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Abstract

The German Tank problem is a famous problem that first appeared during World
War 2. The allies tried to predict the number of tanks Germany was producing
with mainly two techniques. One using Frequentist statistics and the other being

Bayesian statistics. They were able to predict the number of tanks being
produced based on the serial numbers of the captured tanks.

We will generate random samples of numbers (tank serial numbers) to mimic the
method of capturing random tank pieces. We will use fixed dummy numbers for
our variables such as: sample size and population to find a point estimate of the
true population size with certain formulas. More specifically, the formulas used to
find point estimates for the population size for both the Frequentist method and
the Bayesian method. This involves finding the pmf and using it to derive the

expectation and variance.
We will conduct our own experiments to see how this method is done and get a
better understanding of it. We will see if we can use other methods or alterations
of known methods to get a better estimate. Such as using a different prior in the
Bayesian method in R and deriving a value with computations. We will see in our

results which approach gives more accurate results.
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Chapter 1

Introduction

1.1 Historical Background

During World War 2 the allies wanted to find out the production of German
tanks. Before, the US and Britain were thought to have superior tanks com-
pared to Germany’s Panzer tanks. But new tanks were being produced, the
Mark IV and V tanks. They were worried about the new version’s capabil-
ities and because of this more information about these tanks were needed.
This could be very advantages to have as you can be more prepared on the
battlefield. This would later come to use in the Western Front. Thus, to
do this they adopted 2 methods: conventional intelligence and atatistical
intelligence. In some ways conventional intelligence was used in conjunction
with statistical methods. For example, this was done for the estimation of
the Panther Tank production.
However this was different, the first method used was conventional intelli-
gence. It was a more conventional route where they tried to ascertain the
number of tanks by methods such as interrogation, intercepting encoded mes-
sages, espionage, and tips etc. This proved to be inefficient as they found the
estimating numbers to be incorrect and unreliable. Therefore, the next course
of action was to ask statistical intelligence to see if they could statistically
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CHAPTER 1. INTRODUCTION 4

estimate the number of tanks being produced.

1.2 Motivation

The motivation for this project is to find the most effective method to es-
timate population size as accurately as we can. We analyse and use the
methods taken by statistical intelligence as the numbers they obtained were
much closer to the actual figures. Statistics estimated that Germany was
producing around 256 tanks per month. This was later confirmed to be ex-
actly the number as recorded from the Ministry of Albert Speer. Thus, this
was seen as a much better method of estimation.
The approach used was to use the unique serial numbers imprinted onto the
captured tanks. The serial numbers were useful to attach onto the tanks
to keep track of the production levels for Germany and in turn useful for
the allies to predict it. On the battlefield there would often be broken and
destroyed parts left over. The allies captured these to analyse and study
the manufacturing capabilities. In this case they could be used to infer the
number of produced tanks.
We have a chart comparing estimates from statistics and intelligence to the
actual German records for tank produced.

Figure 1.1: Chart of German Records

Statistical estimates are significantly much more accurate than intelligence.
On average the statistical estimates are off by around 30. However, intelli-
gence estimates tends to be off by over a 1000. We look at point estimates
to get a statistical value that should give us a better understanding of the
population and thus the true population value. Point estimates can be in
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the form of the expectation where it takes an average of all readings. As
well as the form of the mode, like the case of maximum likelihood estimate.
The variance we obtain should show us how accurate we believe our point
estimate to be.

1.3 Definitions

• N – Population size parameter

• m – Sample size

• Xm – random variable for the maximum value in a sample

• xm – maximum value in a sample (sample max)

• xi – random variable for values in position for i= 1,2,. . . ,m

• l – maximum value in a sample (xm)

1.3.1 Example of Method

In this example we will demonstrate how the serial numbers are used on
a smaller scale. Say we have a total populations size N of tanks (we are
not sure what N is). We collect m = 5 samples of destroyed pieces with
unique serial numbers and we place them in order xi . We sample without
replacement since each tank will have a unique serial number and we try to
find the total.

x1, x2, x3, x4, x5 = 42, 52, 23, 19, 60

Our sample max xm = 60 (and l=60). Note, that since we are trying to find
the population estimate it would be the bigger than or equal to the biggest
serial number we find in our sample. Our population estimate cannot be lower
than our sample sizem, it can only be exactly equal tom or bigger. However,
if we say the number of total tanks produces is our max sample number that
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itself is too conservative as it would assume we have captured the most recent
tank produced. Thus, the real population size is probably over the sample
max. So the sample max is crucial in finding the real population size. We can
say the tanks we captured follow a stochastic process. A stochastic process is
defined as a collection of observations taken at a specific time. The outcome
(observed values) are random variables taken at each time. In our case the
random variables are the serial numbers on the captured tanks.

1.4 Estimator

An estimator is a statistic that tell you something about a specific population.
We will specifically use point estimates as they are single values that give an
estimate of a parameter of a certain population. We generate point estimates
by taking a sample of the true population we want to find out more about
and applying different methods to get them.

1.4.1 Example of Sampling for an Estimator

We might want to see what the average age of people is who attend swimming
lessons at the gym. We cannot contact all the gym in all the UK so what
we would do is contact a select few for our sample, say 20 gyms. We would
get this sample and calculate the average age of people x̂ in all the samples
which is a point estimate of the true population mean (which represents the
actual average age X of people who attend swimming lessons in the UK).

