LTCC course: Harmonic Analysis

Lectures by Sasha Sodin
a.sodin@qmul.ac.uk
Notes* by Artem Artemev
a.artemev20@imperial.ac.uk

February 2022

1 Lecture 1

1.1 Motivating examples

1.1.1 Heat equation

Circular chain of length N. Denote $u_{t}(j)$ the temperature of j-th piece at time $t \in \mathbb{Z}_{+}$.

$$
\underbrace{u_{t+1}(j)-u_{t}(j)}_{\text {temperature increment at } j}=\frac{\kappa}{2}\left[\left(u_{t}(j+1)-u_{t}(j)\right)-\left(u_{t}(j-1)-u_{t}(j)\right)\right)]
$$

where $0<x<1$.

Figure 1: Circular chain of length N.
What happens as t grows; particularly, as $t \rightarrow \infty$?

$$
\begin{aligned}
& * \bar{u}_{t}=\frac{1}{N} \sum_{j=0}^{N-1} u_{t}(j) \text { is preserved, i.e. equal to } \bar{u}_{0} \\
& * u_{t} \rightarrow \bar{u}_{0}
\end{aligned}
$$

[^0]More quantitative question: set $u_{0}=N \delta_{0}$ and $N \gg 1$, after how much time $u_{t} \approx$ 1 ? Is it N, \sqrt{N}, N^{2} ? The idea: fast and slow fluctuations. Fast fluctuations get smoothed out fast. How to separate u_{t} into scales, which could be analysed separately?

Main trick is in using $e_{p}(j)=\exp \left(\frac{2 \pi i j p}{N}\right)$.

* "wavelength $\frac{N}{p}$ " but with arithmetic nuances
* character property: $e_{p}(j+k)=e_{p}(j) e_{p}(k)$

Exercise 1. Check that there are no other characters.
Claim. e_{p} form an orthogonal basis: $\frac{1}{N} \sum_{j=}^{N-1} e_{p}(j) \overline{e_{q}(j)}=\delta_{p q}$.
Expand

$$
\begin{aligned}
u_{t} & =\sum \hat{u}_{t}(p) e_{p} \\
\hat{u}_{t}(p) & =\frac{1}{N} \sum u_{t}(j) \overline{e_{p}(j)} \\
u_{t}(j \pm 1) & =\sum \hat{u}_{t}(p) e_{p}(\pm 1) e_{p}(j)
\end{aligned}
$$

hence,

$$
\left.\hat{u}_{t+1}(p)-\hat{u}_{t}(p)=\frac{x}{2}\left(e_{p}(1)+e_{p}(-1)-2\right) \hat{u}_{t}(p)\right) .
$$

All p are uncoupled, i.e. one equation for each p !

$$
\begin{align*}
& \hat{u}_{t+1}(p)=\left(1-x\left(1-\cos \frac{2 \pi p}{N}\right)\right) \hat{u}_{t}(p) \tag{1}\\
& \quad \Longrightarrow \hat{u}_{t}(p)=\left(1-x\left(1-\cos \frac{2 \pi p}{N}\right)\right)^{t} \hat{u}_{0}(p)
\end{align*}
$$

Analysis:

- constants are proportional to $e_{0}, \hat{u}_{t}(0)=\bar{u}_{t}$, and, indeed, it does not change
- the greater $|p|$ is, the faster $\hat{u}_{t}(p) \rightarrow 0$. The slowest one is $\hat{u}_{t}(1)$ and $\hat{u}_{t}(-1)$:

$$
\begin{aligned}
\left|\hat{u}_{t}(1)\right| & =\left(1-x\left(1-\cos \frac{2 \pi}{N}\right)\right)^{t} \hat{u}_{0}(1) \\
& \sim 1-\frac{2 x \pi^{2}}{N^{2}} \\
& \sim \exp \left(-\frac{2 x \pi^{2}}{N^{2}}\right)
\end{aligned}
$$

It takes $\lesssim N^{2}$ steps to converge to \bar{u}_{0}

Exercise 2. Let $u_{0}=N \delta_{0}$, then $\max _{j}\left|u_{t}(j)-1\right|= \begin{cases}\leq C \exp \left\{\frac{-c t}{N^{2}}\right\}, & t \geq C N^{2} \\ \geq \frac{1}{2}, & t \leq \frac{1}{C} N^{2}\end{cases}$
A more realistic version $t \in \mathbb{R}_{+}, x \in \mathbb{T}\left(\mathbb{R} ? \mathbb{R}^{2}\right.$? $)$
(a) $t \in \mathbb{R}_{+}$, still on $\mathbb{Z} / n \mathbb{Z}$.

$$
\frac{\partial}{\partial t} u_{t}(j)=\frac{\kappa}{2}\left[\left(u_{t}(j+1)-u_{t}(j)\right)+u_{t}(j-1)-u_{t}(j)\right]
$$

Exercise 3. Develop this theory.
(b) x - continual

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\kappa}{2} \frac{\partial^{2} u_{t}(x)}{\partial x^{2}} \quad \text { or } \quad \dot{u}_{t}=\frac{\kappa}{2} u_{t}^{\prime \prime} .
$$

\mathbb{T} : periodic because $u_{t}(1)=u_{t}(0)$ - "circular rod".

$$
\begin{aligned}
& e_{p}(x)=\exp (2 \pi i p x) \quad p \in \mathbb{Z} \\
& \mathrm{~L}_{2}(\mathbb{T})=\left\{f: \mathbb{T} \rightarrow \mathbb{C}: \int_{0}^{1}|f(x)|^{2} \mathrm{~d} x<\infty\right\}
\end{aligned}
$$

Claim. e_{p} form an orthonormal basis of $\mathrm{L}_{2}(\mathbb{T})$.
Proof. $\left\langle e_{p}, \overline{e_{p}}\right\rangle=\int_{0}^{1} e_{p}(x) \overline{e_{p}(x)} \mathrm{d} x=\delta_{p q}$. Completeness: Weierstrass theorem.
Want: $u_{t}(x) \stackrel{?}{=} \sum \hat{u}_{t}(p) e_{p}(x)$, where $\hat{u}_{t}(p)=\left\langle u_{t}, e_{p}\right\rangle$. Ignoring convergence et al.:

$$
\begin{aligned}
e_{p}^{\prime \prime}(x) & =-4 \pi^{2} p^{2} e_{p}(x) \\
& \Longrightarrow \dot{\hat{u}}_{t}(p)=-2 \pi^{2} p^{2} \hat{u}_{t}(p) \\
& \Longrightarrow \hat{u}_{t}(p)=\exp \left(-2 \pi^{2} p^{2} t\right) \hat{u}_{t}(0)
\end{aligned}
$$

$$
\begin{aligned}
u_{t}(x) & =\sum \exp \left(-2 \pi^{2} p^{2} t\right) e_{p}(x) \int u_{0}(x) \overline{e_{p}(y)} \mathrm{d} y \\
& =\int u_{0}(y) \underbrace{\sum \exp \left(-2 \pi^{2} t\right) e_{p}(x-y)}_{P_{t}(x-y)} \mathrm{d} y \\
& =\left(P_{t} * u_{0}\right)(x)
\end{aligned}
$$

- For $t>0, \dot{u}_{t}=\frac{1}{2} u_{t}^{\prime \prime}$
- $u_{t} \underset{t \rightarrow \infty}{\rightrightarrows} \bar{u}_{0},\left(P_{t}(y) \stackrel{?}{\rightarrow} 1\right) \quad t \rightarrow \infty$
- $u_{t} \underset{t \rightarrow+0}{\rightrightarrows} u_{0},\left(P_{t}(y) \xrightarrow{? ?} \delta(y)\right) \quad t \rightarrow 0$ (initial condition). We prove this item in section 4 (example 17).

Difficulty: $f=\sum \hat{f}(p) e_{p}$ in L_{2}, i.e. $\int\left|f(x)-\sum_{|p| \leq k} \hat{f}(p) e_{p}(x)\right|^{2} \mathrm{~d} x \underset{u \rightarrow \infty}{\rightarrow} 0$, but not pointwise (or uniformly). We shall see an example:

Exercise 4. Solve the equation $\dot{u}_{t}=\frac{1}{2} u^{\prime \prime}, x \in\left[0, \frac{1}{2}\right]$ with $u_{t}(0)=u_{t}\left(\frac{1}{2}\right)=0$. Hint: extend $u_{t}(-x)=-u_{t}(x), 0 \leq x \leq \frac{1}{2}$.

Exercise 5. $P_{t}(x)=\frac{1}{\sqrt{2 \pi t}} \sum_{n=-\infty}^{\infty} \exp \left(-\frac{1}{2} \frac{(x-n)^{2}}{t}\right)$. Hint: Gaussian integral, $\int_{-\infty}^{\infty}\left(-A \xi^{2}+i B \xi\right) \mathrm{d} \xi=\sqrt{\frac{\pi}{4}} \exp \left(\frac{-B^{2}}{4 A}\right), A>0$.

