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1 Lecture 1

1.1 Motivating examples

1.1.1 Heat equation

Circular chain of length N. Denote u:(j) the temperature of j-th piece at time
te”Z,.

wn() —w(G) =51+ 1) = w) = (@i - 1) = w()))]

where 0 < z < 1.

/
e

-—

Figure 1: Circular chain of length N.

What happens as t grows; particularly, as t — oo?
= Z;V:_Ol u(j) is preserved, i.e. equal to

* U — U

*Corrections are most welcome



More quantitative question: set ug = Ndgand N > 1, after how much time u; ~
1? Is it N, v/N, N?? The idea: fast and slow fluctuations. Fast fluctuations
get smoothed out fast. How to separate u; into scales, which could be analysed
separately?

Main trick is in using e,(j) = exp(%).

* “wavelength %” but with arithmetic nuances
* character property: e,(j + k) = e,(j)ep(k)
Exercise 1. Check that there are no other characters.

Claim. e, form an orthogonal basis: % Z;VZ_I ep(7)eq(J) = Opq-

Expand
u =Y i(pe,
lp) = 3 3 wli)es)
w(j£1) =) ap)e,(£1)e,(5)
hence,
i1 (p) = (p) = 5 (e(1) + ep(—1) = 2)in(p)) .
All p are uncoupled, i.e. one equation for each p!
i1 (p) = (1 — (1 cos 220))i(p) (1)
— u(p) = (1 — (1 — cos 22 ip).

Analysis:

o constants are proportional to ey, @;(0) = 4, and, indeed, it does not

change

o the greater |p| is, the faster u;(p) — 0. The slowest one is (1) and

’LALt(—l)Z
X 27\t
|u:(1)] = (1 — z(1 — cos W)) (1)
o1 2xm?
N2

It takes < N? steps to converge to g
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Exercise 2. Let uy = N&y, then max; |u(j) — 1| = {i %C:exp{N_C; ) z i ng
A more realistic version t € R, x € T (R? R?*?)
(a) t € Ry, still on Z/nZ.
g . K . . : :
5rut() = 5 l(w(g + 1) —u(j)) + (s — 1) — ue(5)]
Exercise 3. Develop this theory.
(b) « - continual
%ut(x) = g@Qg;(Qx) or Uy = gug
T: periodic because us(1) = us(0) - ”circular rod”.
ep(x) = exp(2mipx) pe’l
Lo(T) = {f:T—C: /01|f(x)\2dx < oo}
Claim. e, form an orthonormal basis of La(T).
Proof. (e, €,) fo ey(x)e,(r) dor = ,,, Completeness: Weierstrass theorem.
]

Want: u(x) < > t(p)ey(x), where 4(p) = (uy, ep). Ignoring convergence et
al.:
en(z) = —4r°p’e,(w)
= u(p) = —27p*u(p)
— w(p) = exp(—2772p2t) 1:(0)

() = S ep(-2m5t)ey(a) [ ol dy

Pt(;r—y)

o For t > 0, u; = 5u



o = dg, (Py) > 1) t— o0

t—00

?? . . . . . .
owu = wug, (Py) = d(y)) t — 0 (initial condition). We prove this
t—+0
item in section 4 (example 17).

Difficulty: f = Zf(p)ep in Ly, i.e. [ ‘f(x) — D pl<k f(p)ep(x)rdx — 0, but

U—00
not pointwise (or uniformly). We shall see an example:

Exercise 4. Solve the equation u; = 3u”, x € [0, 3] with u(0) = w(3) = 0.

1
2
Hint: extend wi(—z) = —w(z), 0 <z < 4.

(z—n)?

Exercise 5. Pi(x) = \/%mzzo:_oo exp(—% ; ) Hint: Gaussian integral,
S (A€ +iBg) dg = \/Fexp( ), A> 0.

1.1.2 Equidistribution mod 1

a € R/Q, {ka}, #{k e {1,...,K}: {ka} € I} = |I|K + o(K)?, where I is an
arc. (Not hard to prove. What about {k?a}?)

Theorem 1 (Weyl). If P(x) is a polynomial of degree > 1 with at least one
irrational coefficient, then {P(k)} is equidistributed mod 1.