1.5 Properties of Point Estimate

Point estimators will not be perfect as they are an estimate. Therefore, you
have a Bias which is calculated by the difference of the expected value of the
estimator and the actual value of the parameter being estimated. Hence if
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there is no difference between the expected and actual value the estimator
will be unbiased. The less biased an estimator is, the more accurate we would
expect it to be.
We also want our point estimate to be consistent. This means that as our
sample size increases the point estimate gets closer and closer to the true
value of the parameter. To get an accurate estimate, we will need a big
sample size. If we want a point estimate to be considered it should move
closer to the true value of the parameter as we increase its sample size.
One would define the most efficient estimate to be one that has very low
variance, that is unbiased and is consistent.

1.6 Variance

Variance is a statistical measurement that refers to the spread between the
numbers in a given data set. Specifically, it measure the difference from each
number in the set to the set mean i.e from every other number in the set.
In our experiment it would be preferable to get a small variance. This would
mean the numbers in the sets are not that far away from each other. This
would indicate a more accurate result because of low volatility.
One way we can try and decrease the variance is by increasing the sample
size. If we analyse the formula for variance, we would represent the variance
as σ2, the ith data points as xi ,mean of data points as x̄ and n as the total
number of data points.

σ2 =

n∑
i=1

(xi − x̄)2

n− 1

We can reduce the variance generally by increase the number of samples and
thus the data points. This would give us a bigger numerator thus we would
hope the result gets smaller. The standard deviation σ is almost the same
as variance but is expressed as the square root of the variance.
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1.7 Probability Mass Function (pmf)

The probability mass function is a statistical expression which defines a prob-
ability distribution for a discrete random variable. We define this by the
probability that our maximum sample value Xm is equal to some value l,
represented as P (Xm = l) . So for any value of l we can work out the prob-
ability it is the maximum. We assume the sample we collect of tank serial
numbers follows that of a Uniform Distribution. This value l has uniform
distribution such that N >= l >= m since the max serial number has to be
bigger than or equal to the sample size collected as well as smaller than or
equal to the true maximum serial number.
Thus, for our pmf we want a subset of sample space so that l = max(xi)

(this will be our numerator). Over total sample space (our denominator).
We work out the numerator by using the sample size m and the max serial
number l. Say we have sets of m samples which have the max sample number
l. That would leave m− 1 tanks left (excluding the max l). This remaining
m− 1 tanks would have been selected from all the number below our sample
max so l− 1. Hence our subset of sample space such that l = maxxi is equal
to l − 1 choose m− 1 (without replacement and order does not matter).
Similarly, the probability space is the amount of sample sets we can pick from
the total population N . So we would do N choose m as our denominator.

P (Xm = l) =

(
l−1
m−1

)(
N
m

)
Intuitively we can tell that the pmf P (Xm = l), for a value below m that
is below the sample size the pmf will have probability 0. This is because
any value less than the sample size will not be the maximum serial number
sample maximum therefore cannot be the highest possible serial number. As
well as for value that is greater than N the total tanks, the pmf will also have
probability 0. This is because we cannot have serial number bigger than the
highest.
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1.8 Intro to Frequentist Approach

The approach has a lot to do with frequencies and probabilities being relative
frequencies. The frequency of an event is the amount of times it is observed.
We will use this method to form histograms of our experiments for this pa-
per.
We will look at the point estimate and maximums of our samples. We look
at the unknown parameter N which will we fix. Our N represents our Pop-
ulation size, i.e the total number of tanks that have been made. As well
as our sample size m which we will fix. This will be the number of broken
parts collected in battle. We derive our expectation and variance of our point
estimate and maximum sample value by starting with the probability mass
function.
This pmf gives the probability that some discrete random variable Xm is
equal to some value N . We do this using a binomial coefficient “choose”. We
want to find the probability that our discrete random variable Xm = l where
the event containing m− 1 elements are chosen from 1, ...,m− 1.
From the pmf we derive the expectation for sample max and re arranging
the expectation of sample max to get n (population size) and substituting
E(xm) = xm. Thus we have,

n = xm + (
xm
m
− 1)

The point estimate we get is essentially our sample max we observe added
to (xm

m
− 1). This gives the certainty that we will choose at least the most

recently produced tank (sample max xm) that we know of in order to get
an accurate estimate. Given that m < n, the part in the brackets can be
understood intuitively. Our point estimate gets larger as we increase the
sample max by xm/m .
The formula can be understood as the highest serial number we collect plus
the number of unobserved tanks. The unobserved tanks make up the intervals
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of the serial numbers collected. Let say we order all the tanks from 1 to n
and the tanks we capture have equal interval in between their serial numbers.
Those equal interval (gaps in between) make up what the next tank we
collect could be thus predicting the future highest serial number and the
total number of tanks.

1.8.1 Example of Frequentist Theory

Lets say we have a population on n=9 tank and each tank has a serial
number. We sample m=3 tanks (circled in red). Our sample max is the 7th
tank so xm = 7. So our equation (xm

m
− 1)=7/3-1=1.3 which we round to 1.

This gives us the approximate unobserved tanks in between.

