B is called a homogeneous space if:

• Banach (or Fréchet); contains ep(x) = exp(2πipx)

7



• f ∈ B =⇒ fy ∈ B, where fy(x) = f(x+ y)

• fy −→
y→0

f in the topology of B.

Remark. The third property holds in L1(T).

Let’s denote B′ as a dual space, the space of continuous functionals ϕ : B →
C. Examples of dual spaces:

Example 3. C(T)′ – complex measures, for example δ, δ0 − iδ 1
2
: f 7→ f(0) −

if(12).

Example 4. C1(T)′ – also contains derivatives of measures, e.g. δ′(f) = −f ′(0),
the reason for this notation

∫
δ′(x)f(x) dx = δ(x)f(x)

∣∣ 12
− 1

2

−
∫
δ(x)f ′(x) dx.

Example 5. C∞(T)′ – contains derivatives of δ-functions of arbitrary finite
order.

Let’s define ϕ̂(p) = ϕ(e−p) for ϕ ∈ B′. Sanity check: if B ⊂ L∞(T), then
B′ ⊃ L1(T) : ϕf(g) =

∫
fg dx and in this case definitions coincide.

Exercise 8. Compute Fourier coefficients: δ̂, and δ̂′

2.2 Algebraic properties

All algebraic properties are corollary of ep(x+ y) = ep(x)ep(y).

Property 1. f̂y(p) = ep(y)f̂(p)

Property 2. ϕ̂y(p) = ep(y)ϕ̂(p)

Property 3. (̂f ∗ g)(p) = f̂(p)ĝ(p), for
f, g ∈ L1(T) −→ (f ∗ g)(x) =

∫
f(y)g(x− y) dy.

Remark. f ∗ g ∈ L1(T) since:

∥f ∗ g∥1 =
∫ ∣∣∣∣∫ f(y)g(x− y) dy

∣∣∣∣ dx
≤
∫ ∫

dx dy |f(y)||g(x− y)|

u=x−y
=

∫ ∫
dx dy |f(y)||g(u)|

= ∥f∥1∥g∥1

Property 4. (̂µ ∗ ν)(p) = µ̂(p)ν̂(p) for µ, ν ∈ C(T)′ where
(µ ∗ ν)(f) =

∫
f(x+ y)µ(x)ν(y)
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Let’s define an linear operator Ty : f 7→ fy (shift), and ϕ 7→ ϕy, where
fy = f(x+ y), and ϕy(f) = ϕ(f−y).

Tyep = ep(y)ep, s.t. ep is an eigenvalue of shift operators Ty and thus also
an eigenvalue of any operator that commutes with shifts, i.e. for any such T ,

Tep = λpep, and consequently T̂ f(p) = λpf̂(p).

Example 6. f̂ ′(p) = +2πipf̂(p), and more generally differential operators with
constant coefficients.

Example 7. We look for a given function f(x) another real function g(x), s.t.
̂(f + ig)(−p) = 0, p = 0, 1, . . .

f(x) = f̂(0) +
∞∑
p=1

[
f̂(p)ep(x) + f̂(p)e−p(x)

]
g(x) =

∞∑
p=1

[
−if̂(p)ep(x) + if̂(p)e−p(x)

]

Thus ĝ(p) =


−if̂(p), p > 0

0

if̂(p), p < 0

, g is called the conjugate function, g = f̃ .

Reason. (f + ig)(x) = u(e2πix) is the boundary value of an analytic function

u(z) =
∑∞

p=0
̂(f + ig)(p)zp in the unit disk.

Exercise 9. Compute eigenvalues for Laplacian d2

dx2 +
d2

dy2 on torus.

Example 8. Solution to heat equation: ft = Pt ∗ f0

2.3 Decay rate of Fourier coefficients

Motto: “The nicer is f , the faster f̂ decays”. This works cleanly for L2 and

spaces defined using
∑∣∣∣f̂(p)∣∣∣2 = ∫ |f |2 dx, i.e. f ∈ L2(T) iff Fourier coefficients

are square summable:

Property 1. f ∈ L2(T) ⇔ f̂ ∈ l2

Property 2. Using property 1 and example 6, f (k) ∈ L2(T), i.e. f is the k-fold

integral of g ∈ L2(T), ⇐⇒
∑∣∣∣f̂(p)∣∣∣2|p|2k <∞.