Let denote p as probability measure on T (§y for example), u; is a shift by
t,y st [ flx)du = [ flz+1t)du.

1
TK,u:E(M+Ma+ﬂ2a+"'+ﬂ([(—l)a)7

becomes uniform (similarly to the solution of the heat equation), but in a weaker
sense.

Reminder (Weak convergence). Set (p) = [e_,dv (v is not in Ly(T), but we
should not be dogmatic). vy — v <= Vp > 10x(p) — 0(p).

For the uniform distribution: mes(p) = 0 for p # 0.

7<\( ) 1 Ife (—2mikpa) 1 — exp(—2mikpa) g
(p) = —= xp(—2mikpa) = , :
KulP) = ¢ — P b K(1 — exp(—2mikpa)) k—o0

This is quantative: depends on the approximability of « by rationals. But how
to bound [Tk, (1) — |I||?



Theorem 2 (Erdés—Turdn). Let pu be a probability measure on T. Then for

any N > 1.
L\ i)
Sl}p|ﬂ(1)—|f|\§0 N+ZT
p=1

We prove Erdés—Turan theorem in section 5.

For pj, = Tg,: assume Vp € ZN\{0}, ||pc|| o dist(pa,Z) > - for some
a,7 >0 (for & = v/2 we can take 7 = 1). Naive:

N . N
i ()] <Z 2 1
= p p pK 2 — 2 cos(2mpa)
<N 2 Vom _ 2n N
<2 apK |pa| ~ aK Zp“
p=1 p=1
C.
< NT
— aK

1

Equate, § = GN™ — N7 =4 — N = (4)™ Thus

I —|Il| <C———m.
sup (1) = |1 < €} v
The bound is not very sharp! Ideal is %, which is inachievable, but we expect

logTK for 7 = 1. Better idea would be to use dyadic chunks. W.l.o.g. we assume

that N =2M 1, .

2m—1r§91§n2m—1 HpaH = 2mT

-1
22Wa , for some

Although, this cannot be achieved for all p! If ||pal|, ||p'af <
[ <mt, p+#p. Then:

2lq

H(p AL T
< 2lq
- p—p[ ~ 2m

_— |p _p/| 2 mel/T,



i.e. there are < 27 + 1 such p-s. We get:

M mT QZCI, 1
I/ m, —1| -
C g E 2 (va) + 2"a ]2
m=1 [[=1

N1
L [a_l {log2 N i] N {1"%}2{[(, 7=1 can be improved to the &
N | K | Nt N KLT, 7> 1 sharp!
Conclusion:
1 log” K T=1
Sl}p||f| —p#lsk<K:{ka}e f}‘ S {KKU;’ o1

Exercise 6. For €;,...,¢; i.i.d. £1, show that

Figure 2: Random steps of length o on the rod.

( 3\

L Ca
sup | P < {Zeka}—] > | < PelE

k=1
—_——

\ fraction part )

(under the same assumption on «)



2 Lecture 2

2.1 Construction

Recall that T = R/27Z, and e,(x) = e*™P*

f e Ly(T) Lo flp) = /f(:r:)ep(x) dz, (Fourier coefficients of f)

Set {e,} forms an orthonormal basis of f € Ly(T), therefore:

[1rtas =3 || g
[ fade =3 F0)i) 3)

Example 1. é,(p) = 0.
Example 2. f(z) =2, 0<z<1

1
/azeXp 27mpx)d
0

eXp —27ipx)
—2mipx

2mp fo exp(—2mipz) dr = 5, p#0

l\JI>—~

1
: _ = —

Exercise 7. Compute f for f(z) = {

The definition of Fourier coefficients is not always general enough. Some-
times we want to consider more general functions, such as the Dirac d-function
d(z), st 6(x) >0, 0(z) =0, for & # 0, s.t. [ d(x)dae = 1. Mathematically
[6(x) f(z)dx = f(0) functional on C(T).

A funct1on g in Li(T) defines a functional on C(T) by ¢,(f) = [ fgda.
We now shall define the Fourier coefficients of measures and even more general
objects.

