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Abstract 

This dissertation is based on the analysis and exploration of the mathematical 
Hindmarsh-Rose model in terms of nonlinearity and bifurcation structure. The 
exploration of this project represents insights of the simulation in the 3D phase 
space as global picture and other mathematical plots produced by the author  
investigating the bifurcation with prospects to identify the macro and micro chaotic 
elements and features in the nonlinear structure of single neuron as visualised by 
the bifurcation diagrams and literature survey. This mathematical model is consisted 
of three ordinary differential equations containing eight parameters where are taken 
into the account for the mathematical analysis where extracted the dynamical 
behaviour of the mathematical model from the construction of plots. In the present 
study, the author spend time for familiarisation of the elements of nonlinear 
dynamics and bifurcation types during his reading, in  order to create the strategy 
for the exploration of the model. The author, in order to start the exploration of 
bifurcation by identifying the fixed points, taking into the consideration the 
parameter ‘b’, ‘r’ to produce the bifurcation diagram as shown in parametric plots in 
chapter 3. Due to the complex dynamics that is produced during spiking and 
bursting in neurons further analysis will be required by using all the available 
computational tools for detailed explanation in future projects as recommended in 
future work section.
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1.0 Introduction 

1.1 Introduction of dissertation 

This project is carried out as part of the fulfilling the requirements of a Master of 
Science in Data Analytics. The dissertation is undertaken in the Queen Mary 
University of London in the department of Mathematical Sciences.


The report is based on the exploration and analysis of the Hindmarsh-Rose 
mathematical model in order to investigate the non linear dynamics of single 
bursting neuron with qualitative bifurcation diagrams. Insights for quantitative 
analysis with associated spikes when the neuron is firing are shown from the 
literature survey but is not major part and not very detailed in this project. Upon 
completion of the analysis, comparison of the neuron dynamical behaviour carried 
out with other scientific paper presented in the literature survey as they were 
selected from the author for this project goal to find common elements in terms of 
dynamics.


This report is intended to investigate, analyse and highlight some different non linear 
phenomena of bursting neurons and considering the importance of the 
mathematical model parameters which they can influence the macro and micro 
dynamical behaviour which is initiated in the soma, developed and transmitted in 
the axon of neuron to the other connected neighbour neurons connected with the 
synapses and dendrites. 
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1.2 Background theory of neuron 
Last decades has been obtained many researches and experimental applications in 
order to investigate the dynamics of biological neurons isolated from the rest or 
interacting with the others in order to understand and predict neurological diseases 
such as epilepsy, Parkison or to use these insights in information theory and other 
technological applications. The mathematical formulation of these coupled ordinary 
differential equations describes the neuronal activity of this dynamical system in 
time where will be analysed and represented in further sections more detailed. In 
this section will be explained the electro chemical function of neuron and will be 
visualised the neuron structure in following figure in order to understand where the 
activity occurs in this physical representation.                             


                                      Figure 1 Neuron Structure [ internet]


The neurons in human brain operate with electrical flow and the difference with the 
other cells where consists of the frequent changes in the electro-potential, which 
represented as 'oscillation patterns'. The potential acquired through synapses and 
spread through dendrites to the soma, called as cell body differently, where the 
electrochemical calculation occurs depend to the neuron type. Every neuron 
according to its type is carrying out different calculation in soma and produces 
different output signal. If the signal passing a certain threshold point then is allowed 
to send the signal to the output through the axon nerve by opening the Na+ 
channels and subsequently K+ ion channels where the oscillation patterns occurs. 
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The change of potential 'spike' is then actively spread through axon to the other 
neurons, in meantime the resting potential maintained in cell membrane. Most of the 
energy in cells is consumed for maintaining the gradient in concentrations in 
selected ions and then maintaining the difference in potentials to keep in balance 
the system. The main concept arise where the high sensitivity in initial input signal 
and small changes in inputs as deterministic values, can produce or transform the 
output signal where exhibit response similar to stochastic process. The next 
subsection will be set the aim and the objectives as techniques to investigate the 
above complicated neuronal dynamical activity using the selected mathematical 
model.


1.3 Aims and objectives of the dissertation 
Aims 

➢ To perform research in order to select a mathematical model in theoretical 
and computational neuroscience for exploration of neuron dynamics as of  
author’s interest in cooperation with his supervisor. The criterion for the 
selection of the model is based on the plethora of the chaotic phenomena 
covered by this model in comparison with other mathematical models in 
neuroscience. 