1.1.2 Equidistribution mod 1

$\alpha \in \mathbb{R} / \mathbb{Q},\{k \alpha\}, \#\{k \in\{1, \ldots, K\}:\{k \alpha\} \in I\} \stackrel{?}{=}|I| K+o(K) ?$, where I is an arc. (Not hard to prove. What about $\left\{k^{2} \alpha\right\}$?)

Theorem 1 (Weyl). If $P(x)$ is a polynomial of degree ≥ 1 with at least one irrational coefficient, then $\{P(k)\}$ is equidistributed $\bmod 1$.

Let denote μ as probability measure on \mathbb{T} (δ_{0} for example), μ_{t} is a shift by t, s.t. $\int f(x) \mathrm{d} \mu_{t}=\int f(x+t) \mathrm{d} \mu$.

$$
T_{K \mu}=\frac{1}{K}\left(\mu+\mu_{\alpha}+\mu_{2 \alpha}+\cdots+\mu_{(K-1) \alpha}\right)
$$

becomes uniform (similarly to the solution of the heat equation), but in a weaker sense.

Reminder (Weak convergence). Set $\hat{\nu}(p)=\int e_{-p} \mathrm{~d} \nu\left(\nu\right.$ is not in $L_{2}(\mathbb{T})$, but we should not be dogmatic). $\nu_{k} \rightarrow \nu \Longleftrightarrow \forall p \geq 1 \hat{\nu}_{k}(p) \rightarrow \hat{\nu}(p)$.

For the uniform distribution: $\widehat{m e s}(p)=0$ for $p \neq 0$.

$$
\widehat{T_{K \mu}}(p)=\frac{1}{K} \sum_{k=0}^{K-1} \exp (-2 \pi i k p \alpha)=\frac{1-\exp (-2 \pi i k p \alpha)}{K(1-\exp (-2 \pi i k p \alpha))} \underset{k \rightarrow \infty}{\rightarrow} 0
$$

This is quantative: depends on the approximability of α by rationals. But how to bound $\left|T_{K \mu}(I)-|I|\right|$?

Theorem 2 (Erdős-Turán). Let μ be a probability measure on \mathbb{T}. Then for any $N \geq 1$.

$$
\sup _{I}|\mu(I)-|I|| \leq C\left\{\frac{1}{N}+\sum_{p=1}^{N} \frac{|\hat{\mu}(p)|}{p}\right\}
$$

We prove Erdős-Turán theorem in section 5 .
For $\mu_{k}=T_{K \mu}$: assume $\forall p \in \mathbb{Z} \backslash\{0\},\|p \alpha\| \stackrel{\text { def }}{=} \operatorname{dist}(p \alpha, \mathbb{Z}) \geq \frac{\alpha}{|P|^{\text {r }}}$, for some $a, \tau>0$ (for $\alpha=\sqrt{2}$ we can take $\tau=1$). Naive:

$$
\begin{aligned}
\sum_{p=1}^{N} \frac{\left|\hat{\mu}_{k}(p)\right|}{p} & \leq \sum_{p=1}^{N} \frac{2}{p K} \frac{1}{2-2 \cos (2 \pi p \alpha)} \\
& \leq \sum_{p=1}^{N} \frac{2}{a p K} \frac{\sqrt{2 \pi}}{\|p \alpha\|} \leq \frac{2 \pi}{a K} \sum_{p=1}^{N} \frac{1}{p^{1-\tau}} \\
& \leq \frac{C_{\tau}}{a K} N^{\tau}
\end{aligned}
$$

Equate, $\frac{1}{N}=\frac{C_{\tau}}{a K} N^{\tau} \Longrightarrow N^{\tau+1}=\frac{a K}{C_{\tau}} \Longrightarrow N=\left(\frac{a K}{C_{\tau}}\right)^{\frac{1}{\tau+1}}$. Thus:

$$
\sup _{I}\left|\mu_{k}(I)-|I|\right| \leq C_{\tau}^{\prime} \frac{1}{(a K)^{\tau+1}} .
$$

The bound is not very sharp! Ideal is $\frac{1}{K}$, which is inachievable, but we expect $\frac{\log K}{K}$ for $\tau=1$. Better idea would be to use dyadic chunks. W.l.o.g. we assume that $N=2^{M}-1$.

$$
\min _{2^{m-1} \leq p \leq 2^{m}-1}\|p \alpha\| \geq \frac{a}{2^{m \tau}}
$$

Although, this cannot be achieved for all p ! If $\|p \alpha\|,\left\|p^{\prime} \alpha\right\| \leq \frac{2^{l-1 a}}{2^{m \tau}}$, for some $l \leq m \tau, p \neq p^{\prime}$. Then:

$$
\begin{aligned}
& \left\|\left(p-p^{\prime}\right) \alpha \leq \frac{2^{l} a}{2^{m \tau}}\right\| \\
& \Longrightarrow \frac{a}{\left|p-p^{\prime}\right|^{\tau}} \leq \frac{2^{l} a}{2^{m \tau}} \\
& \Longrightarrow\left|p-p^{\prime}\right| \geq 2^{m-l / \tau}
\end{aligned}
$$

i.e. there are $\leq 2^{l / \tau}+1$ such p-s. We get:

$$
\begin{aligned}
& C \sum_{m=1}^{M}\left[\sum_{l=1}^{m \tau} 2^{l / \tau}\left(\frac{2^{l} a}{2^{m \tau}}\right)^{-1}+2^{m} a^{-1}\right] \frac{1}{2^{m}} \\
& =C a^{-1} \sum_{m=1}^{M}\left[2^{m(\tau-1)} \sum_{l=1}^{m \tau} 2^{l\left(\frac{1}{\tau}-1\right)}\right] \\
& \leq C^{\prime} a^{-1} \sum_{m=1}^{M}\left[1+2^{m(\tau-1)}\left\{\begin{array}{ll}
m, & \tau=1 \\
1, & \tau>1
\end{array}\right]\right. \\
& \leq C^{\prime \prime} a^{-1} \begin{cases}M^{2}, & \tau=1 \\
2^{M(\tau-1)}, & \tau>1\end{cases} \\
& \leq C^{\prime \prime \prime} a^{-1}\left\{\begin{array}{l}
\log ^{2} N \\
N^{\tau-1}
\end{array}\right.
\end{aligned}
$$

Conclusion:

$$
\sup _{I}| | I\left|-\frac{1}{K} \#\{1 \leq k \leq K:\{k \alpha\} \in I\}\right| \lesssim \begin{cases}\frac{\log ^{2} K}{K}, & \tau=1 \\ K^{-1 / \tau}, & \tau>1\end{cases}
$$

Exercise 6. For $\epsilon_{1}, \ldots, \epsilon_{k}$ i.i.d. ± 1, show that

Figure 2: Random steps of length α on the rod.

$$
\sup _{I}|P\{\underbrace{\left\{\sum_{k=1}^{K} \epsilon_{k} \alpha\right\}}_{\text {fraction part }}-|I|\}| \leq \frac{C a}{K^{\tau / 2}}
$$

(under the same assumption on α)

2 Lecture 2

2.1 Construction

Recall that $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$, and $e_{p}(x)=e^{2 \pi i p x}$

$$
f \in \mathrm{~L}_{1}(\mathbb{T}) \quad \longmapsto \quad \hat{f}(p)=\int f(x) \overline{e_{p}(x)} \mathrm{d} x, \quad \text { (Fourier coefficients of } f \text {) }
$$

Set $\left\{e_{p}\right\}$ forms an orthonormal basis of $f \in \mathrm{~L}_{2}(\mathbb{T})$, therefore:

$$
\begin{align*}
& \int|f|^{2} \mathrm{~d} x=\sum|\hat{f}(p)|^{2} \tag{2}\\
& \int f \bar{g} \mathrm{~d} x=\sum \hat{f}(p) \overline{\hat{g}(p)} \tag{3}
\end{align*}
$$

Example 1. $\hat{e}_{q}(p)=\delta_{p q}$.
Example 2. $f(x)=x, \quad 0 \leq x<1$

$$
\begin{aligned}
\hat{f}(p) & =\int_{0}^{1} x \exp (-2 \pi i p x) \mathrm{d} x \\
& =\left\{\begin{array}{l}
\left.x \frac{\exp (-2 \pi i p x)}{-2 \pi i p x}\right|_{0} ^{1}+\frac{1}{2 \pi i p} \int_{0}^{1} \exp (-2 \pi i p x) \mathrm{d} x=\frac{i}{2 \pi p}, \quad p \neq 0 \\
\frac{1}{2}, \quad p=0
\end{array}\right.
\end{aligned}
$$

$$
\Longrightarrow \sum_{p=1} \frac{1}{p^{2}}=\frac{\pi^{2}}{6}
$$

Exercise 7. Compute \hat{f} for $f(x)=\left\{\begin{array}{ll}1, & |x| \leq \frac{a}{2} \\ 0, & \frac{a}{2}<x \leq \frac{1}{2}\end{array}\right.$.
The definition of Fourier coefficients is not always general enough. Sometimes we want to consider more general functions, such as the Dirac δ-function $\delta(x)$, s.t. $\delta(x) \geq 0, \delta(x)=0$, for $x \neq 0$, s.t. $\int \delta(x) \mathrm{d} x=1$. Mathematically $\int \delta(x) f(x) \mathrm{d} x=f(0)$ functional on $\mathcal{C}(\mathbb{T})$.