Let B C Li(T) be a nice space of functions, e.g. La(T), Ly(T) for p < oo,
C(T), C*(T), or C*(T).

Definition 1. B is called a homogeneous space if:

e Banach (or Fréchet); contains e,(z) = exp(2mipx)

7



o feB = f, € B, where f,(z) = f(z+y)
e f, — f in the topology of B.
y—0

Remark. The third property holds in L;(T).

Let’s denote B’ as a dual space, the space of continuous functionals ¢ : B —
C. Examples of dual spaces:

Example 3. C(T)" — complex measures, for example ¢, dy — 6y : f > f(0) —
if(3).

Example 4. C}(T)' — also contains derivatives of measures, e.g. 5’(f) = —f’( )
the reason for this notation [ ¢'(z)f(z)dz = d(z) ‘ — [é(x)

Example 5. C*(T)" — contains derivatives of d-functions of arbitrary finite
order.

Let’s define ¢(p) = p(e_p) for ¢ € B'. Sanity check: if B C Ly(T), then
B > Li(T): ¢¢(g) = [ fgdz and in this case definitions coincide.

Exercise 8. Compute Fourier coefficients: 5, and 5

2.2 Algebraic properties
All algebraic properties are corollary of e,(z + y) = e,(x)e,(y).

Property 1. fy(p) = Gp(y)f(p)

Property 2. qu(p) = €p(y)¢g(p)

Property 3. (f * g)(p) = f<p>g< ) for
g eLi(T) — (fx9)(x) = [ f(y)g(xz —y) dy.

Remark. f g € Ly(T) since:

15 =gl = [ \ [ 1wt =) e

S//dxdy\f(y)\lg(ar—y)!
vz / / d dy | £ ()] g(w)

= [I£ll[lgll;

—_—

Property 4. (u*v)(p) = ju(p)v(p) for p,v € C(T)" where
(n*xv)(f) = [ flz+y)u(@)v(y)

8



Let’s define an linear operator T, : f — f, (shift), and ¢ — ¢,, where
fy = f(I + y)a and be(f) - QS(ffy)

Tyep, = ep(y)ep, s.t. e, is an eigenvalue of shift operators 7, and thus also
an eigenvalue of any operator that commutes with shifts, i.e. for any such T,
Te, = \pe,, and consequently T'f(p) = A\, f(p).

Example 6. f’(p) = +2mip f (p), and more generally differential operators with
constant coefficients.

Example 7. We look for a given function f(z) another real function g(x), s.t.
(f +i9)(=p) =0,p=0,1,...

p=1
9@) = > [<ifP)ep(@) +if(p)ep(@)]
p=1
_Zf(p)v p > 0 _
Thus g(p) =< 0 , g is called the conjugate function, g = f.
if(p),  p<0
Reason. (f +ig)(z) = u(e*™®) is the boundary value of an analytic function

_—

u(z) =32 (f +1ig)(p)z” in the unit disk.
Exercise 9. Compute eigenvalues for Laplacian f_; + (f—;g on torus.

Example 8. Solution to heat equation: f; = P, * f

2.3 Decay rate of Fourier coefficients

Motto: “The nicer is f, the faster f decays”. This works cleanly for Ly and

L2
spaces defined using » ’ f (p)‘ =[1f *dx, i.e. f € Lo(T) iff Fourier coefficients
are square summable:

Property 1. f € Ly(T) & fel
Property 2. Using property 1 and example 6, f*) € Ly(T), i.e. f is the k-fold
2
integral of g € Lo(T), < > ‘f(p)‘ " < 0.
Property 3. f € C*(T) & ’ f (p)‘ decays faster than any power of p. (Exercise.

