Q1. Let Y_{1}, Y_{2}, \ldots be independent, exponentially distributed random variables with $\mathbb{E} Y_{i}=1$. Show that $\mathbb{P}\left(Y_{n}>\right.$ $\log n$ i.o. $)=1$.
Let $A_{n}:=\left\{Y_{n}>\log n\right\}$. We have $\mathbb{P}\left(A_{n}\right)=\exp (-\log n)=1 / n$, and the events are independent because the Y_{n} 's are independent. Since $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$ the assertion follows from the Borel-Cantelli Lemma (part (b)).
Q2. Show that condition (i) in the three series theorem is necessary for convergence of the series.
If the condition fails then, as in Q1, by the Borel-Cantelli Lemma $\left|X_{n}\right|>c$ for infinitely many n, with probability one. But then $X_{n} \nrightarrow 0$, and so $\sum_{n} X_{n}$ cannot converge.

Q3. Suppose rv's X_{1}, \cdots, X_{n} independent, rv's Y_{1}, \cdots, Y_{m} independent, and random vectors (X_{1}, \cdots, X_{n}) and $\left(Y_{1}, \cdots, Y_{m}\right)$ are independent. Show that the $(n+m)$ random variables $X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}$ are independent. It is sufficient to show that the probability

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}, Y_{1} \leq y_{1}, \cdots, Y_{m} \leq y_{n}\right)
$$

factors, because events $\{Z \leq z\}$ generate $\sigma(Z)$ for real r.v. Z. We have the above probability equal to

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right) \mathbb{P}\left(Y_{1} \leq y_{1}, \cdots, Y_{m} \leq y_{m}\right)
$$

by the independence of vectors, and

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right)=\prod_{j=1}^{n} \mathbb{P}\left(X_{j} \leq x_{j}\right)
$$

by the independence of X_{j} 's. Similarly, $\mathbb{P}\left(Y_{1} \leq y_{1}, \cdots, Y_{m} \leq y_{m}\right)$ factors.
Q4. Let X_{1}, X_{2}, \ldots be arbitrary random variables. Prove that if $\sum_{j=1}^{\infty} \mathbb{E}\left|X_{j}\right|<\infty$ then the series $\sum_{j=1}^{\infty} X_{j}$ converges absolutely with probability one.
Any number can be written as the difference of its positive and negative parts, $x=x_{+}-x_{-}$, where $x_{+}=\max (x, 0), x_{-}=\max (-x, 0)$. Note that $|x|=x_{+}+x_{-}$. Representing this way each X_{j}, the claim is reduced to the case $X_{j} \geq 0$. Assuming X_{j} 's nonnegative, we have nondecreasing sequence $S_{n}=X_{1}+\cdots+X_{n}$ of partial sums, which has $\mathbb{E} S_{n}=\sum_{j=1}^{n} \mathbb{E} X_{j}<$ M for some large enough but finite M (by the assumption). By the Monotone Convergence Theorem $\mathbb{E} \sum_{j=1}^{\infty} X_{j}=\lim _{n \rightarrow \infty} \mathbb{E} S_{n}<M$. But this implies that $\sum_{j=1}^{\infty} X_{j}<\infty$ a.s., since otherwise the expectation of the series would be infinite.

Q5. Suppose $\mathbb{E} X$ exists. Argue that for every ϵ there exists δ such that $\mathbb{P}(A)<\delta$ implies

$$
\mathbb{E}\left(|X| \cdot 1_{A}\right)<\epsilon
$$

(where 1_{A} indicator of event A).
As in Q4, it is enough to consider $X \geq 0$. Let $X_{n}=X \cdot 1(X \leq n)$, then $X_{n} \uparrow X$ and by the Theorem of Monotone Convergence also $\mathbb{E} X_{n} \uparrow \mathbb{E} X$. Thus for large enough n we have $\mathbb{E}(X \cdot 1(X>n))<\varepsilon / 2$. Set $\delta=\varepsilon /(2 n)$, then $\mathbb{P}(B)<\delta$ implies

$$
\mathbb{E}\left(X \cdot 1_{B}\right)=\mathbb{E}\left(X \cdot 1_{B} \cdot 1(X>n)\right)+\mathbb{E}\left(X \cdot 1_{B} \cdot 1(X \leq n)\right)<\varepsilon / 2+n \varepsilon /(2 n)=\varepsilon
$$

Q6. Show that $\mathbb{E}[X Y]=\mathbb{E} X \mathbb{E} Y$ if the rv's are independent.
Start with $X=1_{A}, Y=1_{B}$, when the claim follows from independence of A and B. By linearity the identity is extended to simple r.v.'s of the form $X=\sum_{j=1}^{n} a_{j} 1_{A_{j}}, Y=\sum_{i=1}^{m} b_{j} 1_{B_{j}}$. To the general case the identity is extended using definition of the Lebesque integral.