1.9 Intro to Bayesian Approach

This approach uses Bayes Theorem. Say we have 2 events, event A and B.
The conditional probability of A given B is true can be expressed as:

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)∑
P (B|A)P (A)

Here our event A is a proposition. For example, it is the proposition that a
coin will land on heads 50% percent of the time. Our event B will give new
evidence of data. One of the biggest differences between Bayesian and Fre-
quentist is that in Bayesian we have a prior probability. P(A) is a prior prob-
ability of A which expresses a prior belief. P (B|A) is our likelihood function,
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probability of evidence B given A is true. The second part of the equations
is a consequence of the Law of Total Probability P (B) =

∑
P (B|A)P (A),

we have the same as the numerator with an added summation.
Normally event B is fixed so we want to see the effects of its having been
observe for our various possible events A. This is why in Bayesian statistics
you will often see P (A|B) ∝ P (A)P (B|A). Thus the posterior distributions
is directly proportional to out prior multiplied by likelihood.

1.10 Maximum Likelihood Estimation (MLE)

The MLE is a method of estimating the parameters of a statistical model
given some observations. We do this by finding the values of the parameters
which will maximise the likelihood of making the observations given the pa-
rameters. Our first Bayesian method we assume a Uniform prior and second
a Poisson.
Our MLE can be seen as a special case of the maximum a posterior (MAP)
estimation. The MAP is like MLE in that it is the mode of the of the
posterior distribution. We use MAP to find a point estimate of a quantity
(unobserved) on the basis of data. The difference between MLE and MAP
is the use or need of a prior distribution. We will explain briefly the MLE
method. We want to use the MLE method to find information about the
population with the sample we collect from an unknown sample distribution.
It is finding the optimum way to fit a distribution to the data.
Specifically, we want the joint probability distribution of the random vari-
ables y1, y2, ... (not necessarily independent and identically distributed). There
are unique vectors θ = [θ1, θ2, ..., θk]

T of parameters that indicates the prob-
ability distributions within a parametric family. A parametric family is a
family of objects which are related and the differences depend on the se-
lect chosen values for a set of parameters. In this case a parametric family
f(; θ)|θ ∈ Θ) where the parameter space is Θ and represents a finite space.
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For the observed data sample y1, y2, .., yn. We can analyse the joint density
and that gives us a real value function:

Ln(θ) = Ln(θ; y) = fn(y; θ)

This is our likelihood function. Where the fn(y; θ) is a product of univariate
(one variate) density function. This is a function of y with a fixed θ. But the
Likelihood function is the other way round, a function of θ with a fixed x.
We want to find the model parameters that will maximise the likelihood
function over the parameter space, which is

θ̂ = argmaxL̂n(θ; y)

Hence the mode of all the parameter values. The argmax means the argu-
ment which should give the maximum value from specific function. A good
condition that tests to see if a max estimate exists is for the function of the
likelihood to be continuous over a parameter space that is compact (closed
and bounded). Otherwise, the likelihood function could increase infinitely.
For convenience we can log the likelihood so that it is easier to differentiate
(we will explain why this is important later). This will not affect our re-
sult because natural logarithm is a monotonically increasing function. This
means that the general positive or negative correlation of the graph stays
the same as well as the turning points. This is important as we need to find
the maximum value of the log likelihood Ln by our parameters θ to find a
maximum or minimum for which the necessary condition are:

∂l

∂θ1

= 0,
∂l

∂θ2

= 0, ...,
∂l

∂θk
= 0

This briefly explains the theory behind it. It is often hard to find and ex-
act answer. In general, no closed form solution for the problem is known
and MLE is done using a simulation. For executing out Bayesian method
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using a Poisson prior we have done this computationally as it is very difficult
otherwise.



Chapter 2

Derivations and Proofs

2.1 Frequentist Approach Derivations

2.1.1 Expectation

In order to calculate N (the population size) we need to have a formula for the
expectation of Xm our random variable. This will be the mean observation
for the maximum value of the samples. We use the probability mass function
to estimate this.

P (Xm = l) =

(
l−1
m−1

)(
N
m

)
To calculate the expected value for a discrete random variable Xm we use

the formula E(X) =
∑

allx xp(x). We can swap out Xm for l since they are
the same here. So we have,

E(Xm) =
N∑
l=m

lP (Xm = l)

It is important to note the summation starts with m because of the condition

14
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l cannot be less than m. Then we can sub in the pmf to get,

E(Xm) =
N∑
l=m

l

(
l−1
m−1

)(
N
m

)
In order to derive this we can use a few identities.
The First Identity is from the binomial coefficient formula l!

m!(l−m)!
.

(
l

m

)
=

l!

m!(l −m)!
=

l

m

(
l − 1

m− 1

)
Since l! = l(l− 1)(l− 2)... = l(l− 1)! and similarly for m we can take out the
first l and m of the coefficient.
The Second Identity we will use is this,

N∑
l=m

(
l

m

)
=

N∑
l=m

(

(
l + 1

m+ 1

)
−
(

l

m+ 1

)
) =

(
N + 1

m+ 1

)

We can use these identities to get a formula for the expectation. First we
take the formula for E(Xm) and multiple it by m/m = 1 so that we can re
order the formula to get:

E(Xm) =
N∑
l=m

l

(
l−1
m−1

)(
N
m

) m

m
=

N∑
l=m

m(
N
m

) l
m

(
l − 1

m− 1

)

As you can see this makes it easy for us to substitute the first identity
into the equation to get:

=
N∑
l=m

m(
N
m

)( l

m

)
Then we can sub in the second identity to get:

=

(
N + 1

m+ 1

)
m(
N
m

)
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By expanding the binomial coefficient we get

=
m(N + 1)!