Hint: [lgll, < llglly +[lg'll; < llglly +1gll2)-

9



Theorem 3. Let f € Li(T), a > 0. TFAE (f € C>(T)):

(i) f admits an analytic extensmn to \Im(z)\ <a
(ii) f € C®(T) and V0 < @ < a, ) || fW|, < Cla)a"k!
(iii) f € C>®(T) and V0 < @ < a, ) || f®|, < Cla)a™k!
(iv) VO < a < a, 3C(a): ‘f(p ‘ < (d) exp(—27|p|a). (Exponential decay

of Fourier coefficients)

Proof. theorem 3.(i) == theorem 3.(ii) using Cauchy formula: f*)(z) =
B L G _dz. L]

2mi J (z—x)k 1

10



3 Lecture 3

Proof. Theorem 3.(ii)) = theorem 3.(iii) is obvious, since Hf““)HOO < Hf(k)Hz'
[

Proof. Theorem 3.(iii) == theorem 3.(iv), and theorem 3.(iv) == theo-
rem 3.(i). Remind that (£)" < k! < C5(1+0)"(4)*. Let @ < a1 < a, apply (3)
with a; in place of a:

/ | f““)rdx < Clay)a2 (k1)
k(1 + 5)] 2h

eal

< Clarcy|

,Wherel—ké:@
a

< C(ay)? <£>2k

ae
L2
The LHS is )| ‘f(p)‘ (2|p|)?*, hence for any k and p # 0:

0] ¢t ()

ae2m|p|
, take k = 2malp| then

< C(ar) exp{—2ma|p|}.

]
Proof. Theorem 3.(iv) = theorem 3.(i): Let F(z) = 3 f(p)e2™
e Converges uniformly and therefore analytic for |z| < a
e On T coincides with f in Lo, hence also almost everywhere.
]

Example 9. P, * f is an entire function (i.e. analytic in C) for ¢t > 0, whenever
feC(T)oreven f e Ly(T).

Exercise 10. If f is analytic in |Im(z)| < A with a single simple pole at zg
and [Im(zp)| = a € (0, A), then Fourier coefficients for f, f(p) = exp(2mwipzy) +
O(exp(—(A = 0)2n|p]).

For other function spaces the connection is less tight.

11



L2 2
Example 10. f € C(T) — S| f(p)| bl < oo, but X |f(0)] 1pP* <
oo = f € C*(T). Both implications are “unimprovable”.

Example 11. What can be said about f(p) for f € Li(T)? Clearly, ‘f(p)‘ <

| fll; , but |f] is bounded even for measures!

We now discuss an improvement of Riemann-Lebesgue: if f € L;(T) then
f(p) — 0. We prove a quantitative version as follows: recall that w(d; f) =
supjyi<s |l f — fyll, and f is uniformly continuous <= w(d; f) o 0. Let’s

—+

denote wp(0; f) = supy, <5 |/ — fyllg, e-8- [ € Lu(T) = wi, 1) (9; f) 550 0.

Theorem 4 (Riemann-Lebesgue).

A 1 1
f(p)‘ < §wL1<T)(m; )
And in particular, f(p) — 0, p — %0.
Proof.
fo) = [ f@e@de= [ 1+ g+ o)
= /f(:c)ep <x+ i) dx+/ (f <x+ %) — f(x)) ep (er %) dx
) term 1 o term 2 ’

* termlz—ff(x)wdx:_f(p)

*ftem 2 < [ |7 (o + 35) = S0 do Sen 4

]

Example 12. When the function f is a-Lipschitz, i.e. modulus of the continu-
ity is bounded by |f(x) — f(y)| < Clz — y|”, a € (0, 1], therefore f € Lip, —

)| <p
Exercise 11. Prove: for 0 < a < 1, fa(z) = > ;377 cos(2r3"z) lies in

Lip, N Ly, but ‘f(p)‘ > |p|” on a sub-sequence. L.e. example 12 is sharp.
Corollary 1 (Riemann-Lebesgue). f*) € Li(T) = ’f(p)’ =0 <\p\_k)

We can use corollary 1 to compute asymptotics of f .

12



Example 13. If f € C!(T\{0}) is k-th the integrable piecewise function and has
a jump discontinuity at 0, then p-th Fourier coefficient f(p) = 2mp (f(+0) — f(—=0))+

o (i)

Proof. Let g(x) = f(+0) + (f(=0) — f(+0))z, 0 < z < 1. g(p) has this
asymptotics, (f — g)" € Li(T). O
Exercise 12. f € C'(T\{0}), f(£z) ~ Ayz~® for a € [0,1) and = — +0,
— A T(a+1)(2mip)* ' + A_T(a — 1)(=27ip)*' + o (%)

3.1 Convergence of Fourier series

Convergence of the partial sum S,(f;z) = >.". f(p)ep(x). Clearly, S, =

f’ 1/_, therefore by item property 1, we expect that S, is a convolution of f
with something. This is indeed so: S,, = D, * f where D =>" ¢ ( ) (Dirich-

let kernel), since S,(f;z) = ", [ f(wey(y)dye,(z) = [ f(y) D", ep(z —
y)dy.

