
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 2, solutions to selected problems

Q1. Let Y1, Y2, . . . be independent, exponentially distributed random variables with EYi = 1. Show that P(Yn >

log n i.o.) = 1.

Let An := {Yn > log n}. We have P(An) = exp(− log n) = 1/n, and the events are indepen-
dent because the Yn’s are independent. Since

∑
n P(An) = ∞ the assertion follows from the

Borel-Cantelli Lemma (part (b)).

Q2. Show that condition (i) in the three series theorem is necessary for convergence of the series.

If the condition fails then, as in Q1, by the Borel-Cantelli Lemma |Xn| > c for infinitely many
n, with probability one. But then Xn 6→ 0, and so

∑
nXn cannot converge.

Q3. Suppose rv’s X1, · · · , Xn independent, rv’s Y1, · · · , Ym independent, and random vectors (X1, · · · , Xn) and
(Y1, · · · , Ym) are independent. Show that the (n+m) random variablesX1, · · · , Xn, Y1, · · · , Ym are independent.

It is sufficient to show that the probability

P(X1 ≤ x1, · · · , Xn ≤ xn, Y1 ≤ y1, · · · , Ym ≤ yn)

factors, because events {Z ≤ z} generate σ(Z) for real r.v. Z. We have the above probability
equal to

P(X1 ≤ x1, · · · , Xn ≤ xn)P(Y1 ≤ y1, · · · , Ym ≤ ym)

by the independence of vectors, and

P(X1 ≤ x1, · · · , Xn ≤ xn) =
n∏
j=1

P(Xj ≤ xj)

by the independence of Xj’s. Similarly, P(Y1 ≤ y1, · · · , Ym ≤ ym) factors.

Q4. Let X1, X2, . . . be arbitrary random variables. Prove that if
∑∞

j=1 E|Xj | <∞ then the series
∑∞

j=1Xj converges
absolutely with probability one.

Any number can be written as the difference of its positive and negative parts, x = x+ − x−,
where x+ = max(x, 0), x− = max(−x, 0). Note that |x| = x+ + x−. Representing this
way each Xj , the claim is reduced to the case Xj ≥ 0. Assuming Xj’s nonnegative, we have
nondecreasing sequence Sn = X1 + · · · +Xn of partial sums, which has ESn =

∑n
j=1 EXj <

M for some large enough but finite M (by the assumption). By the Monotone Convergence
Theorem E

∑∞
j=1Xj = limn→∞ ESn < M . But this implies that

∑∞
j=1Xj < ∞ a.s., since

otherwise the expectation of the series would be infinite.

Q5. Suppose EX exists. Argue that for every ε there exists δ such that P(A) < δ implies

E(|X| · 1A) < ε

(where 1A indicator of event A).

As in Q4, it is enough to consider X ≥ 0. Let Xn = X · 1(X ≤ n), then Xn ↑ X and by
the Theorem of Monotone Convergence also EXn ↑ EX . Thus for large enough n we have
E(X · 1(X > n)) < ε/2. Set δ = ε/(2n), then P(B) < δ implies

E(X · 1B) = E(X · 1B · 1(X > n)) + E(X · 1B · 1(X ≤ n)) < ε/2 + nε/(2n) = ε.
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Q6. Show that E[XY ] = EX EY if the rv’s are independent.

Start with X = 1A, Y = 1B, when the claim follows from independence of A and B. By
linearity the identity is extended to simple r.v.’s of the formX =

∑n
j=1 aj1Aj

, Y =
∑m

i=1 bj1Bj
.

To the general case the identity is extended using definition of the Lebesque integral.

Q7. For three measures suppose µ� ν � ρ and that µ, ν, ρ are σ-finite. Prove the chain rule for the Radon-Nikodým
derivative:

dρ

dµ
=
dν

dµ

dρ

dν
.

Let
f =

dρ

dν
, g =

dν

dµ
.

Choose pointwise increasing sequence of simple functions fn to have fn → f . By the Monotone
Convergence Theorem∫

E

fndν →
∫
E

fdν = ρ(E),

∫
E

fngdµ→
∫
E

fgdµ

for any measurable set E. Now for measurable set A∫
E

1Adν = ν(E ∩ A) =
∫
E∩A

gdµ =

∫
E

1Agdµ.

Since we can write fn =
∑
aj1Aj

by linearity we have∫
E

fndν =

∫
E

fngdµ.

Letting n→∞, we get ρ(E) in the left-hand side, so passing to the limit

ρ(E) =

∫
E

fgdµ.

Since E arbitrary, this completes the proof.

Q8. Let µ be a normal distribution N (m,σ2), and ν the exponential distribution with parameter β. Argue that µ � ν

and find the Radon-Nikodym derivative dν/dµ.

If B ∈ B(R) is a nullset under the normal distribution then (by the absolute continuity) also
under the Lebesque measure, hence also under the exponential distribution. By the chain rule
from Q7

dν

dµ
(x) =

βe−βx

1√
2πσ

exp(−(x−m)2/(2σ))
, x ≥ 0

and dν
dµ
(x) = 0 for x < 0.

Q8. LetAi,j be a system of disjoint events, with ∪i,jAi,j = Ω. LetAi = ∪jAi,j . Let G2 be generated by allAi,j’s, and
let G1 be generated by Ai’s. Describe as precise as you can the random variables E[X|G1],E[X|G2]. Assuming
P(Ai,j) > 0, prove the tower property in this example.

The conditional expectations are simple random variables

E[X|G2] =
∑
i,j

xij1Aij
, E[X|G1] =

∑
i

xi1Ai
,
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where

xij =
E[X1Aij

]

P(Aij)
, xi =

E[X1Ai
]

P(Ai)
=

∑
j E[X1Aij

]

P(Ai)
=

∑
j xij P(Aij)
P(Ai)

.

In particular,

E[1Aij
|G2] =

∑
k

E[1Aij
1Ak

]

P(Ak)
1Ak

=
P(Aij)
P(Aj)

1Aj
.

Whence,

E[E[X|G2]|G1] = E

[∑
i,j

xij1Aij
|G1

]
=

∑
i,j

xij E[1Aij
|G1] =

∑
i,j

xij
P(Aij)
P(Ai)

1Ai
= E[X|G1].
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