Property 3. f ∈ C∞(T) ⇔
∣∣∣f̂(p)∣∣∣ decays faster than any power of p. (Exercise.

Hint: ∥g∥∞ ≤ ∥g∥1 + ∥g′∥1 ≤ ∥g∥2 + ∥g′∥2).
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Theorem 3. Let f ∈ L1(T), a > 0. TFAE (f ∈ C∞(T)):

(i) f admits an analytic extension to |Im(z)| < a
(ii) f ∈ C∞(T) and ∀0 < ã < a, ∃C(ã) :

∥∥f (k)∥∥∞ ≤ C(ã)ã−kk!

(iii) f ∈ C∞(T) and ∀0 < ã < a, ∃C(ã) :
∥∥f (k)∥∥

2
≤ C(ã)ã−kk!

(iv) ∀0 < ã < a, ∃C(ã) :
∣∣∣f̂(p)∣∣∣ ≤ C(ã) exp(−2π|p|ã). (Exponential decay

of Fourier coefficients)

Proof. theorem 3.(i) =⇒ theorem 3.(ii) using Cauchy formula: f (k)(x) =
k!
2πi

∮ f(z)
(z−x)k+1 dz.
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3 Lecture 3

Proof. Theorem 3.(ii) =⇒ theorem 3.(iii) is obvious, since
∥∥f (k)∥∥∞ ≤

∥∥f (k)∥∥
2
.

Proof. Theorem 3.(iii) =⇒ theorem 3.(iv), and theorem 3.(iv) =⇒ theo-
rem 3.(i). Remind that (ke)

k ≤ k! ≤ Cδ(1 + δ)k(ke)
k. Let ã < a1 < a, apply (3)

with a1 in place of ã:∫ ∣∣∣f (k)∣∣∣2 dx ≤ C(a1)
2a−2k

1 (k!)2

≤ C(a1)
2C2

δ

[
k(1 + δ)

ea1

]2k
, where 1 + δ =

a1
ã

≤ C̃(a1)
2

(
k

ãe

)2k

The LHS is
∑∣∣∣f̂(p)∣∣∣2(2π|p|)2k, hence for any k and p ̸= 0:

∣∣∣f̂(p)∣∣∣ ≤ C̃(a1)

(
k

ãe2π|p|

)k

, take k = 2πã|p| then

≤ ˜̃C(a1) exp{−2πã|p|}.

Proof. Theorem 3.(iv) =⇒ theorem 3.(i): Let F (z) =
∑
f̂(p)e2πipz

• Converges uniformly and therefore analytic for |z| < a

• On T coincides with f in L2, hence also almost everywhere.

Example 9. Pt ∗ f is an entire function (i.e. analytic in C) for t > 0, whenever
f ∈ C(T) or even f ∈ L1(T).

Exercise 10. If f is analytic in |Im(z)| < A with a single simple pole at z0
and |Im(z0)| = a ∈ (0, A), then Fourier coefficients for f , f̂(p) = exp(2πipz0) +
O(exp(−(A− δ)2π|p|).

For other function spaces the connection is less tight.
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Example 10. f ∈ Ck(T) =⇒
∑∣∣∣f̂(p)∣∣∣2|p|2k < ∞ , but

∑∣∣∣f̂(p)∣∣∣2|p|2k <

∞ =⇒ f ∈ Ck−1(T). Both implications are “unimprovable”.

Example 11. What can be said about f̂(p) for f ∈ L1(T)? Clearly,
∣∣∣f̂(p)∣∣∣ ≤

∥f∥1 , but |µ̂| is bounded even for measures!

We now discuss an improvement of Riemann-Lebesgue: if f ∈ L1(T) then

f̂(p) → 0. We prove a quantitative version as follows: recall that ω(δ; f) =
sup|y|<δ ∥f − fy∥∞ and f is uniformly continuous ⇐⇒ ω(δ; f) →

δ→+0
0. Let’s

denote ωB(δ; f) = sup|y|<δ ∥f − fy∥B, e.g. f ∈ L1(T) =⇒ ωL1(T)(δ; f) →
δ→+0

0.

Theorem 4 (Riemann-Lebesgue).∣∣∣f̂(p)∣∣∣ ≤ 1

2
ωL1(T)(

1

2|p|
; f)

And in particular, f̂(p) → 0, p→ ±0.