Dy =Y ep(n) = eon(p) Y e(x)
-n 0

1 —eopii1(x) _ sin((2n + 1)7x)
1 —ey(x) sin(mz)

=€ (p)

And, clearly, D,(0) = 1. When is is true that D, * f — f? In Ly(T), S, is
the best approximation of f by a trigonometric polynomial of degree < n, and
hence S, — f in Lo(T) if f € Lo(T). However, this is not the case for C(T),
L1(T) and etc.

Example 14 (de la Vallée-Poussin). f € C(T), but (D,, * f)(0) diverges. As
well as, f € Li(T), but (D, * f) L—»(?) f.
Example 15 (Kolmogorov). f € Ly(T), but (D, * f) diverges everywhere.

Example 16 (Carleson-Hunt). f € L,(T), 1 < p < oo, and (D,, x f) converges
almost everywhere.

Theorem 5 (Dini). If f € Ly(T) and [ L/ |y gj' W =I@l 4y < 0 for some z € T, then
Sulf; ) = f(x).

13



Proof. W.l.o.g. assume z =0, f(0) =

5,(£0) = [ Sy = [ IR LTI £, g

/sm(27my) [Z?ﬁé:z))f(y)} dy+/cos(27my) @ dy
~~ o in Ly (T)
in Ly (T)

By theorem 4 it is implied that both last terms tend to 0. ]
Corollary 2 (Localisation principle). If f = g in (x—e€, x+¢€) and S,,(f;x) — A,
then S,(g;x) — A.

3.1.1 Absolute convergence

When is it true that > ‘f(p)‘ < oo? Note that in this case Zf(p)ep — f

absolutely and uniformly = f € C(T) (as a uniform limit of continuous
functions).

Theorem 6 (Bernstein). If fol Wi,y (1 f)hd/2 < 00, then ) ‘f ‘ < 00.

Remark. In particular, the convergence of the integral implies that f € C(T).
Is there a direct proof?

Proof.
wram (B f)? > / @+ h) — fa)da
R 2
NGO
g R 2
> 2 f(p)‘
+<|p|<5-
Hence,

2n<|pl<2m

> e s 2 enme )

2m§|p|§2m+1

On the other hand

14



Definition 2. A(T) = {f eLi(T): fe ll}.
Remark. If a € Iy, > ape, € C(T).

A(T) is an algebra (subalgebra of C(T): f,g € A(T) = fg € A(T).
Reason: (ly, %) is an algebra.

15



4 Lecture 4

Reminder. Last lecture motto, “The nicer is f, the faster f(p) decays”, works
nice for some function spaces:

o fELyT) « fel
o fECT) = |f)|=0lpI™)
e fis analytic < f (p) decays exponentially

For other spaces there are no simple necessary and sufficient conditions.

e fely(T) = f(p) — 0, or moreover f(p)‘ <wr, (h; f) = SUDg<y<h If = fylly

o fc Lip,— ’f’(p)‘ < |p|™*, or more generally ‘f(p)‘ S wr, (ﬁ;f)

The decay is dominated by the most singular singularity. We also
discussed convergence:

o feLy(T) = 3. f(p)e, — f in Ly(T)
Remark. Carleson showed that this is also holds a.e.

o f e Ly(T), f%dx <oo = YN fp)ey(x) = f(x) (for this x).

In general, Sy = ZJ_VN f (p)ey(z) may not converge to f in any sense.

Reason. Sy = Dy * f, Dy(x) = sin((2N+1)mz)

sin(mx)

Absolute uniform convergence: A(T) = {f e Ly(T),> ‘f(n)’ < oo} C C(T).