[(N + 1)− (m+ 1)]!(m+ 1)!

(N −m)!m!

N !
=

m(N + 1)!

(N −m)!(m+ 1)!

(N −m)!m!

N !

We can cancel out (N −m)! to get:

=
m(N + 1)!

(m+ 1)!

m!

N !

We can also cancel m!
(m+1)!

= 1
m+1

and (N+1)!
N !

= N + 1to get:

=
m(N + 1)

m+ 1

Thus our expectation is

E(Xm) =
m(N + 1)

(m+ 1)

2.1.2 Point Estimate

Our goal is to find an equation and thus a value for N. We can get a point
estimate N by re arranging the equation for expectation.

N =
m+ 1

m
E(Xm)− 1

Make N be point estimate Y. This is because as we do not know E(Xm), we
can introduce Y as a random variable which is dependent on Xm. It has an
unbiased estimator for N so E(Y)=N.

Y =
m+ 1

m
Xm − 1
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2.1.3 Variance

We know the equation for variance in terms of expectation.

V ar(X) = E(X2)− E(X)2

We can evaluate the factorial moment E(X2) by

E(X2) = E(Xm(Xm + 1))− E(Xm)

This works out as E(Xm(Xm + 1)) − E(Xm) would expand to E(X2
m) +

E(Xm)− E(Xm) and since E(Xm)− E(Xm) = 0 it is still equal to E(X2
m).

We can evaluate the factorial moment as such:

E(Xm(Xm + 1)) =
N∑
l=m

l(l + 1)P (Xm = l)

We can sub in the formula for pmf,

=
N∑
l=m

l(l + 1)

(
l−1
m−1

)(
N
m

)
In order for more clarity let us isolate the part l(l + 1)

(
l−1
m−1

)
of the above

equation to make it into
(
l+1
m+1

)
.First we divide by m(m+ 1).

l(l + 1)

m(m+ 1)

(
l − 1

m− 1

)
By using the identity for binomial coefficient

(
l
m

)
= l!

m!(l−m)!
we expand the

equation to
l(l + 1)

m(m+ 1)

(l − 1)!

(m− 1)!((l − 1)− (m− 1))!
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We can cancel out the part in the denominator to

l(l + 1)

m(m+ 1)

(l − 1)!

(m− 1)!(l −m)!

The numerator is l(l + 1)(l− 1)! = (l + 1)! because (l + 1)l(l− 1)(l− 2)... =

(l+ 1)!. Similarly the denominator we have m(m+ 1)(m− 1)! = (m+ 1)! to
get:

(l + 1)!

(m+ 1)!(l −m)!
=

(
l + 1

m+ 1

)

Thus we have the identity

l(l + 1)

m(m+ 1)

(
l − 1

m− 1

)
=

(
l + 1

m+ 1

)

Going back to the equation
∑N

l=m l(l + 1)
( l−1
m−1)
(N
m)

. We can use the identity we
just worked out on the factorial moment expectation:

E(Xm(Xm + 1)) =
1(
N
m

) N∑
l=m

(
l + 1

m+ 1

)
m(m+ 1)

=
m(m+ 1)(

N
m

) N∑
l=m

(
l + 1

m+ 1

)
Remembering that

∑N
l=m

(
l
m

)
=
(
N+1
m+1

)
we can sub that into the equation

=
m(m+ 1)(

N
m

) (
N + 2

m+ 2

)

By using the identity for binomial coefficient expansion we can expand
(
N+1
m+1

)
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and
(
N
m

)
to :

=
m(m+1)

N !

m!(N −m)!

(N + 2)!

(m+ 2)!((N + 2)− (m+ 2))!

=
m(m+ 1)(m!(N −m)!)

N !

(N + 2)!

(m+ 2)!(N −m)!

The (N −m)! cancel out on the denominator and numerator. Hence of the
left equations numerator there is only m(m+ 1)m! left.By expanding this we
get (m + 1)m! = (m + 1)m(m − 1)(m − 2)... = (m + 1)!. This simplifies to
m(m+ 1)!.

=
m(m+ 1)!

N !

(N + 2)!

(m+ 2)!
=

(N + 2)!

N !

(m(m+ 1)!)

(m+ 2)!

By expanding the factorials (N+2)!
N !

to (N+2)(N+1)N(N−1)...
N(N−1)...

we can cancel the top
and bottom to get (N + 2)(N + 1). In a similar fashion the part (m(m+1)!)

(m+2)!
=

m(m+1)m(m−1)...
(m+2)(m+1)m(m−1)...

will cancel out to be m
(m+2)

. So we get:

E(Xm(Xm + 1)) =
m(N + 2)(N + 1)

(m+ 2)

Going back to the Variance equation in terms of expectation we have.