Proof.

f̂(p) =

∫
f(x)ep(x) dx =

∫
f(x+

1

2p
)ep(x+

1

2p
) dx

=

∫
f(x)ep

(
x+

1

2p

)
dx︸ ︷︷ ︸

term 1

+

∫ (
f

(
x+

1

2p

)
− f(x)

)
ep

(
x+

1

2p

)
dx︸ ︷︷ ︸

term 2

* term 1 = −
∫
f(x)ep(x) dx = −f̂(p)

* |term 2| ≤
∫ ∣∣∣f (x+ 1

2p

)
− f(x)

∣∣∣ dx ≤ ωL1(T)( 1
2|p| ;f)

Example 12. When the function f is α-Lipschitz, i.e. modulus of the continu-
ity is bounded by |f(x)− f(y)| ≤ C|x− y|α, α ∈ (0, 1], therefore f ∈ Lipα =⇒∣∣∣f̂(p)∣∣∣ ≤ p−α.

Exercise 11. Prove: for 0 < α < 1, fα(x) =
∑

p=1 3
−pα cos(2π3px) lies in

Lipα ∩ L1, but
∣∣∣f̂(p)∣∣∣ ≥ |p|−α on a sub-sequence. I.e. example 12 is sharp.

Corollary 1 (Riemann-Lebesgue). f (k) ∈ L1(T) =⇒
∣∣∣f̂(p)∣∣∣ = o

(
|p|−k

)
.

We can use corollary 1 to compute asymptotics of f̂ .
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Example 13. If f ∈ C1(T\{0}) is k-th the integrable piecewise function and has

a jump discontinuity at 0, then p-th Fourier coefficient f̂(p) = 1
2πip (f(+0)− f(−0))+

o
(

1
|p|

)
.

Proof. Let g(x) = f(+0) + (f(−0)− f(+0))x, 0 ≤ x < 1. ĝ(p) has this
asymptotics, (f − g)′ ∈ L1(T).

Exercise 12. f ∈ C1 (T\{0}), f(±x) ∼ A±x
−α for α ∈ [0, 1) and x → +0,

=⇒ A+Γ(α + 1)(2πip)α−1 + A−Γ(α− 1)(−2πip)α−1 + o
(

1
|p|

)
.

3.1 Convergence of Fourier series

Convergence of the partial sum Sn(f ;x) =
∑n

−n f̂(p)ep(x). Clearly, Ŝn =

f̂1[−n,n] therefore by item property 1, we expect that Sn is a convolution of f
with something. This is indeed so: Sn = Dn∗f , where Dn =

∑n
−n ep(x) (Dirich-

let kernel), since Sn(f ;x) =
∑n

−n

∫
f(y)ep(y) dy ep(x) =

∫
f(y)

∑n
−n ep(x −

y) dy.

Dn =
n∑
−n

ep(x) = e−n(p)
2n∑
0

ep(x)

= e−n(p)
1− e2n+1(x)

1− ep(x)
=

sin((2n+ 1)πx)

sin(πx)

And, clearly, D̂n(0) = 1. When is is true that Dn ∗ f → f? In L2(T), Sn is
the best approximation of f by a trigonometric polynomial of degree ≤ n, and
hence Sn −→ f in L2(T) if f ∈ L2(T). However, this is not the case for C(T),
L1(T) and etc.

Example 14 (de la Vallée-Poussin). f ∈ C(T), but (Dn ∗ f)(0) diverges. As
well as, f ∈ L1(T), but (Dn ∗ f) ↛

L1(T)
f .

Example 15 (Kolmogorov). f ∈ L1(T), but (Dn ∗ f) diverges everywhere.

Example 16 (Carleson-Hunt). f ∈ Lp(T), 1 < p <∞, and (Dn ∗ f) converges
almost everywhere.

Theorem 5 (Dini). If f ∈ L1(T) and
∫ |f(y)−f(x)|

|y−x| dy <∞ for some x ∈ T, then
Sn(f ;x) → f(x).