➢ To perform a mathematical analysis of the model for exploring the dynamics 
of the Hindmarsh Rose model received insights from bifurcation produced by 
simulation and other bifurcation diagrams created from other mathematical 
software. 


➢ To present as many possible nonlinear phenomena that this model can 
produce from author’s present work and other literature sources and also 
recommend future work opportunities for exploring the neuron dynamics.
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Objectives 

➢ To perform research in theoretical and computational neuroscience in order 
to select the Hindmarsh Rose mathematical model of interest. 


➢ To enhance the author’s knowledge in nonlinear dynamics and chaos by 
reading the learning material from the book written from Steven H. Strogatz 
and from the module ‘complex systems’ in order to understand the relevant 
steps for construction and interpretation of bifurcation diagrams.


➢ To construct and modify a Hindmarsh Rose code in Python and produce a 
general overview of the nonlinear dynamics in 3D phase space. To analyse 
further the dynamics of the model by analysing the ordinary differential 
equations and produce bifurcation parametric plots using the Wolfram Alpha 
mathematical software.  


➢ To analyse and explain in qualitative manner the plots starting from 
identification of fixed points. Upon completion of the simulation and the other 
plots in order to understand the dynamical structure of the model.


➢ To write a report by mentioning the most important findings and conclusion 
after the research and recommend future work suggestions.
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1.4 Review of contents 

Chapter concepts are listed below as a quick introduction to the material, which is 
presented in the report and as an indication of the key topics that should be 
mentioned before the reader moving to the next chapter. This report is consisted of 
four chapters which includes the activities of this project.


Chapter one set the scene of the subject under the theoretical study. In addition, 
gives to reader the background of the neuron structure, and introduce the dynamics 
of the neuron function in biological form. The importance of the model parameters 
are examined in the next chapters more detailed. Furthermore introduces the aims 
and objectives of the project in order to determine simulation tools and techniques 
to achieve the goal of this project.


Chapter two outlines all the learning materials which have been discovered from the 
author in order to gain a general view for the discipline of the computational 
neuroscience in term of dynamics, and other theoretical neuronal models.The 
author has extracted from different scientific documents and from the 
recommended book the non linear dynamical behaviour which was used for the 
analysis with the his model. 


Chapter three presents the mathematical analysis of the model in more detail and 
the re-arrangement of the equations in parametric forms to explore the dynamics in 
qualitative form.

Chapter four presents the way that the results from the mathematical analysis and 
computational studies produced. Conclusion, limitation and further recommended 
studies is mentioned for future improvement of the present study in this section as 
well.

The dissertation includes appendices, which shows the code from the model after 
the simulation in order to help the reader to understand the general complexity of 
the project with plot represented in 3D phase space similar to chapter 3.
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2.0 Literature Survey 
2.1  Introduction of literature survey 
In this chapter will be discussed and introduced some other mathematical models   
performed in theoretical and computational neuroscience where analyse the neuron 
function taking into the account the action and importance of their parameters. In 
addition, in this chapter will be mentioned the analytical steps analysing the 
trajectory structure during spike or bursting of neuron or any other non linear 
behaviour where occurs in any dynamical system represented in the selected plots.  
Introduction of the theoretical background and slightly comparison between the 
neuroscience models and the mathematical formulations of the equations will be 
part of the following sections, starting from the selected Hindmarsh - Rose model 
as selected for this project. 


2.2 Hindmarsh - Rose model  

‘The Hindmarsh - Rose model is consisted of the following three ordinary differential 
equations on the dimensionless dynamical variables x(t), y(t), z(t) where includes the 
(4) and (5) equations and also including the parameters as mentioned below.


           dx/dt = y + φ(x) - z + I                                                              (1)


	 dy/dt = ψ(x)  -  y                                                                        (2)


	 dz/dt = r[s(x - xrest ) - z ]                                                             (3)


where 


            φ(x) = -αx3 + bx2                                                                      (4)


            ψ(x) = c - dx2                                                                            (5)
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Relating to the function of the equations, the first two ordinary differential equations 
can show the dynamics and the nonlinear behaviour of the slow subsystem and the 
third equation was used to describe fast subsystems. 