A function g in $\mathrm{L}_{1}(\mathbb{T})$ defines a functional on $\mathcal{C}(\mathbb{T})$ by $\phi_{g}(f)=\int f g \mathrm{~d} x$. We now shall define the Fourier coefficients of measures and even more general objects.

Let $\mathcal{B} \subset \mathrm{L}_{1}(\mathbb{\mathbb { T }})$ be a nice space of functions, e.g. $\mathrm{L}_{2}(\mathbb{\mathbb { T }}), \mathrm{L}_{p}(\mathbb{\mathbb { T }})$ for $p<\infty$, $\mathcal{C}(\mathbb{T}), \mathcal{C}^{k}(\mathbb{T})$, or $\mathcal{C}^{\infty}(\mathbb{T})$.

Definition 1. \mathcal{B} is called a homogeneous space if:

- Banach (or Fréchet); contains $e_{p}(x)=\exp (2 \pi i p x)$
- $f \in \mathcal{B} \Longrightarrow f_{y} \in \mathcal{B}$, where $f_{y}(x)=f(x+y)$
- $f_{y} \underset{y \rightarrow 0}{\longrightarrow} f$ in the topology of \mathcal{B}.

Remark. The third property holds in $\mathrm{L}_{1}(\mathbb{T})$.
Let's denote \mathcal{B}^{\prime} as a dual space, the space of continuous functionals $\phi: \mathcal{B} \rightarrow$ \mathbb{C}. Examples of dual spaces:

Example 3. $\mathcal{C}(\mathbb{T})^{\prime}$ - complex measures, for example $\delta, \delta_{0}-i \delta_{\frac{1}{2}}: f \mapsto f(0)-$ if $\left(\frac{1}{2}\right)$.
Example 4. $\mathcal{C}^{1}(\mathbb{T})^{\prime}$ - also contains derivatives of measures, e.g. $\delta^{\prime}(f)=-f^{\prime}(0)$, the reason for this notation $\int \delta^{\prime}(x) f(x) \mathrm{d} x=\left.\delta(x) f(x)\right|_{-\frac{1}{2}} ^{\frac{1}{2}}-\int \delta(x) f^{\prime}(x) \mathrm{d} x$.
Example 5. $\mathcal{C}^{\infty}(\mathbb{T})^{\prime}$ - contains derivatives of δ-functions of arbitrary finite order.

Let's define $\hat{\phi}(p)=\phi\left(e_{-p}\right)$ for $\phi \in \mathcal{B}^{\prime}$. Sanity check: if $\mathcal{B} \subset \mathrm{L}_{\infty}(\mathbb{T})$, then $\mathcal{B}^{\prime} \supset \mathrm{L}_{1}(\mathbb{T}): \phi_{f}(g)=\int f g \mathrm{~d} x$ and in this case definitions coincide.
Exercise 8. Compute Fourier coefficients: $\hat{\delta}$, and $\widehat{\delta^{\prime}}$

2.2 Algebraic properties

All algebraic properties are corollary of $e_{p}(x+y)=e_{p}(x) e_{p}(y)$.
Property 1. $\hat{f}_{y}(p)=e_{p}(y) \hat{f}(p)$
Property 2. $\hat{\phi}_{y}(p)=e_{p}(y) \hat{\phi}(p)$
Property 3. $\widehat{(f * g)}(p)=\hat{f}(p) \hat{g}(p)$, for $f, g \in \mathrm{~L}_{1}(\mathbb{T}) \longrightarrow(f * g)(x)=\int f(y) g(x-y) \mathrm{d} y$.
Remark. $f * g \in \mathrm{~L}_{1}(\mathbb{T})$ since:

$$
\begin{aligned}
\|f * g\|_{1} & =\int\left|\int f(y) g(x-y) \mathrm{d} y\right| \mathrm{d} x \\
& \leq \iint \mathrm{d} x \mathrm{~d} y|f(y) \| g(x-y)| \\
& \stackrel{u=x-y}{=} \iint \mathrm{d} x \mathrm{~d} y|f(y) \| g(u)| \\
& =\|f\|_{1}\|g\|_{1}
\end{aligned}
$$

Property 4. $\widehat{(\mu * \nu)}(p)=\hat{\mu}(p) \hat{\nu}(p)$ for $\mu, \nu \in \mathcal{C}(\mathbb{T})^{\prime}$ where $(\mu * \nu)(f)=\int f(x+y) \mu(x) \nu(y)$

Let's define an linear operator $T_{y}: f \mapsto f_{y}$ (shift), and $\phi \mapsto \phi_{y}$, where $f_{y}=f(x+y)$, and $\phi_{y}(f)=\phi\left(f_{-y}\right)$.
$T_{y} e_{p}=e_{p}(y) e_{p}$, s.t. e_{p} is an eigenvalue of shift operators T_{y} and thus also an eigenvalue of any operator that commutes with shifts, i.e. for any such T, $T e_{p}=\lambda_{p} e_{p}$, and consequently $\widehat{T f}(p)=\lambda_{p} \hat{f}(p)$.

Example 6. $\hat{f}^{\prime}(p)=+2 \pi i p \hat{f}(p)$, and more generally differential operators with constant coefficients.

Example 7. We look for a given function $f(x)$ another real function $g(x)$, s.t. $(\widehat{f+i g})(-p)=0, p=0,1, \ldots$

$$
\begin{aligned}
& f(x)=\hat{f}(0)+\sum_{p=1}^{\infty}\left[\hat{f}(p) e_{p}(x)+\overline{\hat{f}(p)} e_{-p}(x)\right] \\
& g(x)=\sum_{p=1}^{\infty}\left[-i \hat{f}(p) e_{p}(x)+i \overline{\hat{f}(p)} e_{-p}(x)\right]
\end{aligned}
$$

Thus $\hat{g}(p)=\left\{\begin{array}{lc}-i \hat{f}(p), & p>0 \\ 0 & \quad, g \text { is called the conjugate function, } g=\tilde{f} \text {. } \\ i \hat{f}(p), & p<0\end{array}\right.$,
Reason. $(f+i g)(x)=u\left(e^{2 \pi i x}\right)$ is the boundary value of an analytic function $u(z)=\sum_{p=0}^{\infty}(\widehat{f+i g})(p) z^{p}$ in the unit disk.

Exercise 9. Compute eigenvalues for Laplacian $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}}$ on torus.
Example 8. Solution to heat equation: $f_{t}=P_{t} * f_{0}$

2.3 Decay rate of Fourier coefficients

Motto: "The nicer is f, the faster \hat{f} decays". This works cleanly for L_{2} and spaces defined using $\sum|\hat{f}(p)|^{2}=\int|f|^{2} \mathrm{~d} x$, i.e. $f \in \mathrm{~L}_{2}(\mathbb{T})$ iff Fourier coefficients are square summable:

Property 1. $f \in \mathrm{~L}_{2}(\mathbb{T}) \Leftrightarrow \hat{f} \in l_{2}$
Property 2. Using property 1 and example $6, f^{(k)} \in \mathrm{L}_{2}(\mathbb{T})$, i.e. f is the k-fold integral of $g \in \mathrm{~L}_{2}(\mathbb{T}), \Longleftrightarrow \sum|\hat{f}(p)|^{2}|p|^{2 k}<\infty$.

Property 3. $f \in \mathcal{C}^{\infty}(\mathbb{T}) \Leftrightarrow|\hat{f}(p)|$ decays faster than any power of p. (Exercise. Hint: $\left.\|g\|_{\infty} \leq\|g\|_{1}+\left\|g^{\prime}\right\|_{1} \leq\|g\|_{2}+\left\|g^{\prime}\right\|_{2}\right)$.

Theorem 3. Let $f \in \mathrm{~L}_{1}(\mathbb{T}), a>0$. TFAE $\left(f \in \mathcal{C}^{\infty}(\mathbb{T})\right)$:
(i) f admits an analytic extension to $|\operatorname{Im}(z)|<a$
(ii) $f \in \mathcal{C}^{\infty}(\mathbb{T})$ and $\forall 0<\tilde{a}<a, \quad \exists C(\tilde{a}):\left\|f^{(k)}\right\|_{\infty} \leq C(\tilde{a}) \tilde{a}^{-k} k$!
(iii) $f \in \mathcal{C}^{\infty}(\mathbb{T})$ and $\forall 0<\tilde{a}<a, \quad \exists C(\tilde{a}):\left\|f^{(k)}\right\|_{2} \leq C(\tilde{a}) \tilde{a}^{-k} k$!
(iv) $\forall 0<\tilde{a}<a, \quad \exists C(\tilde{a}):|\hat{f}(p)| \leq C(\tilde{a}) \exp (-2 \pi|p| \tilde{a})$. (Exponential decay of Fourier coefficients)

Proof. theorem 3.(i) \Longrightarrow theorem 3.(ii) using Cauchy formula: $f^{(k)}(x)=$ $\frac{k!}{2 \pi i} \oint \frac{f(z)}{(z-x)^{k+1}} \mathrm{~d} z$.