13



Proof. W.l.o.g. assume x = 0, f(0) = 0

Sn(f ; 0) =

∫
Sn(y)f(y) dy =

∫
sin(2πny) cos(πy) + cos(2πny) sin(πy)

sin(πy)
f(y) dy

=

∫
sin(2πny)

[
cos(πy)

sin(πy)
f(y)

]
︸ ︷︷ ︸

in L1(T)

dy +

∫
cos(2πny) f(y)︸︷︷︸

in L1(T)

dy

By theorem 4 it is implied that both last terms tend to 0.

Corollary 2 (Localisation principle). If f = g in (x−ϵ, x+ϵ) and Sn(f ;x) → A,
then Sn(g;x) → A.

3.1.1 Absolute convergence

When is it true that
∑∣∣∣f̂(p)∣∣∣ < ∞? Note that in this case

∑
f̂(p)ep → f

absolutely and uniformly =⇒ f ∈ C(T) (as a uniform limit of continuous
functions).

Theorem 6 (Bernstein). If
∫ 1

0 ωL2(T)(h; f)
dh
h3/2 <∞, then

∑∣∣∣f̂(p)∣∣∣ <∞.

Remark. In particular, the convergence of the integral implies that f ∈ C(T).
Is there a direct proof?

Proof.

ωL2(T)(h; f)
2 ≥

∫
|f(x+ h)− f(x)|2 dx

=
∑
p

∣∣∣f̂(p)∣∣∣2|1− ep(h)|2

≥ 2
∑

1
4h≤|p|≤ 1

2h

∣∣∣f̂(p)∣∣∣2
Hence, ∑

2m≤|p|≤2m+1

∣∣∣f̂(p)∣∣∣2 ≲ 1

2
ωL2(T)(2

−m; f)2

∑
2m≤|p|≤2m+1

∣∣∣f̂(p)∣∣∣ ≲ 2
m
2 ωL2(T)(2

−m; f)

On the other hand∫ 2−m+1

2−m

ωL2(T)(2; f)
dh

h
3
2

≥ ωL2(T)(2
−m; f)2

m
2

14



Definition 2. A(T) =
{
f ∈ L1(T) : f̂ ∈ l1

}
.

Remark. If a ∈ l1,
∑
apep ∈ C(T).

A(T) is an algebra (subalgebra of C(T): f, g ∈ A(T) =⇒ fg ∈ A(T).
Reason: (l1, ∗) is an algebra.

15



4 Lecture 4

Reminder. Last lecture motto, “The nicer is f , the faster f̂(p) decays”, works
nice for some function spaces:

• f ∈ L2(T) ⇐⇒ f̂ ∈ l2

• f ∈ C∞(T) ⇐⇒
∣∣∣f̂(p)∣∣∣ = O(|p|−∞)

• f is analytic ⇐⇒ f̂(p) decays exponentially

For other spaces there are no simple necessary and sufficient conditions.

• f ∈ L1(T) =⇒ f̂(p) → 0, or moreover
∣∣∣f̂(p)∣∣∣ ≤ ωL1

(h; f) = sup0≤y≤h ∥f − fy∥1

• f ∈ Lipα =⇒
∣∣∣f̂(p)∣∣∣ ≲ |p|−α, or more generally

∣∣∣f̂(p)∣∣∣ ≲ ωL1

(
1
|p| ; f

)
The decay is dominated by the most singular singularity. We also
discussed convergence:

• f ∈ L2(T) =⇒
∑
f̂(p)ep → f in L2(T)

Remark. Carleson showed that this is also holds a.e.

• f ∈ L1(T),
∫ f(y)−f(x)

y−x dx < ∞ =⇒
∑N

−N f̂(p)ep(x) → f(x) (for this x).

In general, SN =
∑N

−N f̂(p)ep(x) may not converge to f in any sense.

Reason. SN = DN ∗ f , DN(x) =
sin((2N+1)πx)

sin(πx)

Absolute uniform convergence: A(T) =
{
f ∈ L1(T),

∑∣∣∣f̂(n)∣∣∣ <∞
}

⊂ C(T).
Check out theorem 6, and in particular, f ∈ Lipα for some α > 1

2 =⇒ f ∈
A(T). But not for α = 1

2 and vice versa.
What to do with general f ∈ L1(T) and f ∈ C(T).