Check out theorem 6, and in particular, f € Lip, for some a > % — f €

A(T). But not for @ = 1 and vice versa.
What to do with general f € L1(T) and f € C(T).

Paradoz. Although f € C(T) can be approximated uniformly by trigonometric

polynomials Sy = Dy * f, the orthogonal projection of f onto the space of

trigonometric polynomials of degree < N may be very far from f. The solution
D,, * f minimises ||P — f||,, but not ||P — f||;, and not ||P — f||,

New motto: “The nicer f is, the better it can be approximated by trigono-
metric polynomials”. But not by Dy * f, how then?

Theorem 7 (Fejér). If f € C(T), then SO(fH"'J'\,FSN‘l(f) = f, which implies

Weierstrass theorem without circular reasoning. More generally: for any homo-

geneous space B and any f € B, SO(f)JF";SN*I(f) = feb.

Reminder. *aq, - A = %Jr—;\;azvfl A

16



* Not vice versa, e.g. a, = (—1)"

What is S85x19 6 — D f hence St (Dot Dy

Exercise 13. If |a, — a,—1] < € and (ag + - -
a, — A.

N N

Exercise 14. Show that Ky(x) = Do(2)+-+Dn_1(z) _ sin*(rNx)

N N sin®(rz)

Property 1. [ Ky(z)dz = 1. Since, it holds for Dy
Property 2. [|Kn(x |dx < (. Since Ky >0

Property 3. V0 < ¢ <

Jiupss En(@)|dz = 0. Since, [Kx(2)| S 5

+an_1)/N — A, show that

Definition 3. A sequence of functions ky satisfying property 1, property 2,
property 3 called a summability kernel or approximate d-function.

Remark. Sometimes instead of a large parameter N — oo, we shall encounter
a small parameter t — 0.

Theorem 8. If B is a homogeneous space, f € B then ky x f — f € B for any
summability kernel ky.

Corollary 3. Uniqueness in Li(T) : f=§g = f=g (and also explicit
reconstruction,).

Proof. We assume that B is a Banach space. (k, * f)(z) = [ ky(
and briefly ky x f = [ kn(y)f, dy.

v f=fls, = | (- - Py
< [ Ikl = Flgdy

< [ Ievlaystrio s [ )l du2iil

7

B

TV TV
term 1 term 2

* by property 2, term 1 < Cwg(f; )

* by property 3, term 2 — 0, as N — oo

So we let N — oo and § — +0.

17
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4.1 Additional applications

Example 17. The heat kernel P,(t — +0) is a summability kernel, and hence
f(x), t=0 .
(B f)(x), t>0
continuous at ¢ = 0 and thus indeed is a solution to the heat equation. Hint:
use exercise 4.

(B * f) A feBforany f € B, eg. C(T), ie w(x)=

Example 18. Given a continuous ¢ : {|z|] = 1} — R, we want G : {|z| <
1} — R which is continuous and harmonic (in the interior). G (rexp(2miz)) =
(P?x f)(x), and f(x) = g(exp(2mizx)) where P°(x) = Zpr|p|ep(x) is the Poisson
kernel.

Exercise 15. - P? (r — 1—0) is a summability kernel (= G is contin-
uous at the boundary)

CAG=0is {]2] <1}

__Kn(@)?
J Kn(y)2dy

Exercise 16. Show that Jy is a summability kernel and Jy(z) < N3z~
for |z| < 3

Example 19. Another useful kernel is Jackson kernel: Jy(x)

4.2 Amplifications of the Weierstrass theorem

Let denote trigonometric polynomials of degree < N as Ty = {P = > ¢pe, -
Ip| < N}, and the rate of approximation by trigonometric polynomials Ex(f; B) =
infpery || f — PHB‘

Theorem 9 (Jackson™). if f € B, then Enx(f;B) < Cw
if f*) ¢ B, then Ex(f;B) < CkN_kw%(f(k);B).

Exercise 17. Prove second part of the theorem 9.