3 Lecture 3

Proof. Theorem 3.(ii) \Longrightarrow theorem 3.(iii) is obvious, since $\left\|f^{(k)}\right\|_{\infty} \leq\left\|f^{(k)}\right\|_{2}$.
Proof. Theorem 3.(iii) \Longrightarrow theorem 3.(iv), and theorem 3.(iv) \Longrightarrow theorem 3.(i). Remind that $\left(\frac{k}{e}\right)^{k} \leq k!\leq C_{\delta}(1+\delta)^{k}\left(\frac{k}{e}\right)^{k}$. Let $\tilde{a}<a_{1}<a$, apply (3) with a_{1} in place of \tilde{a} :

$$
\begin{aligned}
\int\left|f^{(k)}\right|^{2} \mathrm{~d} x & \leq C\left(a_{1}\right)^{2} a_{1}^{-2 k}(k!)^{2} \\
& \leq C\left(a_{1}\right)^{2} C_{\delta}^{2}\left[\frac{k(1+\delta)}{e a_{1}}\right]^{2 k} \\
& , \text { where } 1+\delta=\frac{a_{1}}{\tilde{a}} \\
& \leq \tilde{C}\left(a_{1}\right)^{2}\left(\frac{k}{\tilde{a} e}\right)^{2 k}
\end{aligned}
$$

The LHS is $\sum|\hat{f}(p)|^{2}(2 \pi|p|)^{2 k}$, hence for any k and $p \neq 0$:

$$
\begin{aligned}
|\hat{f}(p)| & \leq \tilde{C}\left(a_{1}\right)\left(\frac{k}{\tilde{a} e 2 \pi|p|}\right)^{k} \\
& , \text { take } k=2 \pi \tilde{a}|p| \quad \text { then } \\
& \leq \tilde{C}\left(a_{1}\right) \exp \{-2 \pi \tilde{a}|p|\}
\end{aligned}
$$

Proof. Theorem 3.(iv) \Longrightarrow theorem 3.(i): Let $F(z)=\sum \hat{f}(p) e^{2 \pi i p z}$

- Converges uniformly and therefore analytic for $|z|<a$
- On \mathbb{T} coincides with f in L_{2}, hence also almost everywhere.

Example 9. $P_{t} * f$ is an entire function (i.e. analytic in \mathbb{C}) for $t>0$, whenever $f \in \mathcal{C}(\mathbb{T})$ or even $f \in \mathrm{~L}_{1}(\mathbb{T})$.

Exercise 10. If f is analytic in $|\operatorname{Im}(z)|<A$ with a single simple pole at z_{0} and $\left|\operatorname{Im}\left(z_{0}\right)\right|=a \in(0, A)$, then Fourier coefficients for $f, \hat{f}(p)=\exp \left(2 \pi i p z_{0}\right)+$ $O(\exp (-(A-\delta) 2 \pi|p|)$.

For other function spaces the connection is less tight.

Example 10. $f \in \mathcal{C}^{k}(\mathbb{T}) \Longrightarrow \sum|\hat{f}(p)|^{2}|p|^{2 k}<\infty$, but $\sum|\hat{f}(p)|^{2}|p|^{2 k}<$ $\infty \Longrightarrow f \in \mathcal{C}^{k-1}(\mathbb{T})$. Both implications are "unimprovable".

Example 11. What can be said about $\hat{f}(p)$ for $f \in \mathrm{~L}_{1}(\mathbb{T})$? Clearly, $|\hat{f}(p)| \leq$ $\|f\|_{1}$, but $|\hat{\mu}|$ is bounded even for measures!

We now discuss an improvement of Riemann-Lebesgue: if $f \in \mathrm{~L}_{1}(\mathbb{T})$ then $\hat{f}(p) \rightarrow 0$. We prove a quantitative version as follows: recall that $\omega(\delta ; f)=$ $\sup _{|y|<\delta}\left\|f-f_{y}\right\|_{\infty}$ and f is uniformly continuous $\Longleftrightarrow \omega(\delta ; f) \underset{\delta \rightarrow+0}{\rightarrow} 0$. Let's denote $\omega_{\mathcal{B}}(\delta ; f)=\sup _{|y|<\delta}\left\|f-f_{y}\right\|_{\mathcal{B}}$, e.g. $f \in \mathrm{~L}_{1}(\mathbb{T}) \Longrightarrow \omega_{\mathrm{L}_{1}(\mathbb{T})}(\delta ; f) \underset{\delta \rightarrow+0}{\rightarrow} 0$.

Theorem 4 (Riemann-Lebesgue).

$$
|\hat{f}(p)| \leq \frac{1}{2} \omega_{\mathrm{L}_{1}(\mathbb{T})}\left(\frac{1}{2|p|} ; f\right)
$$

And in particular, $\hat{f}(p) \rightarrow 0, p \rightarrow \pm 0$.
Proof.

$$
\begin{aligned}
\hat{f}(p) & =\int f(x) \overline{e_{p}(x)} \mathrm{d} x=\int f\left(x+\frac{1}{2 p}\right) \overline{e_{p}\left(x+\frac{1}{2 p}\right)} \mathrm{d} x \\
& =\underbrace{\int f(x) \overline{e_{p}\left(x+\frac{1}{2 p}\right)} \mathrm{d} x}_{\text {term } 1}+\underbrace{\int\left(f\left(x+\frac{1}{2 p}\right)-f(x)\right) \overline{e_{p}\left(x+\frac{1}{2 p}\right)} \mathrm{d} x}_{\text {term } 2}
\end{aligned}
$$

$$
* \operatorname{term} 1=-\int f(x) \overline{e_{p}(x)} \mathrm{d} x=-\hat{f}(p)
$$

$$
*|\operatorname{term} 2| \leq \int\left|f\left(x+\frac{1}{2 p}\right)-f(x)\right| \mathrm{d} x \leq \omega_{\mathrm{L}_{1}(\mathbb{T})\left(\frac{1}{2 p \mid} ; f\right)}
$$

Example 12. When the function f is α-Lipschitz, i.e. modulus of the continuity is bounded by $|f(x)-f(y)| \leq C|x-y|^{\alpha}, \alpha \in(0,1]$, therefore $f \in \operatorname{Lip}_{\alpha} \Longrightarrow$ $|\hat{f}(p)| \leq p^{-\alpha}$.
Exercise 11. Prove: for $0<\alpha<1, f_{\alpha}(x)=\sum_{p=1} 3^{-p \alpha} \cos \left(2 \pi 3^{p} x\right)$ lies in Lip $_{\alpha} \cap \mathrm{L}_{1}$, but $|\hat{f}(p)| \geq|p|^{-\alpha}$ on a sub-sequence. I.e. example 12 is sharp.
Corollary 1 (Riemann-Lebesgue). $f^{(k)} \in \mathrm{L}_{1}(\mathbb{T}) \Longrightarrow|\hat{f}(p)|=o\left(|p|^{-k}\right)$.
We can use corollary 1 to compute asymptotics of \hat{f}.

Example 13. If $f \in \mathcal{C}^{1}(\mathbb{T} \backslash\{0\})$ is k-th the integrable piecewise function and has a jump discontinuity at 0 , then p-th Fourier coefficient $\hat{f}(p)=\frac{1}{2 \pi i p}(f(+0)-f(-0))+$ $o\left(\frac{1}{|p|}\right)$.
Proof. Let $g(x)=f(+0)+(f(-0)-f(+0)) x, \quad 0 \leq x<1 . \quad \hat{g}(p)$ has this asymptotics, $(f-g)^{\prime} \in \mathrm{L}_{1}(\mathbb{T})$.

Exercise 12. $f \in \mathcal{C}^{1}(\mathbb{T} \backslash\{0\}), f(\pm x) \sim A_{ \pm} x^{-\alpha}$ for $\alpha \in[0,1)$ and $x \rightarrow+0$, $\Longrightarrow A_{+} \Gamma(\alpha+1)(2 \pi i p)^{\alpha-1}+A_{-} \Gamma(\alpha-1)(-2 \pi i p)^{\alpha-1}+o\left(\frac{1}{|p|}\right)$.