Paradox. Although f ∈ C(T) can be approximated uniformly by trigonometric
polynomials SN = DN ∗ f , the orthogonal projection of f onto the space of
trigonometric polynomials of degree ≤ N may be very far from f . The solution
is Dn ∗ f minimises ∥P − f∥2, but not ∥P − f∥1, and not ∥P − f∥∞.

New motto: “The nicer f is, the better it can be approximated by trigono-
metric polynomials”. But not by DN ∗ f , how then?

Theorem 7 (Fejér). If f ∈ C(T), then S0(f)+···+SN−1(f)
N ⇒ f , which implies

Weierstrass theorem without circular reasoning. More generally: for any homo-

geneous space B and any f ∈ B, S0(f)+···+SN−1(f)
N ⇒ f ∈ B.

Reminder. * an → A =⇒ a0+···+aN−1

N → A

16



* Not vice versa, e.g. an = (−1)n

What is S0+···+SN−1

N ? Sn = Dn ∗ f , hence S0+···+SN−1

N = (D0+···+DN−1

N ) ∗ f .

Exercise 13. If |an − an−1| ≤ C
n and (a0 + · · · + aN−1)/N → A, show that

an → A.

Exercise 14. Show that KN(x) =
D0(x)+···+DN−1(x)

N = sin2(πNx)

N sin2(πx)
.

Property 1.
∫
KN(x) dx = 1. Since, it holds for DN

Property 2.
∫
|KN(x)| dx ≤ C. Since KN ≥ 0

Property 3. ∀0 < δ < 1
2 ,

∫
|x|>δ |KN(x)| dx →

N→∞
0. Since, |KN(x)| ≲ 1

Nx2

Definition 3. A sequence of functions kN satisfying property 1, property 2,
property 3 called a summability kernel or approximate δ-function.

Remark. Sometimes instead of a large parameter N → ∞, we shall encounter
a small parameter t→ 0.

Theorem 8. If B is a homogeneous space, f ∈ B then kN ∗ f → f ∈ B for any
summability kernel kN .

Corollary 3. Uniqueness in L1(T) : f̂ = ĝ =⇒ f = g (and also explicit
reconstruction).

Proof. We assume that B is a Banach space. (kn ∗ f)(x) =
∫
kn(y)f(x− y) dy,

and briefly kN ∗ f =
∫
kN(y)fy dy.

∥kN ∗ f − f∥B =
by property 1

∥∥∥∥∫ kN(−y)(fy − f) dy

∥∥∥∥
B

≤
∫

|kN(−y)|∥f−y − f∥B dy

≤
∫
|y|≤δ

|kN(y)| dy ωB(f ; δ)︸ ︷︷ ︸
term 1

+

∫
δ<|y|≤ 1

2

|kN(y)| dy 2∥f∥B︸ ︷︷ ︸
term 2

* by property 2, term 1 ≤ CωB(f ; δ)

* by property 3, term 2 → 0, as N → ∞

So we let N → ∞ and δ → +0.

17



4.1 Additional applications

Example 17. The heat kernel Pt(t → +0) is a summability kernel, and hence

(Pt ∗ f) →
t→0

f ∈ B for any f ∈ B, e.g. C(T), i.e. ut(x) =

{
f(x), t = 0

(Pt ∗ f)(x), t > 0
is

continuous at t = 0 and thus indeed is a solution to the heat equation. Hint:
use exercise 4.

Example 18. Given a continuous g : {|z| = 1} → R, we want G : {|z| ≤
1} → R which is continuous and harmonic (in the interior). G (r exp(2πix)) =
(P o

r ∗f)(x), and f(x) = g(exp(2πix)) where P o
r (x) =

∑
p r

|p|ep(x) is the Poisson
kernel.

Exercise 15. - P o
r (r → 1− 0) is a summability kernel ( =⇒ G is contin-

uous at the boundary)

- ∆G = 0 is {|z| < 1}

Example 19. Another useful kernel is Jackson kernel: JN(x) =
KN (x)2∫
KN (y)2dy

Exercise 16. Show that JN is a summability kernel and JN(x) ≲ N−3|x|−4

for |x| ≤ 1
2

4.2 Amplifications of the Weierstrass theorem

Let denote trigonometric polynomials of degree ≤ N as TN = {P =
∑
cpep :

|p| ≤ N}, and the rate of approximation by trigonometric polynomials EN(f ;B) =
infP∈TN ∥f − P∥B.