The model contains eight parameters where some can affect significantly, the 
function of the mathematical model in terms of change of dynamics according with 
the change of their value and their specific operation in the equations. introducing 
the first parameter ‘I’  which is the current that enters in neuron and is considered 
as control parameter where takes values in range -10 < I <10. The parameters α, b, 
c, and d are part of the fast ion channels and often used as fixed parameters with 
specific values, α=1, b=3, c=1, and d=5. There is also a range where some of the 
fixed parameter can have particular importance such as the parameter ‘b’ and 
experimented in certain range. The ‘r’ is also a control parameter and normally takes 
values within the range 0 < r < 1 where works in slow ion channel and control the 
timescale of z variable.  In the analysis section will be introduced some different 
values of r within the range and their response graphically. The parameters where 
are normally kept fixed are the s=4 and the rest xrest=-8/5 where in some literature is 
changed experimentally as well.’[9].The below plot represent a signal from a typical 
simulation of the burst and spike activity of Hindmarsh-Rose model in neuron. The 
bifurcation diagram of this model will be presented in the next sections as it is the 
model of interest for this project.


                         


         

                 


Figure 2 Simulation of HR model of a typical neuronal bursting.[9] 



                                   	 14	
	  

2.3 Hodgkin-Huxley model 
The author will introduce the main informations in respect of interest for this 
mathematical model as is not the major part for the analysis of this project.The 
Hodgkin-Huxley model is used as one of the main model based on the realistic 
performance in biophysical applications and its projections can be interpreted in 
four-dimensional phase trajectories. Introducing the mathematical properties of this 
model where ‘The Hodgkin-Huxley model which is a differential equation system  
contain four state variables, Vm(t), n(t), m(t) and h(t) that change in respect of time 
(t).Is a nonlinear system and quite challenging to be solved analytically but there are 
numeric methods to analyse it.’ [10]. Not only the limit cycles as one of the elements 
in its dynamic where can be proven with this model but also hopf bifurcation and 
canard phenomenon appeared as well. Also because of the four state variables is 
difficult to visualise the orbit in phase space, so two variables are chosen for better 
visualisation of limit cycles, qualitatively. ‘The following equations describe the 
model where referenced’ [10].


I = Cm (dVm /dt) + gK n4 (Vm - VK ) + gNa m3 h(Vm - VNa) + gl (Vm - Vl),	 	 (6)


dn/dt = αn (Vm)(1- n) - βn (Vm)n	 	 	 	 	 	 	 (7)


dm/dt = αm (Vm)(1- m) - βm (Vm)m	 	 	 	 	 	 	 (8)


dh/dt  = αh (Vm)(1- h) - βh (Vm)h	 	 	 	 	 	 	 (9)


‘where  αi  and  βi  are rate constants for the i-th ion channel, which depend on 
voltage but not in time. gn is the maximum value of the conductance. Also n, m and 
h are dimensionless quantities within the range 0 and 1 that are associated with 
potassium channel activation, sodium channel activation, and sodium channel 
inactivation’.[10]
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Modification of this model have been carried out over the years to incorporate 
different states in terms of dynamic such as transition state theory 

2.4 Fitzhugh-Nagumo model 
The Fitzhugh - Nagumo model is a two dimensional model simplified from Hodgkin-
Huxley model for spike generation. ‘This model is consisted of the following two 
equations and the associated parameters:


                        dV=f(V) - W + I                                             	 	 	 (10)


                       dW=α(bV - cW)                                              	 	 	 (11)


The V is the membrane potential and the ‘W’ is the recovery variable, where ‘I’ is the 
magnitude of stimulus current. 


where the f(V) is the polynomial of third degree, and the parameters , α, b and c are 
constants.’[7]


The advantage of the Fitzhugh - Nagumo model based on its simplicity, it give us 
solution of nonlinear geometrical representation at once in the phase portrait of the 
biological phenomena related to neuronal excitability and spike generating 
mechanism. Refer in below in the figure representative phase portrait of the 
biophysical state diagram of Fitzhugh - Nagumo model.   


            




16




                   


                    


Figure 3 Fitzhugh Nagumo biophysical state diagram, [7] 

2.5 Comparison and criteria of selecting the Hindmarsh 
Rose model. 
The Hindmarsh Rose model is considered approachable in computational 
neuroscience and provides a variety and satisfactory description of trajectory 
patterns in terms of qualitative analysis, in comparison with the FitzHugh-Nagumo 
model where is used for less complex cases and is not producing self-sustained 
chaotic dynamics, no bursting and has only a few parameters where is difficult to 
adapt to neurons with specific properties. On the other hand the high complexity of 
the four variable Hodgkin Huxley model led the author to choose the Hindmarsh 
rose model for the analysis in this dissertation and future possible involvement in 
terms of exploring further the model. 
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2.6 Fixed points  
From this section and in the next sections will be mentioned some of the important 
terminology and the way that this terminology and the calculation associated with 
this and is used in nonlinear dynamics. Some of these steps will be followed in this 
project.