3.1 Convergence of Fourier series

Convergence of the partial sum $S_{n}(f ; x)=\sum_{-n}^{n} \hat{f}(p) e_{p}(x)$. Clearly, $\hat{S}_{n}=$ $\hat{f} \mathbb{1}_{[-n, n]}$ therefore by item property 1 , we expect that S_{n} is a convolution of f with something. This is indeed so: $S_{n}=D_{n} * f$, where $D_{n}=\sum_{-n}^{n} e_{p}(x)$ (Dirichlet kernel), since $S_{n}(f ; x)=\sum_{-n}^{n} \int f(y) \overline{e_{p}(y)} \mathrm{d} y e_{p}(x)=\int f(y) \sum_{-n}^{n} e_{p}(x-$ y) $\mathrm{d} y$.

$$
\begin{aligned}
D_{n} & =\sum_{-n}^{n} e_{p}(x)=e_{-n}(p) \sum_{0}^{2 n} e_{p}(x) \\
& =e_{-n}(p) \frac{1-e_{2 n+1}(x)}{1-e_{p}(x)}=\frac{\sin ((2 n+1) \pi x)}{\sin (\pi x)}
\end{aligned}
$$

And, clearly, $\hat{D}_{n}(0)=1$. When is is true that $D_{n} * f \rightarrow f ? \operatorname{In} \mathrm{~L}_{2}(\mathbb{T}), S_{n}$ is the best approximation of f by a trigonometric polynomial of degree $\leq n$, and hence $S_{n} \longrightarrow f$ in $\mathrm{L}_{2}(\mathbb{T})$ if $f \in \mathrm{~L}_{2}(\mathbb{T})$. However, this is not the case for $\mathcal{C}(\mathbb{T})$, $\mathrm{L}_{1}(\mathbb{T})$ and etc.

Example 14 (de la Vallée-Poussin). $f \in \mathcal{C}(\mathbb{T})$, but $\left(D_{n} * f\right)(0)$ diverges. As well as, $f \in \mathrm{~L}_{1}(\mathbb{T})$, but $\left(D_{n} * f\right) \underset{\mathrm{L}_{1}(\mathbb{T})}{\rightarrow} f$.

Example 15 (Kolmogorov). $f \in \mathrm{~L}_{1}(\mathbb{T})$, but $\left(D_{n} * f\right)$ diverges everywhere.
Example 16 (Carleson-Hunt). $f \in \mathrm{~L}_{p}(\mathbb{T}), 1<p<\infty$, and ($D_{n} * f$) converges almost everywhere.

Theorem 5 (Dini). If $f \in \mathrm{~L}_{1}(\mathbb{T})$ and $\int \frac{|f(y)-f(x)|}{|y-x|} \mathrm{d} y<\infty$ for some $x \in \mathbb{T}$, then $S_{n}(f ; x) \rightarrow f(x)$.

Proof. W.l.o.g. assume $x=0, f(0)=0$

$$
\begin{aligned}
S_{n}(f ; 0) & =\int S_{n}(y) f(y) \mathrm{d} y=\int \frac{\sin (2 \pi n y) \cos (\pi y)+\cos (2 \pi n y) \sin (\pi y)}{\sin (\pi y)} f(y) \mathrm{d} y \\
& =\int \sin (2 \pi n y) \underbrace{\left[\frac{\cos (\pi y)}{\sin (\pi y)} f(y)\right]}_{\text {in } \mathrm{L}_{1}(\mathbb{T})} \mathrm{d} y+\int \cos (2 \pi n y) \underbrace{f(y)}_{\text {in } \mathrm{L}(\mathbb{T})} \mathrm{d} y
\end{aligned}
$$

By theorem 4 it is implied that both last terms tend to 0 .
Corollary 2 (Localisation principle). If $f=g$ in $(x-\epsilon, x+\epsilon)$ and $S_{n}(f ; x) \rightarrow A$, then $S_{n}(g ; x) \rightarrow A$.

3.1.1 Absolute convergence

When is it true that $\sum|\hat{f}(p)|<\infty$? Note that in this case $\sum \hat{f}(p) e_{p} \rightarrow f$ absolutely and uniformly $\Longrightarrow f \in \mathcal{C}(\mathbb{T})$ (as a uniform limit of continuous functions).
Theorem 6 (Bernstein). If $\int_{0}^{1} \omega_{\mathrm{L}_{2}(\mathbb{})}(h ; f) \frac{\mathrm{d} h}{h^{3 / 2}}<\infty$, then $\sum|\hat{f}(p)|<\infty$.
Remark. In particular, the convergence of the integral implies that $f \in \mathcal{C}(\mathbb{T})$. Is there a direct proof?

Proof.

$$
\begin{aligned}
\omega_{\mathrm{L}_{2}(\mathbb{T})}(h ; f)^{2} & \geq \int|f(x+h)-f(x)|^{2} \mathrm{~d} x \\
& =\sum_{p}|\hat{f}(p)|^{2}\left|1-e_{p}(h)\right|^{2} \\
& \geq 2 \sum_{\frac{1}{4 h} \leq|p| \leq \frac{1}{2 h}}|\hat{f}(p)|^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{2^{m} \leq|p| \leq 2^{m+1}}|\hat{f}(p)|^{2} \lesssim \frac{1}{2} \omega_{\mathrm{L}_{2}(\mathbb{T})}\left(2^{-m} ; f\right)^{2} \\
& \sum_{2^{m} \leq|p| \leq 2^{m+1}}|\hat{f}(p)| \lesssim 2^{\frac{m}{2}} \omega_{\mathrm{L}_{2}(\mathbb{T})}\left(2^{-m} ; f\right)
\end{aligned}
$$

On the other hand

$$
\int_{2^{-m}}^{2-m+1} \omega_{\mathrm{L}_{2}(\mathbb{T})}(2 ; f) \frac{\mathrm{d} h}{h^{\frac{3}{2}}} \geq \omega_{\mathrm{L}_{2}(\mathbb{T})}\left(2^{-m} ; f\right) 2^{\frac{m}{2}}
$$

Definition 2. $A(\mathbb{T})=\left\{f \in \mathrm{~L}_{1}(\mathbb{T}): \hat{f} \in l_{1}\right\}$.
Remark. If $a \in l_{1}, \quad \sum a_{p} e_{p} \in \mathcal{C}(\mathbb{T})$.
$A(\mathbb{T})$ is an algebra (subalgebra of $\mathcal{C}(\mathbb{T}): f, g \in A(\mathbb{T}) \Longrightarrow f g \in A(\mathbb{T})$. Reason: $\left(l_{1}, *\right)$ is an algebra.

4 Lecture 4

Reminder. Last lecture motto, "The nicer is f, the faster $\hat{f}(p)$ decays", works nice for some function spaces:

- $f \in \mathrm{~L}_{2}(\mathbb{T}) \Longleftrightarrow \hat{f} \in l_{2}$
- $f \in \mathcal{C}^{\infty}(\mathbb{T}) \Longleftrightarrow|\hat{f}(p)|=O\left(|p|^{-\infty}\right)$
- f is analytic $\Longleftrightarrow \hat{f}(p)$ decays exponentially

For other spaces there are no simple necessary and sufficient conditions.

- $f \in \mathrm{~L}_{1}(\mathbb{T}) \Longrightarrow \hat{f}(p) \rightarrow 0$, or moreover $|\hat{f}(p)| \leq \omega_{\mathrm{L}_{1}}(h ; f)=\sup _{0 \leq y \leq h}\left\|f-f_{y}\right\|_{1}$
- $f \in \operatorname{Lip}_{\alpha} \Longrightarrow|\hat{f}(p)| \lesssim|p|^{-\alpha}$, or more generally $|\hat{f}(p)| \lesssim \omega_{\mathrm{L}_{1}}\left(\frac{1}{|p|} ; f\right)$

The decay is dominated by the most singular singularity. We also discussed convergence:

- $f \in \mathrm{~L}_{2}(\mathbb{T}) \Longrightarrow \sum \hat{f}(p) e_{p} \rightarrow f$ in $\mathrm{L}_{2}(\mathbb{T})$

Remark. Carleson showed that this is also holds a.e.

- $f \in \mathrm{~L}_{1}(\mathbb{T}), \int \frac{f(y)-f(x)}{y-x} \mathrm{~d} x<\infty \Longrightarrow \sum_{-N}^{N} \hat{f}(p) e_{p}(x) \rightarrow f(x)$ (for this x). In general, $S_{N}=\sum_{-N}^{N} \hat{f}(p) e_{p}(x)$ may not converge to f in any sense.
Reason. $S_{N}=D_{N} * f, D_{N}(x)=\frac{\sin (2 N+1) \pi x)}{\sin (\pi x)}$
Absolute uniform convergence: $A(\mathbb{T})=\left\{f \in \mathrm{~L}_{1}(\mathbb{T}), \sum|\hat{f}(n)|<\infty\right\} \subset \mathcal{C}(\mathbb{T})$. Check out theorem 6, and in particular, $f \in \operatorname{Lip}_{\alpha}$ for some $\alpha>\frac{1}{2} \Longrightarrow f \in$ $A(\mathbb{T})$. But not for $\alpha=\frac{1}{2}$ and vice versa.

What to do with general $f \in \mathrm{~L}_{1}(\mathbb{T})$ and $f \in \mathcal{C}(\mathbb{T})$.
Paradox. Although $f \in \mathcal{C}(\mathbb{T})$ can be approximated uniformly by trigonometric polynomials $S_{N}=D_{N} * f$, the orthogonal projection of f onto the space of trigonometric polynomials of degree $\leq N$ may be very far from f. The solution is $D_{n} * f$ minimises $\|P-f\|_{2}$, but not $\|P-f\|_{1}$, and not $\|P-f\|_{\infty}$.