Theorem 9 (Jackson+). if f ∈ B, then EN(f ;B) ≲ Cω 1
N
(f ;B) and, moreover,

if f (k) ∈ B, then EN(f ;B) ≲ CkN−kω 1
N
(f (k);B).

Exercise 17. Prove second part of the theorem 9.

First part. Assume w.l.o.g. k = 0, and ωB(2δ; f) ≤ 2ωB(δ; f).

E2N(f ;B) ≤ ∥JN ∗ f − f∥B

≤ 2

∫ 1
2

0

JN(y)∥fy − f∥B dy

≤ 2

∫ 1
2

0

JN(y)ωB(y; f) dy

∫ K
2N

(K−1)
2N

≲

term 1︷︸︸︷
1

N

term 2︷ ︸︸ ︷
1

N 3(KN )4

term 3︷ ︸︸ ︷
KωB(

1

2N
; f) =

1

K3
ωB(

1

2N
; f)

18



Term 1 is the length of the interval. Term 2 is the bound on JN using exercise 16.
Term 3 is built using ωB(

k
2N ; f) ≤ kωB(

1
2N ; f). The final step is the summing

over k.

Remarkably, Jackson’s theorem is sharp in a much stronger sense than the
results from the previous section.

Theorem 10 (Bernstein). If EN(f ;B) ≤ AN−(k+r) for some k ∈ Z+, 0 < r <
1 then f (k) ∈ B and ωδ(f

(k);B) ≤ Cr,kAδ
r.

Remark. r = 1 requires some more care.

Proof. For k = 0, let Pn ∈ T2n be such that ∥Pn − f∥B = E2n(f ;B), then

f = limB Pn =
∑∞

n=0 (Pn − Pn+1), where

∥Qn∥B ≤ 2E2n(f ;B) ≲ 2A2−nr (4)

Theorem 11 (Berstein). If P ∈ TN , ∥P ′∥B ≤ KN∥P∥B where K = 2π (we do
not need the sharp value of k).

Continuing the proof of theorem 10:

∥fy − f∥B ≤
∑

∥Qn,y −Qn∥B
≲
∑

min(2A2−nr, 2n(1−r)AK|y|)

≲ A(|y|
∑
2n≤ 1

y

22(1−r) +
∑
2n> 1

y

2−nr)

≲ A(|y||y|r−1 + |y|r)
≲ A|y|r.

Exercise 18. Prove k ≥ 1 case.

Exercise 19. Prove theorem 11. Plan for the proof:

P = VN ∗ P for VN = 2K2N −KN

P ′ = V ′
N ∗ P =

∫
V ′
N(y)Py dy

=⇒ ∥P ′∥B ≤
∫

|V ′
N(y)|∥Py∥B dy

One can check that
∫
|V ′

N(y)| dy ≤ KN .
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5 Lecture 5

5.1 Fourier coefficients of linear functionals

Reminder. B - homogeneous space, ϕ ∈ B′ - linear functional, ϕ̂(p) = ϕ(e−p),
p ∈ Z.

5.1.1 Reconstruction of ϕ from ϕ̂

We proved this for B (extended theorem 7)

Theorem 12. Let ∀f ∈ B, ϕ(f) = 1
N limN→∞

∑N−1
n=0

∫
Sn(ϕ)f dx, where Sn(ϕ) =∑N

−N ϕ̂(x)ep. (Briefly: ϕ = lim 1
N

∑N−1
n=0 Sn(ϕ) in B′)

Corollary 4. ϕ̂ = ψ̂ =⇒ ϕ = ψ.

Proof of theorem 12.

1

N

N−1∑
n=0

Sn(ϕ) =
N∑
−N

(
1− |p|

N

)
ϕ̂(p)ep,

hence, ∫
1

N

N−1∑
n=0

Sn(ϕ)f dx =

∫ N∑
−N

(
1− |p|

N

)
ϕ̂(p)epf dx

=
N∑
−N

(
1− |p|

N

)
ϕ̂(p)f̂(−p)

= ϕ

(
N∑
−N

(
1− |p|

N

)
f̂(−p)e−p

)

= ϕ

(
N∑
−N

(
1− |p|

N

)
f̂(p)ep

)

= ϕ

 1

N

N−1∑
n=0

Sn(f)︸ ︷︷ ︸
Converges to f ∈ B by theorem 7

→ ϕ(f)
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5.1.2 Focus on B = C(T)

B′ = µ(T) - measures. µ+(T) ⊂ µ(T) - positive measures. (µ(T) = µ+(T) +
iµ+(T) − µ+(T) − iµ+(T), any measure can be decomposed in this way and
follows from Hahn theorem).