V ar(Xm) = (E(Xm(Xm + 1))− E(Xm)− E(Xm)2

Using the expectation we calculated early on and the equation for E(Xm(Xm+

1)) we have:

=
m(N + 2)(N + 1)

(m+ 2)
− m(N + 1)

(m+ 1)
− m2(N + 1)2

(m+ 1)2

We can join the last two equations by factorising out the expectation m(N+1)
(m+1)



CHAPTER 2. DERIVATIONS AND PROOFS 20

to get

=
m(N + 2)(N + 1)

(m+ 2)
− m(N + 1)

(m+ 1)
(1 +

m(N + 1)

(m+ 1)
)

We can expand the numerator of the last equations 1 + m(N+1)
(m+1)

= m+1
m+1

+
m(N+1)
(m+1)

= m+1+m(N+1)
(m+1)

so our equation is:

=
m(N + 2)(N + 1)

(m+ 2)
− m(N + 1)

(m+ 1)
(
m+ 1 +m(N + 1)

(m+ 1)
)

We can factorise out the m(N + 1) to get:

= m(N + 1)(
(N + 2)

(m+ 2)
− (

m+ 1 +m(N + 1)

(m+ 1)2
))

Factorise out m in the second fraction.

= m(N + 1)(
(N + 2)

(m+ 2)
− (

m(N + 2) + 1

(m+ 1)2
))

Join the fractions together with common denominator.

= m(N + 1)(
(m+ 1)2

(m+ 1)2

(N + 2)

(m+ 2)
− (

(m(N + 2) + 1)(m+ 2)

(m+ 1)2(m+ 2)
)

= m(N + 1)(
(m+ 1)2(N + 2)−m(N + 2)(m+ 2)− (m+ 2)

(m+ 1)2(m+ 2)

= m(N + 1)(
(N + 2)((m+ 1)2 −m(m+ 2))− (m− 2)

(m+ 1)2(m+ 2)
)

= m(N + 1)(
(N + 2)((m2 + 2m+ 1)− (m2 + 2m))− (m− 2)

(m+ 1)2(m+ 2)
)

= m(N + 1)(
(N + 2)− (m+ 2)

(m+ 1)2(m+ 2)
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Thus our equation for variance is

V ar(Xm) =
m(N + 1)(N −m)

(m+ 1)2(m+ 2)

2.1.4 Variance of Point Estimate Y

We take the variance of the point estimate equation calculated before Y =
m+1
m
Xm − 1.

V ar(Y ) = V ar((
m+ 1

m
)Xm − 1) = (

m+ 1

m
)2V ar(Xm)

We sub in the equation for Variance of Xm.

= (
m+ 1

m
)2m(N + 1)(N −m)

(m+ 1)2(m+ 2)

Therefore, the variance is:

=
(N + 1)(N −m)

m(m+ 2)

2.2 Bayesian Approach Derivations

2.2.1 PMF

Using Bayes theorem P (A|B) = P (B|A)P (A)
P (B)

we can ascertain the equation for
P (N = n|Xm = l) the probability that n is the true population value given
the maximum value of the sample size is l.

P (N = n|Xm = l) =
P (Xm = l|N = n)P (N = n)

P (Xm = l)
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To get the likelihood equation we can use the law of total probability P (A) =∑
n P (A|Bn)P (Bn) on the denominator.

=
P (Xm = l|N = n)P (N = n)∑v=1
∞ P (Xm = l|N = v)P (N = v)

We know P (Xm = l|N = n) =
( l−1
m−1)
(N
m)

if m <= l <= n and 0 otherwise (N=n

fixes N). We have an expression for the prior P (N = n) = 1
Ω
if 1 <= n <= Ω

and 0 otherwise. We use a uniform prior for this because we assume that
in the context of collecting destroyed tank pieces with unique serial number
that each tank piece is equally as likely to be picked as any other. So they
all have the equal probability of 1

Ω
to be picked. Multiply the Likelihood and

the Prior (as posterior is directly proportional to the product of likelihood
and prior) to get:

=
P (Xm = l|N = n)P (N = n)∑v=1
∞ P (Xm = l|N = v)P (N = v)

1
Ω
1
Ω

If we sub in the pmf

=

( l−1
m−1)
(N
m)∑Ω

v=l

( l−1
m−1)
( v
m)

=

(
n
m

)−1∑Ω
v=l

(
v
m

)−1

Using the Identity (
(
n
m

)
)−1 = m

m+1
(
(
n−1
m−1

)−1 −
(

n
m−1

)−1
) we can evaluate the

denominator of the posterior pmf

Ω∑
v=l

(
v

m

)−1

=
m

m− 1

Ω∑
v=l

(

(
v − 1

m− 1

)−1

−
(

v

m− 1

)−1

)
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Subbing in the limits

=
m

m− 1
(

(
l − 1

m− 1

)−1

−
(

Ω− 1

m− 1

)−1

) =
m

m− 1

(
l − 1

m− 1

)−1

The series converges, i.e. the limit Ω → ∞ exists as the last term vanishes
in this limit. Hence the posterior pmf does not depend on the prior for
sufficiently large values of Ω. Following the equation from before we sub in
the above identity.

=

(
n
m

)−1

m
m−1

(
l−1
m−1

)−1

If we just isolate the denominator and look at that m−1
m

(
l−1
m−1

)
(switched to

numerator). We can evaluate the binomial coefficient as such.

m− 1

m

(
l − 1

m− 1

)
=
m− 1

m

(l − 1)!

(m− 1)!(l −m)!