New motto: "The nicer f is, the better it can be approximated by trigonometric polynomials". But not by $D_{N} * f$, how then?

Theorem 7 (Fejér). If $f \in \mathcal{C}(\mathbb{T})$, then $\frac{S_{0}(f)+\cdots+S_{N-1}(f)}{N} \rightrightarrows f$, which implies Weierstrass theorem without circular reasoning. More generally: for any homogeneous space \mathcal{B} and any $f \in \mathcal{B}, \frac{S_{0}(f)+\cdots+S_{N-1}(f)}{N} \rightrightarrows f \in \mathcal{B}$.

Reminder. $\quad * a_{n} \rightarrow A \Longrightarrow \frac{a_{0}+\cdots+a_{N-1}}{N} \rightarrow A$

* Not vice versa, e.g. $a_{n}=(-1)^{n}$

What is $\frac{S_{0}+\cdots+S_{N-1}}{N}$? $S_{n}=D_{n} * f$, hence $\frac{S_{0}+\cdots+S_{N-1}}{N}=\left(\frac{D_{0}+\cdots+D_{N-1}}{N}\right) * f$.
Exercise 13. If $\left|a_{n}-a_{n-1}\right| \leq \frac{C}{n}$ and $\left(a_{0}+\cdots+a_{N-1}\right) / N \rightarrow A$, show that $a_{n} \rightarrow A$.

Exercise 14. Show that $K_{N}(x)=\frac{D_{0}(x)+\cdots+D_{N-1}(x)}{N}=\frac{\sin ^{2}(\pi N x)}{N \sin ^{2}(\pi x)}$.
Property 1. $\int K_{N}(x) \mathrm{d} x=1$. Since, it holds for D_{N}
Property 2. $\int\left|K_{N}(x)\right| \mathrm{d} x \leq C$. Since $K_{N} \geq 0$
Property 3. $\forall 0<\delta<\frac{1}{2}, \quad \int_{|x|>\delta}\left|K_{N}(x)\right| \mathrm{d} x \underset{N \rightarrow \infty}{\rightarrow} 0$. Since, $\left|K_{N}(x)\right| \lesssim \frac{1}{N x^{2}}$
Definition 3. A sequence of functions k_{N} satisfying property 1 , property 2 , property 3 called a summability kernel or approximate δ-function.
Remark. Sometimes instead of a large parameter $N \rightarrow \infty$, we shall encounter a small parameter $t \rightarrow 0$.

Theorem 8. If \mathcal{B} is a homogeneous space, $f \in \mathcal{B}$ then $k_{N} * f \rightarrow f \in \mathcal{B}$ for any summability kernel k_{N}.

Corollary 3. Uniqueness in $\mathrm{L}_{1}(\mathbb{T}): \hat{f}=\hat{g} \Longrightarrow f=g$ (and also explicit reconstruction).

Proof. We assume that \mathcal{B} is a Banach space. $\left(k_{n} * f\right)(x)=\int k_{n}(y) f(x-y) \mathrm{d} y$, and briefly $k_{N} * f=\int k_{N}(y) f_{y} \mathrm{~d} y$.

$$
\begin{aligned}
& \left\|k_{N} * f-f\right\|_{\mathcal{B}} \underset{\text { by property 1 }}{=}\left\|\int k_{N}(-y)\left(f_{y}-f\right) \mathrm{d} y\right\|_{\mathcal{B}} \\
& \leq \int\left|k_{N}(-y)\right|\left\|f_{-y}-f\right\|_{\mathcal{B}} \mathrm{d} y \\
& \leq \underbrace{\int_{|y| \leq \delta}\left|k_{N}(y)\right| \mathrm{d} y \omega_{\mathcal{B}}(f ; \delta)}_{\text {term 1 }}+\underbrace{\int_{\delta<|y| \leq \frac{1}{2}}\left|k_{N}(y)\right| \mathrm{d} y 2\|f\|_{\mathcal{B}}}_{\text {term } 2}
\end{aligned}
$$

* by property 2 , term $1 \leq C \omega_{\mathcal{B}}(f ; \delta)$
* by property 3 , term $2 \rightarrow 0$, as $N \rightarrow \infty$

So we let $N \rightarrow \infty$ and $\delta \rightarrow+0$.

4.1 Additional applications

Example 17. The heat kernel $P_{t}(t \rightarrow+0)$ is a summability kernel, and hence $\left(P_{t} * f\right) \underset{t \rightarrow 0}{\rightarrow} f \in \mathcal{B}$ for any $f \in \mathcal{B}$, e.g. $\mathcal{C}(\mathbb{T})$, i.e. $u_{t}(x)=\left\{\begin{array}{ll}f(x), & t=0 \\ \left(P_{t} * f\right)(x), & t>0\end{array}\right.$ is continuous at $t=0$ and thus indeed is a solution to the heat equation. Hint: use exercise 4.
Example 18. Given a continuous $g:\{|z|=1\} \rightarrow \mathbb{R}$, we want $G:\{|z| \leq$ $1\} \rightarrow \mathbb{R}$ which is continuous and harmonic (in the interior). $G(r \exp (2 \pi i x))=$ $\left(P_{r}^{o} * f\right)(x)$, and $f(x)=g(\exp (2 \pi i x))$ where $P_{r}^{o}(x)=\sum_{p} r^{|p|} e_{p}(x)$ is the Poisson kernel.

Exercise 15. - $P_{r}^{o}(r \rightarrow 1-0)$ is a summability kernel $(\Longrightarrow G$ is continuous at the boundary)

- $\Delta G=0$ is $\{|z|<1\}$

Example 19. Another useful kernel is Jackson kernel: $\mathcal{J}_{N}(x)=\frac{K_{N}(x)^{2}}{\int K_{N}(y)^{2} \mathrm{~d} y}$
Exercise 16. Show that \mathcal{J}_{N} is a summability kernel and $\mathcal{J}_{N}(x) \lesssim N^{-3}|x|^{-4}$ for $|x| \leq \frac{1}{2}$

4.2 Amplifications of the Weierstrass theorem

Let denote trigonometric polynomials of degree $\leq N$ as $\mathcal{T}_{N}=\left\{P=\sum c_{p} e_{p}\right.$: $|p| \leq N\}$, and the rate of approximation by trigonometric polynomials $E_{N}(f ; \mathcal{B})=$ $\inf _{P \in \mathcal{T}_{N}}\|f-P\|_{\mathcal{B}}$.
Theorem 9 (Jackson ${ }^{+}$). if $f \in \mathcal{B}$, then $E_{N}(f ; \mathcal{B}) \lesssim C \omega_{\frac{1}{N}}(f ; \mathcal{B})$ and, moreover, if $f^{(k)} \in \mathcal{B}$, then $E_{N}(f ; \mathcal{B}) \lesssim C^{k} N^{-k} \omega_{\frac{1}{N}}\left(f^{(k)} ; \mathcal{B}\right)$.
Exercise 17. Prove second part of the theorem 9.
First part. Assume w.l.o.g. $k=0$, and $\omega_{\mathcal{B}}(2 \delta ; f) \leq 2 \omega_{\mathcal{B}}(\delta ; f)$.

$$
\left.\left.\begin{array}{rl}
E_{2 N}(f ; \mathcal{B}) & \leq\left\|\mathcal{J}_{N} * f-f\right\|_{\mathcal{B}} \\
& \leq 2 \int_{0}^{\frac{1}{2}} \mathcal{J}_{N}(y)\left\|f_{y}-f\right\|_{\mathcal{B}} \mathrm{d} y \\
& \leq 2 \int_{0}^{\frac{1}{2}} \mathcal{J}_{N}(y) \omega_{\mathcal{B}}(y ; f) \mathrm{d} y \\
\int_{\frac{(K-1)}{2 N}}^{\frac{K}{2 N}} & \overbrace{\frac{1}{N}}^{\operatorname{term} 1} \overbrace{\frac{1}{N^{3}\left(\frac{K}{N}\right)^{4}}}^{\operatorname{term} 2} \overbrace{K \omega_{\mathcal{B}}\left(\frac{1}{2 N} ; f\right)}^{\operatorname{term} 3}
\end{array}\right) \frac{1}{K^{3}} \omega_{\mathcal{B}}\left(\frac{1}{2 N} ; f\right)\right)
$$

Term 1 is the length of the interval. Term 2 is the bound on \mathcal{J}_{N} using exercise 16 . Term 3 is built using $\omega_{\mathcal{B}}\left(\frac{k}{2 N} ; f\right) \leq k \omega_{\mathcal{B}}\left(\frac{1}{2 N} ; f\right)$. The final step is the summing over k.

Remarkably, Jackson's theorem is sharp in a much stronger sense than the results from the previous section.