First part. Assume w.l.o.g. k =0, and wp(26; f) < 2wp(4; f).
Ean(f;B) < |In* f — flls

<9 / SIS, — Fllsdy

%(f; B) and, moreover,

<9 / " Tn(w)ws(y; £) dy

term 1 term 2 term 3
o 1 T 1 1
< Koon(——: ) = ——on(——-
2N N

18



Term 1 is the length of the interval. Term 2 is the bound on Jy using exercise 16.
Term 3 is built using WB(%; f) < kws(zy; f). The final step is the summing
over k. []

Remarkably, Jackson’s theorem is sharp in a much stronger sense than the
results from the previous section.

Theorem 10 (Bernstein). If Ex(f;B) < AN~®*") for some k€ Z,, 0<r <
1 then f*) € B and ws(f™;B) < C,Ad".

Remark. » = 1 requires some more care.

Proof. For k = 0, let P, € Ty, be such that ||P, — f||z = E2.(f;B), then
f=1mP P, =3 (P, — P,), where

1Qullg < 2E0n(f; B) < 2427 (4)

Theorem 11 (Berstein). If P € Ty, ||P'||z < KN||P||z where K = 27 (we do
not need the sharp value of k).

Continuing the proof of theorem 10:

ny o fHB < Z HQny o QnHB
< Z min(2A42°"", 2" AK |y|)

SA(yl Y 207+ 27

n<l n~ 1
2§y 2>y

;_1 .
S A(yllyl + lyl")
S Ayl

Exercise 18. Prove £ > 1 case.

Exercise 19. Prove theorem 11. Plan for the proof:
P:VN*P for VNZQKQN—KN
P =V *xP= /VJ(,(y)Py dy
— 1Pls < [ G I7 5t

One can check that [ [V} (y)|dy < KN.
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5 Lecture 5

5.1 Fourier coefficients of linear functionals

Reminder. B - homogeneous space, ¢ € B’ - linear functional, ¢(p) = dle—p),
pe”l.

5.1.1 Reconstruction of ¢ from gg

We proved this for B (extended theorem 7)

Theorem 12. Let Vf € B, ¢(f) = + limy_,o SV [8,(6) f dz, where S, (¢) =
SNy o(x)e,. (Briefly: ¢ =lim+ SV 'S, (¢) in B)

Corollary 4. quS = 1& — ¢ =1.
Proof of theorem 12.

hence,

=0 (1 - %) f(p)6p>
o S SN R Tt
n=0

~
Converges to f € B by theorem 7
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5.1.2 Focus on B =C(T)

B = pu(T) - measures. p*(T) C u(T) - positive measures. (u(T) = p*(T) +
in™(T) — pt(T) — ip™(T), any measure can be decomposed in this way and
follows from Hahn theorem).

Inequality 1 (Erd6és—Turan). if u is a probability measure on T, then VN > 1:

Nﬂp
§3 i)

sup |p(l) —mes(I)] > C -
p=1 b

I—arc

Lemma 1 (Ganelius). Let f € L;(T) real-valued, and
let w*(6; f) = SUPz<y<z+6 (f(y) = f(x)). Then
N-1 ]
< r +/7 " .
wlf | 3| ()

Proof of inequality 1. Let f(t) = x — p[0,t] — A, where A = fo x — pl0, z]) dz.
Then

(2) f(0)=0
(3) f(p) = [ en(w) (z — p[0,2] — A) dz = 5= fu(p), p > 1
Hence

1 N
jula.¥) = (b—a)| = 20 (N ;

7;>
v

Proof of lemma 1. W.lo.g. M =sup|f| = |f(0)]
Case 1. M > 0, then f(z) > M —w'(2; f) for 0 >z > —

2 N k

K ~ =/ K —— _d
(Kn = f)( N) . Ny f( N y) dy

) te?Trnl g

k
+ Kny)f(—— —y)dy
E>py>1 N
te;TrnQ
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wT (%, f)), term 2 > —%M, and therefore

&
For sufficiently large k € N, f_N% Kn(y)dy > % whence term 1 > %(M—

On other hand:
IKn Al < 3 | F0)

Ip|[<N
= 1)1 +23" | o)

Whence

Case 2. M < 0. Similar argument.

Now start with a = (Clp)pez

- when does there exist u € p*(T) such that i(p) = a,?