We can expand the denominator (m−1)! = (m−1)(m−2)... and cancel out
m− 1 to get (m− 2)!:

(l − 1)!

(m− 2)!(l −m)!m

If we multiple by l
l
since it equals 1 we can manipulate the fraction so (l−1)! =

l!.
l

l

(l − 1)!

(m− 2)!(l −m)!m
=

1

l

l!

(l −m)!(m− 2)!m

We can manipulate the denominator part (m − 2)!m by expanding the fac-
torial and multiplying by m−1

m−1
= 1 to get:

(m− 2)!m
m− 1

m− 1
=
m(m− 1)[(m− 2)(m− 3)...]

(m− 1)
=

m!

m− 1
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We will use this version of the pmf for the bayesian estimates.

=
m− 1

l

l!

(l −m)!m!
=
m− 1

l

(
l
m

)(
n
m

)
2.2.2 Expectation

We can find the expectation by computing the first moment of the pmf by
multiplying n by the pmf.

E(N |Xm = l) =
∞∑
n=l

nP (N = n|Xm = l) =
∞∑
n=l

n
m− 1

l

(
l
m

)(
n
m

)
=
m− 1

l

(
l

m

) ∞∑
n=l

n(
n
m

)
Let us isolate a part of the equation n

(n
m)

. We can change this using the the
binomial coefficient

n(
n
m

) =
n
n!

m!(n−m)!

=
nm!(n−m)!

n!

We can cancel out n
n!

= 1
(n−1)!

so we get

=
m!(n−m)!

(n− 1)!

We can make m! = m(m − 1)! in order to transform the equation into a
binomial coefficient

=
m(m− 1)!(n−m)!

(n− 1)!
= m

(
n− 1

m− 1

)−1

Putting this back into the m−1
l

(
l
m

)∑∞
n=l

n

(n
m)

we get
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=
m− 1

l

(
l

m

) ∞∑
n=l

m(
n−1
m−1

)
We can use identity

∑Ω
v=l

(
v
m

)−1
= m

m−1

(
l−1
m−1

)−1
to get

=
m− 1

l

(
l

m

)
m
m− 1

m− 2

(
l − 2

m− 2

)−1

So the equation we get for expectation is

=
m− 1

m− 2
(l − 1)

2.2.3 Variance

We know the equation for Variance in terms of Expectation.

V ar(Xm) = E(N(N − 1)|Xm = l) + E(N |Xm = l)− (E(N |Xm = l))2

We can evaluate the first factorial moment

E(N(N − 1)|Xm = l) =
∞∑
n=l

n(n− 1)
m− 1

l

(
l
m

)(
n
m

) =
m− 1

l

(
l

m

) ∞∑
n=l

n(n− 1)(
n
m

)
We can expand the binomial coefficient

(
n
m

)
=
m− 1

l

(
l

m

) ∞∑
n=l

n(n− 1)
n!

m!(n−m)!

We can isolate the last part n(n−1)
n!

m!(n−m)!

and calculate this.

n(n− 1)m!(n−m)!

n!

By expanding the denominator n! = n(n − 1)(n − 2)... we can cancel out
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n(n− 1) on the top and the bottom.

=
m!(n−m)!

(n− 2)!

We can expand m! = m(m − 1)(m − 2)! in order to put this in a binomial
coefficient.

=
m(m− 1)(m− 2)!(n−m)!

(n− 2)!
=
m(m− 1)(

n−2
m−2

)
We can plug this back into the equation.

=
m− 1

l

(
l

m

) ∞∑
n=l

m(m− 1)(
n−2
m−2

)
We can isolate the denominator and use identity

∑Ω
v=l

(
v
m

)−1
= m

m−1

(
l−1
m−1

)−1

to get
∞∑
n=l

(
n− 2

m− 2

)−1

=
m− 2

m− 3

(
l − 3

m− 3

)−1

Which when you put it back into the equations becomes:

=
m− 1

l

(
l

m

)
m(m− 1)

m− 2

m− 3

(
l − 3

m− 3

)−1

Thus,

E(N(N − 1)|Xm = l) =
m− 1

m− 3
(l − 1)(l − 2)

Going back to the variance equation in terms of expectation and factorial
moments

V ar(Xm) = E(N(N − 1)|Xm = l) + E(N |Xm = l)− (E(N |Xm = l))2

We can sub in the values

V ar(Xm) =
m− 1

m− 3
(l − 1)(l − 2) +

(m− 1)(l − 1)

m− 2
− (m− 1)2(l − 1)2

(m− 2)2
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Make it one fraction by finding a common denominator and calculate the
equations as such:

=
(m− 1)(l − 1)(m− 2)2(l − 2) + (m− 1)(l − 1)(m− 2)(m− 3)− (m− 1)2(m− 3)(l − 1)2

(m− 3)(m− 2)2

=
(m− 1)(l − 1)[(m− 2)2(l − 2) + (m− 2)(m− 3)− (m− 1)(m− 3)(l − 1)]

(m− 3)(m− 2)2

=
(m− 1)(l − 1)[(lm2 − 4lm+ 4l − 2m2 + 8m− 8) + (m2 − 5m+ 6)

(m− 3)(m− 2)2

−(lm2 − 4lm+ 3l −m2 + 4m− 3)]

(m− 3)(m− 2)2

Thus the variance is

V ar(Xm) =
(m− 1)(l − 1)(l −m+ 1)

(m− 3)(m− 2)2
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Simulation

We will use R to simulate different experiments to mimic the method of
collecting tanks and finding the point estimate. We will fix population size
N = 1000 and Sample Size m=20.

