Q4 Let $\mathcal{A}$ be the family of sets $A \in \mathcal{B}(\mathbb{R})$ with the property that there exists a limit

$$
\mu(A)=\lim _{n \rightarrow \infty} n^{-1} \lambda(A \cap[0, n])
$$

Show that $\mathcal{A}$ is an algebra. Is $\mu \sigma$-additive on $\mathcal{A}$ ?
It is checked straightforwardly that $\mathcal{A}$ is closed under taking complements, disjoint union of finitely many sets, hence also under finite intersections. Both $\varnothing$ and $\mathbb{R}$ belong to $\mathcal{A}$. Actually $A \cap(-\infty, 0)$ does not impact $\mu(A)$ provided $\lambda(A \cap(-\infty, 0)<\infty$, and $\mu(A)=\infty$ if $\lambda(A \cap$ $(-\infty, 0))=\infty$.
Now let $A_{n}=[n-1, n]$ for $n=1,2, \cdots$. Then $\mu\left(A_{n}\right)=0$ but $\mu\left(\cup_{n} A_{n}\right)=1$. Hence $\mu$ is not $\sigma$-additive.

Q6 Is there a probability measure $\mu$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ supported by $\mathbb{Q}$, i.e. such that $\mu(x)>0$ for $x \in \mathbb{Q}, \sum_{x \in \mathbb{Q}} \mu(x)=1$. Is this measure discrete or diffuse?
Since $\mathbb{Q}$ is countable we can enumerate the rational numbers $q_{1}, q_{2}, \cdots$. Let $\mu\left(q_{n}\right)=2^{-n}$. The total measure is then

$$
\sum_{n} \mu\left(q_{n}\right)=1
$$

The measure is discrete, because it is supported by a countable set $\mathbb{Q}$ (although the closure of this set is the whole of $\mathbb{R}$ ).

Q7 For $A \subset \mathbb{R}$ define $x+A:=\{x+a, a \in A\}$. Prove translation invariance of the Lebesgue measure: $\lambda(x+A)=$ $\lambda(A), A \in \mathcal{B}(\mathbb{R})$. Extend the property to Lebesgue-measurable sets $A$.
Let $\lambda_{x}(A):=\lambda(x+A)$, where $x+A$ is the collection of points $x+a, a \in A$. For every interval $(a, b]$ it holds that $\lambda_{x}((a, b])=\lambda((a, b])$, therefore the measures $\lambda_{x}$ and $\lambda$ coincide on the semiring of intervals. But then by the uniqueness of extension the measures coincide of $\mathcal{B} \mathbb{R}$, and further on the Lebesgue-measurable sets.
Q10 Let $\mu=\sum_{j=1}^{\infty} 2^{-j} \delta_{j}$. Is it a probability measure? Sketch the graph of its cumulative distribution function.
Yes, this is a discrete measure putting mass $2^{-j}$ on point $j$, with total measure equal to 1 . The c.d.f. is piece-wise constant, taking value $1-2^{-j}$ on interval $[j-1, j), j=1,2, \cdots$

Q13 Consider $\mathcal{S}:=\{\{x\}: x \in \mathbb{R}\}$. Show that for $A \in \sigma(\mathcal{S})$, either $A$ is countable (i.e. either finite or countably infinite) or $A^{c}$ is countable. Now let $\mu(x)=1$ for every $x \in \mathbb{R}$. What are possible values of $\mu(A)$ ? When $\mu(A)=\infty$ ?
Note that if $A^{c}=\left\{x_{1}, x_{2}, \cdots\right\}$ (finite or countably infinite set) then for any $B$ we have

$$
(A \cup B)^{c}=\left\{x_{1}, x_{2}, \cdots\right\} \backslash B
$$

again a finite or countably infinite set.
Let $\mathcal{G}$ be the collection of sets $A$ such that either $A$ or $A^{c}$ is countable. Clearly, $\mathcal{G}$ is closed under complements, and contains $\varnothing$. Suppose $A_{1}, A_{2}, \cdots \in \mathcal{G}$. If all $A_{n}$ 's countable then $\cup_{n} A_{n}$ is countable hence belongs to $\mathcal{G}$. If at least one, say $A_{1}$ has countable complement, say $\left\{x_{1}, x_{2}, \cdots\right\}$ (perhaps, finitely many points) then $\left(\cup_{n} A_{n}\right)^{c} \subset A_{1}^{c} \subset\left\{x_{1}, x_{2}, \cdots\right\}$ is again a countable set, thus also in this case $\cup_{n} A_{n} \in \mathcal{G}$. Thus $\mathcal{G}$ is closed under the countable unions. It follows that $\mathcal{G}$ is a $\sigma$-algebra, $\mathcal{G} \supset \mathcal{S}$ and in view of $\mathcal{G} \subset \sigma(\mathcal{S})$ we have $\mathcal{G}=\sigma(\mathcal{S})$.
The measure $\mu$ is a counting measure, with $\mu(A)=n$ if $\operatorname{card}(A)=n$, and $\mu(A)=\infty$ if the cardinality of $A$ is infinite.