Theorem 10 (Bernstein). If $E_{N}(f ; \mathcal{B}) \leq A N^{-(k+r)}$ for some $k \in \mathbb{Z}_{+}, \quad 0<r<$ 1 then $f^{(k)} \in \mathcal{B}$ and $\omega_{\delta}\left(f^{(k)} ; \mathcal{B}\right) \leq C_{r, k} A \delta^{r}$.
Remark. $r=1$ requires some more care.
Proof. For $k=0$, let $P_{n} \in \mathcal{T}_{2 n}$ be such that $\left\|P_{n}-f\right\|_{\mathcal{B}}=E_{2 n}(f ; \mathcal{B})$, then $f=\lim ^{\mathcal{B}} P_{n}=\sum_{n=0}^{\infty}\left(P_{n}-P_{n+1}\right)$, where

$$
\begin{equation*}
\left\|Q_{n}\right\|_{\mathcal{B}} \leq 2 E_{2^{n}}(f ; \mathcal{B}) \lesssim 2 A 2^{-n r} \tag{4}
\end{equation*}
$$

Theorem 11 (Berstein). If $P \in \mathcal{T}_{N},\left\|P^{\prime}\right\|_{\mathcal{B}} \leq K N\|P\|_{\mathcal{B}}$ where $K=2 \pi$ (we do not need the sharp value of k).

Continuing the proof of theorem 10:

$$
\begin{aligned}
\left\|f_{y}-f\right\|_{\mathcal{B}} & \leq \sum\left\|Q_{n, y}-Q_{n}\right\|_{\mathcal{B}} \\
& \lesssim \sum \min \left(2 A 2^{-n r}, 2^{n(1-r)} A K|y|\right) \\
& \lesssim A\left(|y| \sum_{2^{n} \leq \frac{1}{y}} 2^{2(1-r)}+\sum_{2^{n>}} 2^{-n r}\right) \\
& \lesssim A\left(|y||y|^{r-1}+|y|^{r}\right) \\
& \lesssim A|y|^{r} .
\end{aligned}
$$

Exercise 18. Prove $k \geq 1$ case.
Exercise 19. Prove theorem 11. Plan for the proof:

$$
\begin{aligned}
& P=V_{N} * P \quad \text { for } \quad V_{N}=2 K_{2 N}-K_{N} \\
& P^{\prime}=V_{N}^{\prime} * P=\int V_{N}^{\prime}(y) P_{y} \mathrm{~d} y \\
& \Longrightarrow\left\|P^{\prime}\right\|_{\mathcal{B}} \leq \int\left|V_{N}^{\prime}(y)\right|\left\|P_{y}\right\|_{\mathcal{B}} \mathrm{d} y
\end{aligned}
$$

One can check that $\int\left|V_{N}^{\prime}(y)\right| \mathrm{d} y \leq K N$.

5 Lecture 5

5.1 Fourier coefficients of linear functionals

Reminder. \mathcal{B} - homogeneous space, $\phi \in \mathcal{B}^{\prime}$ - linear functional, $\hat{\phi}(p)=\phi\left(e_{-p}\right)$, $p \in \mathbb{Z}$.

5.1.1 Reconstruction of ϕ from $\hat{\phi}$

We proved this for \mathcal{B} (extended theorem 7)
Theorem 12. Let $\forall f \in \mathcal{B}, \phi(f)=\frac{1}{N} \lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} \int S_{n}(\phi) f \mathrm{~d} x$, where $S_{n}(\phi)=$ $\sum_{-N}^{N} \hat{\phi}(x) e_{p}$. (Briefly: $\phi=\lim \frac{1}{N} \sum_{n=0}^{N-1} S_{n}(\phi)$ in \mathcal{B}^{\prime})

Corollary 4. $\hat{\phi}=\hat{\psi} \Longrightarrow \phi=\psi$.
Proof of theorem 12.

$$
\frac{1}{N} \sum_{n=0}^{N-1} S_{n}(\phi)=\sum_{-N}^{N}\left(1-\frac{|p|}{N}\right) \hat{\phi}(p) e_{p},
$$

hence,

$$
\begin{aligned}
& \int \frac{1}{N} \sum_{n=0}^{N-1} S_{n}(\phi) f \mathrm{~d} x=\int \sum_{-N}^{N}\left(1-\frac{|p|}{N}\right) \hat{\phi}(p) e_{p} f \mathrm{~d} x \\
& =\sum_{-N}^{N}\left(1-\frac{|p|}{N}\right) \hat{\phi}(p) \hat{f}(-p) \\
& =\phi\left(\sum_{-N}^{N}\left(1-\frac{|p|}{N}\right) \hat{f}(-p) e_{-p}\right) \\
& =\phi\left(\sum_{-N}^{N}\left(1-\frac{|p|}{N}\right) \hat{f}(p) e_{p}\right) \\
& =\phi(\underbrace{\frac{1}{N} \sum_{n=0}^{N-1} S_{n}(f)}_{\text {Converges to } f \in \mathcal{B} \text { by theorem 7 }}) \rightarrow \phi(f)
\end{aligned}
$$

5.1.2 Focus on $\mathcal{B}=\mathcal{C}(\mathbb{T})$

$\mathcal{B}^{\prime}=\mu(\mathbb{T})$ - measures. $\mu^{+}(\mathbb{T}) \subset \mu(\mathbb{T})$ - positive measures. $\left(\mu(\mathbb{T})=\mu^{+}(\mathbb{T})+\right.$ $i \mu^{+}(\mathbb{T})-\mu^{+}(\mathbb{T})-i \mu^{+}(\mathbb{T})$, any measure can be decomposed in this way and follows from Hahn theorem).

Inequality 1 (Erdős-Turán). if μ is a probability measure on \mathbb{T}, then $\forall N \geq 1$:

$$
\sup _{I-\operatorname{arc}}|\mu(I)-\operatorname{mes}(I)| \geq C\left[\frac{1}{N}+\sum_{p=1}^{N} \frac{\hat{\mu}(p)}{p}\right]
$$

Lemma 1 (Ganelius). Let $f \in \mathrm{~L}_{1}(\mathbb{T})$ real-valued, and
let $\omega^{+}(\delta ; f)=\sup _{x \leq y \leq x+\delta}(f(y)-f(x))$. Then

$$
\sup |f| \leq C\left[\sum_{p=0}^{N-1}|\hat{f}(p)|+\omega^{+}\left(\frac{1}{N} ; f\right)\right]
$$

Proof of inequality 1. Let $f(t)=x-\mu[0, t]-A$, where $A=\int_{0}^{1}(x-\mu[0, x]) \mathrm{d} x$. Then
(1) $\omega^{+}(\delta ; f) \leq \delta$
(2) $\hat{f}(0)=0$
(3) $\hat{f}(p)=\int \overline{e_{p}(x)}(x-\mu[0, x]-A) \mathrm{d} x=\frac{1}{2 \pi i p} \hat{\mu}(p), p \geq 1$

Hence,

$$
|\mu[a, b]-(b-a)| \geq 2 C\left(\frac{1}{N}+\sum_{p=1}^{N} \frac{|\hat{\mu}(p)|}{2 \pi p}\right)
$$

Proof of lemma 1. W.l.o.g. $M=\sup |f|=|f(0)|$
Case 1. $M>0$, then $f(x) \geq M-\omega^{+}\left(\frac{2 k}{N} ; f\right)$ for $0 \geq x \geq-\frac{2 k}{N}$.

$$
\begin{aligned}
\left(K_{N} * f\right)\left(-\frac{k}{N}\right)= & \underbrace{\int_{-\frac{k}{N}}^{\frac{k}{N}} K_{N}(y) f\left(-\frac{k}{N}-y\right) \mathrm{d} y}_{\text {term } 1} \\
& +\underbrace{\int_{\frac{k}{N} \geq|y| \geq \frac{1}{2}} K_{N}(y) f\left(-\frac{k}{N}-y\right) \mathrm{d} y}_{\text {term } 2}
\end{aligned}
$$

For sufficiently large $k \in \mathbb{N}, \int_{-\frac{k}{N}}^{\frac{k}{N}} K_{N}(y) \mathrm{d} y \geq \frac{9}{10}$, whence term $1 \geq \frac{9}{10}(M-$ $\left.\omega^{+}\left(\frac{2 k}{N} ; f\right)\right)$, term $2 \geq-\frac{1}{10} M$, and therefore

$$
\begin{aligned}
\left(K_{N} * f\right)\left(-\frac{k}{N}\right) & \geq \frac{9}{5} M-\frac{9}{10} \omega^{+}\left(\frac{2 k}{N} ; f\right) \\
& \geq \frac{4}{5} M-2 k \omega^{+}\left(\frac{1}{N} ; f\right)
\end{aligned}
$$

On other hand:

$$
\begin{aligned}
\left\|K_{N} * f\right\|_{\infty} & \leq \sum_{|p| \leq N}|\hat{f}(p)| \\
& =|f(0)|+2 \sum_{p=1}^{N}|\hat{f}(p)|
\end{aligned}
$$

Whence

$$
\left.M \lesssim\left[\omega^{+}\left(\frac{1}{N} ; p\right)+\sum_{p=0}^{N}|\hat{f}(p)|\right)\right]
$$

Case 2. $M<0$. Similar argument.