3.1 Biased Estimator

With the fixed variables we will generate 2000 samples (without replacement)
and for each sample set we will find the sample max. We make a function
to find the max of the sample of 20. The function inputs x =the population
and m =samples size. It assigns the vector of 20 samples to a variable and
return the max of it.

xsamples <- function(x,m){

xsamples <- sample(x,m)

return(max(xsamples )) }

We generate 2000 samples and store them in a column in a empty data frame.
The results of this histogram that shows how many times a certain number
is chosen. The blue line represents the average.

28
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Figure 3.1: Graph of Maximum Sample Values

From this histogram we can obtain an estimator. Here we have that
our outcomes are our sample maximums (highest serial number on captured
tanks) that we plotted. We estimate the total number of tanks produced
here.
Our point estimate can be represented as n. One estimator we have found is
n = maxxi. This is a biased estimator for our total population as the estima-
tor is lower than the sample max obtained. The true population cannot be
lower than the maximum serial number. This is because it is an underestima-
tion and for it to be exactly the n then it is a conservative estimate. We want
an unbiased estimator( an accurate statistic that is neither a overestimate of
underestimate).

3.2 Frequentist Histogram

We can simulate this process of getting the point estimate by generating 2000
samples. We make a function where we input the sample max of each sample
we generate and the fixed sample size.

N <- function(xmax , m){

return(xmax*(1+(1/m))-1)}
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We can display the point estimate on a histogram. The blue dotted line show
the average value which is our point estimate.

Figure 3.2: Frequentist Approach Samples

We find that our estimator n̂ is unbiased as the true values is near the
mean=1000.139 and the standard deviation=46.08504. The true value of the
total population is extremely close to the average of 1000. The standard de-
viation is moderately low which would imply our estimate is fairly accurate
as the biggest and smallest it could be is 1046 and 954 respectively. This is
still not a bad estimate.
Figure 4, the chart below tests different samples sizes to see how this affects
the mean and variance. As we would expect with a higher sample size the
mean becomes close to the true population size 1000 and the standard de-
viation (and hence the variance) decreases significantly as we increase the
sample size (as we would expect). This would make it more consistent and
an accurate estimator.

Figure 3.3: Chart of different Sample Sizes m for Frequentist Method
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3.3 Bayesian Histogram

We can use the pmf to get the expectation for the Bayesian approach. Making
our own R function for Bayesian expectations again we input the sample max
and the sample size.

B_Exp <- function(xmax ,m){

res <- (xmax -1)*(m-1)/(m-2)

return(res) }

We can use the Bayesian expectation of sample max as a point estimate. The
blue dotted line show the average value which is our point estimate.

Figure 3.4: Bayesian Approach Samples

The mean of the histogram is 1005.381 and the standard deviation is
46.32887. Again we find the true value of the total population is extremely
close to the average of 1005. The standard deviation is moderately low which
would imply our estimate is fairly accurate as the biggest and smallest it could
be is 1051 and 959 respectively. This is still not a bad estimate.
Similarly, to the Frequentist results. We see that as we increase the sample
size the mean gets close to the true value of the population. As well as the
standard deviation (variance) decreases with sample size.
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Figure 3.5: Chart of different Sample Sizes m for Bayesian Method

3.4 Using a Different Prior

The prior probability is important to take into account as it affects the pos-
terior. However we do not want it to largely affect the outcome. It is the
probability distribution that would represent our belief before we take into
account some new information or evidence. In our derivations so far we have
assumed the distribution is Discrete Uniform. The Discrete Uniform Distri-
bution is a symmetric probability distribution where the values are finite and
have an equally likely probability of being observed. With a unique finite
number of unknowns tanks (each with unique serial numbers) we can assume
the prior is Uniform and can be sampled without replacement.
However we can also use a different prior such as negative binomial or Pois-
son. I will choose a Poisson distributions. The Poisson distribution is a
discrete probability distribution which shows the frequency of times an event
is likely to occur in a specific interval of time.
In the context of the German tank problem we can put it like this. Since the
tanks we collect are those destroyed on the battlefield by the soldiers. Let’s
make an assumption that on the battlefield there were M tanks in total. The
soldiers were able to knock out a fraction f of those tanks. Thus we would
assume the wrecks on the battlefield expected number is µ = fM .
One problem we see here is that it could be an underestimation or an overes-
timation. There could have been a significantly smaller number of tanks and
the soldiers could have been very lucky in taking them all out. In contrast it
would be possible that there were a large amount of tanks the soldiers were
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not great at destroying them. This is were Poisson distribution would come
in use.
Instead of making the parameter µ an integer number (amount of tanks
taken out) we can relate it to a function of the probability of seeing a cer-
tain number of tanks being taken out. Hence, you get the pmf for Poisson
distribution.

f(k;µ) = Pr(X = k) =
µk exp−µ

k!

This means that as mu is the expected number, the probability of you ob-
serving an integer number k is represented by this formula.