Inequality 1 (Erdős–Turán). if µ is a probability measure on T, then ∀N ≥ 1:

sup
I−arc

|µ(I)−mes(I)| ≥ C

[
1

N
+

N∑
p=1

µ̂(p)

p

]

Lemma 1 (Ganelius). Let f ∈ L1(T) real-valued, and
let ω+(δ; f) = supx≤y≤x+δ (f(y)− f(x)). Then

sup |f | ≤ C

[
N−1∑
p=0

∣∣∣f̂(p)∣∣∣+ ω+(
1

N
; f)

]

Proof of inequality 1. Let f(t) = x− µ[0, t]−A, where A =
∫ 1

0 (x− µ[0, x]) dx.
Then

(1) ω+(δ; f) ≤ δ

(2) f̂(0) = 0

(3) f̂(p) =
∫
ep(x) (x− µ[0, x]− A) dx = 1

2πipµ̂(p), p ≥ 1

Hence,

|µ[a, b]− (b− a)| ≥ 2C

(
1

N
+

N∑
p=1

|µ̂(p)|
2πp

)

Proof of lemma 1. W.l.o.g. M = sup |f | = |f(0)|

Case 1. M > 0, then f(x) ≥M − ω+(2kN ; f) for 0 ≥ x ≥ −2k
N .

(KN ∗ f)(− k

N
) =

∫ k
N

− k
N

KN(y)f(−
k

N
− y) dy︸ ︷︷ ︸

term1

+

∫
k
N≥|y|≥ 1

2

KN(y)f(−
k

N
− y) dy︸ ︷︷ ︸

term2
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For sufficiently large k ∈ N,
∫ k

N

− k
N

KN(y) dy ≥ 9
10 , whence term 1 ≥ 9

10(M−
ω+
(
2k
N ; f

)
), term 2 ≥ − 1

10M , and therefore

(KN ∗ f)(− k

N
) ≥ 9

5
M − 9

10
ω+

(
2k

N
; f

)
≥ 4

5
M − 2kω+

(
1

N
; f

)
On other hand:

∥KN ∗ f∥∞ ≤
∑
|p|≤N

∣∣∣f̂(p)∣∣∣
= |f(0)|+ 2

N∑
p=1

∣∣∣f̂(p)∣∣∣
Whence

M ≲

[
ω+

(
1

N
; p) +

N∑
p=0

∣∣∣f̂(p)∣∣∣)]
Case 2. M < 0. Similar argument.

Now start with a = (ap)p∈Z

- when does there exist µ ∈ µ+(T) such that µ̂(p) = ap?

- same question for µ ∈ µ(T)

Definition 4. a is called positive-semidefinite (a ≽ 0) if ∀k ≥ 1, ∀z1, . . . , zn ∈ C

k∑
p,q=−k

ap−qzpzq ≥ 0

Theorem 13 (Herglotz). a ≽ 0 ⇐⇒ ∃µ ∈ µ+(T), such that µ̂ = a.

Proof. If µ ∈ µ+(T)∑
µ̂(p− q)zpzp =

∑∫
eq−p dµ zqzp

=

∫ ∣∣∣∑ zqeq

∣∣∣2 dµ ≥ 0

Assume a ≽ 0. Denote: µ
(∑

|p|≤N cpep

)
=
∑
cpa−p. We claim that if P ∈ TN

is ≥ 0 on T, then µ(P ) ≥ 0. This follows from:
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Lemma 2. If P ∈ TN ≥ 0 , then P = |Q|2 for some trigonometric polynomials
Q.