Now start with $a=\left(a_{p}\right)_{p \in \mathbb{Z}}$

- when does there exist $\mu \in \mu^{+}(\mathbb{T})$ such that $\hat{\mu}(p)=a_{p}$?
- same question for $\mu \in \mu(\mathbb{T})$

Definition 4. a is called positive-semidefinite $(a \succcurlyeq 0)$ if $\forall k \geq 1, \forall z_{1}, \ldots, z_{n} \in \mathbb{C}$

$$
\sum_{p, q=-k}^{k} a_{p-q} \overline{z_{p}} z_{q} \geq 0
$$

Theorem 13 (Herglotz). $a \succcurlyeq 0 \Longleftrightarrow \exists \mu \in \mu^{+}(\mathbb{T})$, such that $\hat{\mu}=a$.
Proof. If $\mu \in \mu^{+}(\mathbb{T})$

$$
\begin{aligned}
\sum \hat{\mu}(p-q) \overline{z_{p}} z_{p} & =\sum \int e_{q-p} \mathrm{~d} \mu z_{q} \overline{z_{p}} \\
& =\int\left|\sum z_{q} e_{q}\right|^{2} \mathrm{~d} \mu \geq 0
\end{aligned}
$$

Assume $a \succcurlyeq 0$. Denote: $\mu\left(\sum_{|p| \leq N} c_{p} e_{p}\right)=\sum c_{p} a_{-p}$. We claim that if $P \in \mathcal{T}_{N}$ is ≥ 0 on \mathbb{T}, then $\mu(P) \geq 0$. This follows from:

Lemma 2. If $P \in \mathcal{T}_{N} \geq 0$, then $P=|Q|^{2}$ for some trigonometric polynomials Q.

Explicitly: $P=\sum c_{p}^{\prime} c_{q}^{\prime} e_{p-q}$, whence $\mu(P)=\sum c_{p}^{\prime} c_{q}^{\prime} a_{q-p} \geq 0$. Thus $P \geq$ $A \Longrightarrow \mu(P) \geq A a_{0}$, for some $A \in \mathbb{R}$, and $|P| \leq A \Longrightarrow|\mu(p)| \leq A a_{0}$. Hence μ is a bounded functional on $\bigcup \mathcal{T}_{N}$ and can be extended to $\mathcal{C}(\mathbb{T})$, i.e. defines a measure $\mu \in \mu(\mathbb{T})$. To prove that $\mu \in \mu^{+}(\mathbb{T})$, take $f \geq 0$ in $\mathcal{C}(\mathbb{T})$; then,

$$
\begin{aligned}
\exists P_{n} \rightrightarrows f, & P_{n} \in \mathcal{T}_{n}, \quad \text { and } P_{n} \geq 0, \quad \text { e.g. } P_{n}=K_{n} * f \\
& \Longrightarrow \mu(f)=\lim \mu\left(P_{n}\right) \geq 0
\end{aligned}
$$

Proof of lemma 2.

$$
P(x)=\sum_{-N}^{N} c_{p} e_{p} \geq 0 \Longrightarrow c_{-p}=\overline{c_{p}}
$$

Let $P^{\#}(z)=\sum_{-N}^{N} c_{p} z^{p}=C_{N} z^{-N} \Pi\left(z-\xi_{j}\right)^{m\left(\xi_{j}\right)}$

- if $\left|\xi_{j}\right|=1, m\left(\xi_{j}\right)$ is even,
- if $\left|\xi_{j}\right| \neq 1$,

$$
\begin{aligned}
& P^{\#}\left(\frac{1}{\overline{\xi_{j}}}\right)=\sum c_{p} \overline{\xi_{j}^{-p}}=\overline{\sum c_{-p} \xi_{j}^{-p}}=P^{\#}\left(\xi_{j}\right)=0 \\
& \quad \Longrightarrow m\left(\frac{1}{\overline{\xi_{j}}}\right)=m\left(\xi_{j}\right)
\end{aligned}
$$

Let $Q(x)=\sqrt{\left|C_{N}\right|} \prod_{|\xi|>1}\left(e_{1}(x)-\xi_{j}\right)^{m\left(\xi_{j}\right) / 2} \prod_{|\xi|=1}\left(e_{1}(x)-\xi_{j}\right)^{m\left(\xi_{j}\right) / 2}$, then

$$
|Q(x)|^{2}=|P(x)|=P(x)
$$

Exercise 20. Complete the details of the proof when $m\left(\xi_{j}\right)>1$.

5.2 Applications

5.2.1 Stationary Gaussian process

$\left(X_{n}\right)$ - stationary Gaussian process (\mathbb{C}-valued), $\mathbb{E} X_{n}=0$.
Claim. $\exists \rho \in \mu^{+}(\mathbb{T})$ (semi-positive measure) such that $\mathbb{E} \overline{X_{p}} X_{q}=\hat{\rho}(p-q)$.

Proof.

$$
\begin{aligned}
& \sum \mathbb{E} \overline{X_{p}} X_{q} \overline{z_{p}} z_{q} \\
& =\mathbb{E}\left|\sum z_{p} X_{p}\right|^{2} \geq 0
\end{aligned}
$$

Exercise 21. Show that if $\frac{X_{1}+\cdots+X_{N}}{N} \rightarrow 0\left(=\mathbb{E} X_{1}\right) \Longleftrightarrow \rho$ has no atom at 0 .

5.2.2 Predictability

Can one predict $X_{0}, X 1, \ldots$ if we know X_{-1}, X_{-2}, \ldots ?
Reminder. (Szegö-Krein) ρ^{\prime} - density of the absolutely continuous (ac) part of f, as in Lebesgue decomposition theorem; $\mathfrak{g}\left(\rho^{\prime}\right)=\exp \left(\int \log \rho^{\prime}(x) \mathrm{d} x\right)$. (Jensen) $\int \log \rho^{\prime}(x) \mathrm{d} x \leq \log \int \rho^{\prime}(x) \mathrm{d} x \leq \log \rho_{a c}(\mathbb{T})$, hence $\int \log \rho^{\prime}(x) \mathrm{d} x \in[-\infty, 0]$, $\mathfrak{g}\left(\rho^{\prime}\right) \in[0,1]$.

Theorem 14 (Szegő-Krein). TFAE:
(i) $\mathfrak{g}\left(\rho^{\prime}\right)=0$, i.e. $\int \log _{-} \rho^{\prime} \mathrm{d} x=+\infty$
(ii) $\forall k, \epsilon>0, \exists c_{1, k}, \ldots, c_{N, k}: \mathbb{E}\left|X_{k}-\sum_{j=0}^{N} c_{j, k} X_{-j}\right|^{2} \leq \epsilon$

Exercise 22. Show that theorem 14.(ii) $\Longleftrightarrow \operatorname{span}\left(e_{p}\right)_{p \geq 1}$ is dense in $L_{2}(\rho)$.

5.2.3 Spectral theorem for unitary operators

U - unitary operator on $\mathcal{H}, f \in \mathcal{H}$, and

$$
a_{n}=\left\langle U^{n} f, f\right\rangle, \quad a \succcurlyeq 0
$$

The measure ρ such that $\hat{\rho}=a$ is called the spectral measure of U at f.
Exercise 23. Construct an isometry $V: \overline{\operatorname{span}}\left\{U^{n} f\right\} \leftrightarrow \mathrm{L}_{2}(\rho)$, such that $\left(V^{-1} U V\right) g=e_{1} g$. (spectral theorem for unitary operators).

6 Overview

Functions on $\mathbb{T} \leftrightarrow$ sequence.

- $f \in \mathrm{~L}_{1}(\mathbb{T}) \rightarrow \hat{f}(p)=\int f(x) \overline{e_{p}(x)} \mathrm{d} x$, where $e_{p}(x)=\exp (2 \pi i p x)$
- more generally: $\mu \in \mu(\mathbb{T}) \rightarrow \hat{\mu}(p)=\int \overline{e_{p}(x)} \mathrm{d} \mu(x)$.
- even more generally: $\phi \in \mathcal{B}^{\prime}$

Idea: sometimes \hat{f} is more accessible than f, especially problems invariant under shifts (heat equation, equidistribution mod 1, etc.).

Basic questions:
(a) Given f, how does \hat{f} behave?
(b) Given a sequence a, does there exist f such that $\hat{f}=a$, is it unique, and how to reconstruct f from a ?

Brief answers:
(a) "The nicer f is, the faster \hat{f} decays" (works nicely in some spaces, less cleanly in others)
(b) Uniqueness / reconstruction: Fejer method - very general. Existence: only special results when answer for the previous item is very precise. More intuitive method for reconstruction: " $f=\sum \hat{f}(p) e_{p}$ ":

- works in L_{2}
- in $\mathrm{L}_{1} \rightarrow \mathcal{C}(\mathbb{T})$ - requires additional assumptions

Generalisations: often locally compact abelian groups (LCA), particularly R.

[^0]: *Corrections are most welcome