- same question for u € pu(T)
Definition 4. a is called positive-semidefinite (a = 0) if V& > 1,Vzy,...,2, € C

k

Z ap—qgZpZq = 0

p.g=—k
Theorem 13 (Herglotz). a %= 0 <= 3Ju € p*(T), such that i = a.
Proof. If p € pu*(T)

Zﬂ(p — Q)% = Z / eq—p At 2%
:/’Zquq

Assume a = 0. Denote: p (leléN cpep) = > cpa_,. We claim that if P € Ty
is > 0 on T, then p(P) > 0. This follows from:

2
dpu >0
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Lemma 2. If P € Ty >0, then P = \QF for some trigonometric polynomials

0.

Explicitly: P = 3" ¢, che,—q, whence u(P) = Y c,cagp, > 0. Thus P >
A = u(P) > Aay, for some A € R, and |P| < A = |u(p)| < Aag. Hence
1 is a bounded functional on |J 7y and can be extended to C(T), i.e. defines a

measure p € p(T). To prove that u € pt(T), take f > 0 in C(T); then,

iP,=f, P,€7T, and P,>0, eg P,=K,xf

— p(f) = limu(F,) =0

Proof of lemma 2.

N
P(x) = Zcpep >0 = c,=7¢
-N

Let P#(z) = Z]_VN cp2P = Cnz N I1(z — gj)m(f)

- if [§] =1, m(§;) is even,

- if|§] # 1,
# (%) = Zcpngp: Z —pS = P#(gj)
1
— m (52) —m(&)

Let Q(x) = /|Cn| H|§‘>1 e1(w ')m(gj)/2 H|g\:1 (er(x) — fj)

Exercise 20. Complete the details of the proof when m(¢§;) > 1

5.2 Applications
5.2.1 Stationary Gaussian process

(X,,) - stationary Gaussian process (C-valued), EX,, = 0.

then

Claim. 3p € p(T) (semi-positive measure) such that EX, X, = p(p — q).
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Proof.
Z EX, X %%

- E‘Zszp

2
>0

[]

Exercise 21. Show that if 2+ 5 () (= EX;) <= p has no atom at 0.

5.2.2 Predictability

Can one predict Xy, X1,... if we know X 1, X o, ...7

Reminder. (Szegé-Krein) p' - density of the absolutely continuous (ac) part of f,
as in Lebesgue decomposition theorem; g(p') = exp ([logp/'(z)dz). (Jensen)
[logp'(x)dx < log [ p/(z)dz < log pu.(T), hence [logp/'(z)dz € [—o0,0],
g(p') €10, 1].

Theorem 14 (Szeg6-Krein). TFAE:

(i) g(p') =0, 1e [log_p dz=+o0

2
(i) Wk, €> 0, 3erp, e B[ Xe = S euX

<e€

Exercise 22. Show that theorem 14.(ii) <= span(e,),>1 is dense in La(p).

5.2.3 Spectral theorem for unitary operators

U - unitary operator on H, f € H, and
an:<Unf7f>7 G%O

The measure p such that p = a is called the spectral measure of U at f.

Exercise 23. Construct an isometry V : Span{U"f} < Ls(p), such that
(V7IUV)g = e1g. (spectral theorem for unitary operators).
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6 Overview

Functions on T <> sequence.

- feLy(T) = [ f(2)ey(x) dx, where e,(x) = exp(2mipz)
- more generally: p € u(T) = i(p) = [ e,(z) du(x).
- even more generally: ¢ € B/

Idea: sometimes f is more accessible than f, especially problems invariant
under shifts (heat equation, equidistribution mod 1, etc.).

Basic questions:
(a) Given f, how does f behave?

(b) Given a sequence a, does there exist f such that f = a, is it unique, and
how to reconstruct f from a?

Brief answers:

(a) ”The nicer f is, the faster f decays” (works nicely in some spaces, less
cleanly in others)

(b) Uniqueness / reconstruction: Fejer method - very general. Existence:
only special results when answer for the previous item is very precise.
More intuitive method for reconstruction: " f = > f(p)e,

- works in Ly

- in Lj — C(T) - requires additional assumptions

Generalisations: often locally compact abelian groups (LCA), particularly
R.
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