Explicitly: P =
∑
c′pc

′
qep−q, whence µ(P ) =

∑
c′pc

′
qaq−p ≥ 0. Thus P ≥

A =⇒ µ(P ) ≥ Aa0, for some A ∈ R, and |P | ≤ A =⇒ |µ(p)| ≤ Aa0. Hence
µ is a bounded functional on

⋃
TN and can be extended to C(T), i.e. defines a

measure µ ∈ µ(T). To prove that µ ∈ µ+(T), take f ≥ 0 in C(T); then,

∃Pn ⇒ f, Pn ∈ Tn, and Pn ≥ 0, e.g. Pn = Kn ∗ f
=⇒ µ(f) = limµ(Pn) ≥ 0

Proof of lemma 2.

P (x) =
N∑
−N

cpep ≥ 0 =⇒ c−p = cp

Let P#(z) =
∑N

−N cpz
p = CNz

−N
∏

(z − ξj)
m(ξj)

- if |ξj| = 1, m(ξj) is even,

- if |ξj| ≠ 1,

P#

(
1

ξj

)
=
∑

cpξ
−p
j =

∑
c−pξ

−p
j = P#(ξj) = 0

=⇒ m

(
1

ξj

)
= m(ξj)

Let Q(x) =
√

|CN |
∏

|ξ|>1 (e1(x)− ξj)
m(ξj)/2

∏
|ξ|=1 (e1(x)− ξj)

m(ξj)/2, then

|Q(x)|2 = |P (x)| = P (x)

Exercise 20. Complete the details of the proof when m(ξj) > 1.

5.2 Applications

5.2.1 Stationary Gaussian process

(Xn) - stationary Gaussian process (C-valued), EXn = 0.

Claim. ∃ρ ∈ µ+(T) (semi-positive measure) such that EXpXq = ρ̂(p− q).
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Proof. ∑
EXpXqzpzq

= E
∣∣∣∑ zpXp

∣∣∣2 ≥ 0

Exercise 21. Show that if X1+···+XN

N → 0 (= EX1) ⇐⇒ ρ has no atom at 0.

5.2.2 Predictability

Can one predict X0, X1, . . . if we know X−1, X−2, . . . ?

Reminder. (Szegő-Krein) ρ′ - density of the absolutely continuous (ac) part of f ,
as in Lebesgue decomposition theorem; g(ρ′) = exp

(∫
log ρ′(x) dx

)
. (Jensen)∫

log ρ′(x) dx ≤ log
∫
ρ′(x) dx ≤ log ρac(T), hence

∫
log ρ′(x) dx ∈ [−∞, 0],

g(ρ′) ∈ [0, 1].

Theorem 14 (Szegő-Krein). TFAE:

(i) g(ρ′) = 0, i.e.
∫
log− ρ

′ dx = +∞
(ii) ∀k, ϵ > 0, ∃c1,k, . . . , cN,k : E

∣∣∣Xk −
∑N

j=0 cj,kX−j

∣∣∣2 ≤ ϵ

Exercise 22. Show that theorem 14.(ii) ⇐⇒ span(ep)p≥1 is dense in L2(ρ).

5.2.3 Spectral theorem for unitary operators

U - unitary operator on H, f ∈ H, and

an = ⟨Unf, f⟩, a ≽ 0

The measure ρ such that ρ̂ = a is called the spectral measure of U at f .

Exercise 23. Construct an isometry V : span{Unf} ↔ L2(ρ), such that
(V −1UV )g = e1g. (spectral theorem for unitary operators).
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6 Overview

Functions on T ↔ sequence.

- f ∈ L1(T) → f̂(p) =
∫
f(x)ep(x) dx, where ep(x) = exp(2πipx)

- more generally: µ ∈ µ(T) → µ̂(p) =
∫
ep(x) dµ(x).

- even more generally: ϕ ∈ B′

Idea: sometimes f̂ is more accessible than f , especially problems invariant
under shifts (heat equation, equidistribution mod 1, etc.).

Basic questions:

(a) Given f , how does f̂ behave?

(b) Given a sequence a, does there exist f such that f̂ = a, is it unique, and
how to reconstruct f from a?

Brief answers:

(a) ”The nicer f is, the faster f̂ decays” (works nicely in some spaces, less
cleanly in others)

(b) Uniqueness / reconstruction: Fejer method - very general. Existence:
only special results when answer for the previous item is very precise.
More intuitive method for reconstruction: ”f =

∑
f̂(p)ep”:

- works in L2

- in L1 → C(T) - requires additional assumptions

Generalisations: often locally compact abelian groups (LCA), particularly
R.
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