Q7. For three measures suppose $\mu \gg \nu \gg \rho$ and that μ, ν, ρ are σ-finite. Prove the chain rule for the Radon-Nikodým derivative:

$$
\frac{d \rho}{d \mu}=\frac{d \nu}{d \mu} \frac{d \rho}{d \nu}
$$

Let

$$
f=\frac{d \rho}{d \nu}, \quad g=\frac{d \nu}{d \mu}
$$

Choose pointwise increasing sequence of simple functions f_{n} to have $f_{n} \rightarrow f$. By the Monotone Convergence Theorem

$$
\int_{E} f_{n} d \nu \rightarrow \int_{E} f d \nu=\rho(E), \quad \int_{E} f_{n} g d \mu \rightarrow \int_{E} f g d \mu
$$

for any measurable set E. Now for measurable set A

$$
\int_{E} 1_{A} d \nu=\nu(E \cap A)=\int_{E \cap A} g d \mu=\int_{E} 1_{A} g d \mu
$$

Since we can write $f_{n}=\sum a_{j} 1_{A_{j}}$ by linearity we have

$$
\int_{E} f_{n} d \nu=\int_{E} f_{n} g d \mu
$$

Letting $n \rightarrow \infty$, we get $\rho(E)$ in the left-hand side, so passing to the limit

$$
\rho(E)=\int_{E} f g d \mu
$$

Since E arbitrary, this completes the proof.
Q8. Let μ be a normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$, and ν the exponential distribution with parameter β. Argue that $\mu \gg \nu$ and find the Radon-Nikodym derivative $d \nu / d \mu$.

If $B \in \mathcal{B}(\mathbb{R})$ is a nullset under the normal distribution then (by the absolute continuity) also under the Lebesque measure, hence also under the exponential distribution. By the chain rule from Q7

$$
\frac{d \nu}{d \mu}(x)=\frac{\beta e^{-\beta x}}{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-(x-m)^{2} /(2 \sigma)\right)}, \quad x \geq 0
$$

and $\frac{d \nu}{d \mu}(x)=0$ for $x<0$.
Q8. Let $A_{i, j}$ be a system of disjoint events, with $\cup_{i, j} A_{i, j}=\Omega$. Let $A_{i}=\cup_{j} A_{i, j}$. Let \mathcal{G}_{2} be generated by all $A_{i, j}$'s, and let \mathcal{G}_{1} be generated by A_{i} 's. Describe as precise as you can the random variables $\mathbb{E}\left[X \mid \mathcal{G}_{1}\right], \mathbb{E}\left[X \mid \mathcal{G}_{2}\right]$. Assuming $\mathbb{P}\left(A_{i, j}\right)>0$, prove the tower property in this example.

The conditional expectations are simple random variables

$$
\mathbb{E}\left[X \mid \mathcal{G}_{2}\right]=\sum_{i, j} x_{i j} 1_{A_{i j}}, \quad \mathbb{E}\left[X \mid \mathcal{G}_{1}\right]=\sum_{i} x_{i} 1_{A_{i}}
$$

where

$$
x_{i j}=\frac{\mathbb{E}\left[X 1_{A_{i j}}\right]}{\mathbb{P}\left(A_{i j}\right)}, \quad x_{i}=\frac{\mathbb{E}\left[X 1_{A_{i}}\right]}{\mathbb{P}\left(A_{i}\right)}=\frac{\sum_{j} \mathbb{E}\left[X 1_{A_{i j}}\right]}{\mathbb{P}\left(A_{i}\right)}=\frac{\sum_{j} x_{i j} \mathbb{P}\left(A_{i j}\right)}{\mathbb{P}\left(A_{i}\right)} .
$$

In particular,

$$
\mathbb{E}\left[1_{A_{i j}} \mid \mathcal{G}_{2}\right]=\sum_{k} \frac{\mathbb{E}\left[1_{A_{i j}} 1_{A_{k}}\right]}{\mathbb{P}\left(A_{k}\right)} 1_{A_{k}}=\frac{\mathbb{P}\left(A_{i j}\right)}{\mathbb{P}\left(A_{j}\right)} 1_{A_{j}}
$$

Whence,

$$
\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]=\mathbb{E}\left[\sum_{i, j} x_{i j} 1_{A_{i j}} \mid \mathcal{G}_{1}\right]=\sum_{i, j} x_{i j} \mathbb{E}\left[1_{A_{i j}} \mid \mathcal{G}_{1}\right]=\sum_{i, j} x_{i j} \frac{\mathbb{P}\left(A_{i j}\right)}{\mathbb{P}\left(A_{i}\right)} 1_{A_{i}}=\mathbb{E}\left[X \mid \mathcal{G}_{1}\right] .
$$