3.5 Maximum Likelihood Estimator for Pois-

son Prior

To find a good estimate for what our µ should be we can take random guesses
or consequently turn to the method of Maximum Likelihood Estimators. Say
we want to find an estimate for µ in a Poisson distribution. We take a sample
Y1, Y2, ...Yn Poisson(µ) from a Poisson distribution. We take the pmf of the
distribution

f(y) = P (Y = y) =
e−µµy

y!

We take the likelihood of this which becomes

L(f(y)) =
e−nµµ

∑
yi∏n

i=1 yi!

Then we take the log of the likilihood

LogL(f(y)) =
−nµ+

∑
yilog(µ)

log(
∏n

i=1 yi!)
= −nµ+

∑
yilog(µ)− log(

n∏
i=1

yi!)
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We can differentiate this and set this to 0

U =
dl

dµ
= −n+

∑
yi(

1

µ
) = 0

Since we want a formula for the parameter µ we can re arrange the above to
get µ: ∑

yi(
1

µ
) = n∑

yi = nµ

Thus our parameter µ can be expressed as the average.

µ =

∑
yi
n

3.6 Code

In this section we will explain the code used to generate this method. We
use a sequence rangeP which ranges from all integer numbers from 0 to 2000
which will represent our x axis. We will use l as our variable for max sample
value estimate that we can change and experiment with. The sam is our
sample size which we can also vary and change.

#parameters

library(ggplot2)

rangeP <- seq (0 ,2000)

l <- 1300 #max estimte l

sam <- 20 # sample m

Then we will work out the likelihood with our pmf and limits. We use the pmf

worked out previously P (Xm = l|N = n) =
( l−1
m−1)
(N
m)

. This is the probability
that the random variableXm, that represents the maximum sample value will
equal some value l. This is applied only in the condition that l is between
our sample size m and our true population size N .
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To get the values for this pmf we can run a while loop and use the sequence
rangeP and apply the pmf conditions to it. We treat our rangeP as our
random variable l. We make an empty vector “pmf” to fill with the values of
our loop. We use q as the start point to run through the sequence (increases
by 1 for every loop). The while loop condition states that while q is smaller
than or equal to the length of rangeP i.e.2000 the loop will continue to make
sure all the values are calculated. The first if statement is for probabilities
that are equal to 0. That is if value l is smaller than the sample size or
bigger than the true population value then that value of l will be given the
pmf value NA which we later assign as 0. The else part will then apply the
pmf to the remaining values.
Note that in the pmf equation we have rangeP [q] rather than the population
size N as we do not know the population size N . In the Bayesian method N
is not fixed it is a random variable.

#likilihood - pmf

q <- 1

pmf <- c(0) #empty vector to fill

while(q<= length(rangeP )){

if(l<sam|rangeP[q]<l){ #l<m & l>n

pmf[q] <- NA #0 or NA

}else{

pmf[q] <- choose(l-1,sam -1)/choose(rangeP[q],sam) #pmf applied }

n <- n+1 }

pmf[is.na(pmf)] <- 0

We then work out the prior using the poisson distribution. Using the method
of maximum likelihood estimation we can work out an estimator for µ that
would be the average of the sequence rangeP. As well as testing out random
other values for µ if we wanted. This dpois function is used to show the Pois-
son density in an R plot. It calculates the probability of a random variable
that is in a certain range.
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#prior

mu <- sum(rangeP)/length(rangeP)#log likelihood estimate

prior <-dpois(rangeP , lambda = mu)

Now that we have the likelihood and the prior we can compute a prior.
Previously we have seen the posterior to be P (A|B) = P (B|A)P (A)

P (B)
= P (B|A)P (A)∑

P (B|A)P (A)
.

We can gauge the shape of what the distribution would be with just the nu-
merator which would give what the posterior is proportional to P (AB) ∝
P (A)P (B|A). The denominator is used to normalise the curve. We then
calculate 2 things, the unstandardised posterior (proportionality) and the
standardised (normalised) posterior.

#dataframe

mydata <- cbind.data.frame(rangeP , pmf ,prior ,

pmf*prior ,pmf*prior/sum(pmf*prior))

We can find an estimate with the unstandardised graph by fining the
mode of the graph. This is the maximum value of the graph (the peak) we
find this by using the Rcode:

mydata[mydata$‘pmf * prior ‘== max(mydata$‘pmf * prior ‘),]

We can find the max probability and its corresponding population num-
ber to be 1079.
Alternatively, when we normalise the curve, as expected get a similar dis-
tribution shape. To get the estimate for population size here we work out
the area under the curve (hence the expectation). As our distribution is a
discrete random one the formula E(X) =

∑
x ∗ p(x). Hence we use the

following R code:

sum(mydata$rangeP*mydata$‘pmf * prior/sum(pmf * prior)‘)

When we do this we get the result 1080.292.
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3.7 Different Prior Method Errors

The one problem with this method is the prior distribution highly affects the
posterior. This should not happen in an accurate representation of posterior
distribution model. When we change the value of µ the expectation changes
drastically.

3.8 Conclusion

We have many estimates deriving from different methods. Out of all the
estimates the one from the Frequentist method has proven to be the most
effective as it it closest to the true population. However, the other methods
have proven to be just as good with fairly close estimates. We know from
previous simulations that with an increase in sample size we have and increase
in accuracy of results from both Frequentist and Bayesian approaches. This
equally contributes to getting a good estimate.
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