A common strategy when nonlinearity is examined is analysing the flow of the 
dynamical system finding if and where the fixed points occur in the dynamics of the 
system. In order to understand the flow dynamics of any function, we can think a 
vector field of a fluid where flowing with some variation of the velocity 


along an x - axis of coordinate system and imagine of creating a trajectory with a 
particle called as phase point following a ‘sin’ curve along the x-axis. ‘The function 
of x=sinx in this example, and the phase status of the function where the the phase 
point is  x > 0 and where is x < 0 then we say that exist a flow in this vector field, 
with direction from left to right as an example. On the other hand where the phase 
point is in the trajectory and there is no flow along the trajectory, such point is called 
‘fixed point’.[3] Refer to the below figure of the above function following periodic 
flow.





                   Figure 4. 1D representation of fixed points of sinx function [3]


The fixed points are separated from stable black dots on x-axis and unstable fixed 
points the white dots, or combined fixed points where are half stable and half 
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unstable where is not presented in the above figure. Stable fixed called attractors or 
sinks and are the fixed points where the flow is toward them, and unstable fixed 
points are called differently as repellers or sources with direction in open circles.


More analysis of the fixed points are referred in the next section related to the linear 
analysis of fixed point to identify the stability status. Different calculation methods 
are used to solve the equations where they represent different functions in any 
nonlinear system in order to explore and present the appearance of fixed points 
graphically.


2.7 Stability and linear stability analysis.  
To determine the stability of the fixed points have to be sketched graphically and let 
x* be a fixed point and check the solution of the function, where if is greater or less 
than zero, in order to determine the status of the stability, if is stable or unstable. 
Linear stability analysis, is evaluating the stability for the fixed point considering a 
point x with very small distance far away from the fixed point and if the point x has a 
solution x=x* then is considered stable, not only initially, but also remains for all the 
time. In addition, an equilibrium solution is said to be stable when small 
disturbances damp out in time close to the fixed point. On the other hand when 
disturbances grow in time causing instability in the fixed points, so numerically will 
repelled out to infinity. 


When we have one fixed point locally stable but another unstable then the system 
called locally stable but not globally stable. 


With the linear stability analysis, we take  a quantitative measure to show the rate of 
grow or decay occurs to a stable fixed point, and this measure can be obtained by 
linearising the fixed point x*. The outcome of this calculation shows the magnitude 
of this change in time for this grow or decay and how it varies in the neighbourhood 
of x*. Numerically, Taylor series expansion is one of the method of using this 
linearisation process.
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2.8 Limit cycles  

Another phenomenon which appeared in the phase portrait of a dynamical system  
is the limit cycles. ‘The structure of limit cycle is an isolated closed trajectory and 
the neighbours trajectories are not closed, which can have spiral form or moving 
forward or away from the closed limit cycles.’[3] 


Stable limit cycles structure appeared in many applications such as beating of 
heart, human body temperature, in neurons or exhibit self sustained oscillations.  ‘In 
different engineering or physics cases, self sustained vibrations have their own 
preferred period of operation but in some cases could be dangerous such as in 
bridges or airplane wings.[3].The following figure shows the stability of limit cycles in 
relation with the surrounding trajectories.


Figure 5 different structure of stability of limit cycles [3] 

As it is observed in above picture, by looking the first picture on the left where all 
neighbour trajectories approaching the limit cycle, then the limit cycle called stable 
or attracting, in contrast with the middle picture where the all trajectories not 
approaching the limit cycle, so this limit cycle called unstable limit cycle, and lastly 
in the last right picture where both stable and unstable structure occurs. 
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2.9 Phase Portrait 
As mentioned previously analysing the trajectory by solving some of the explicit 
formulas is a challenging task to determine the qualitative behaviour of the 
solutions, and sometimes because of the set of different trajectories belonging in


one phenomenon, finding the phase portrait describes better the behaviour of the 
dynamical system. An example is shown in following sketch in order to observe 
different trajectories and phase point status in particular phase portrait.


                                              Figure 6. Phase portait [3] 

‘Explaining with a short description the above phase portrait, starting with the fixed 
points A, B, and C where satisfy the status of function at that point f(x*)=0, and 
where are located in different trajectories and are unstable fixed points as per white 
circle where the close trajectories move away from the fixed points as shown in the 
vector field. In middle of the picture we see closed orbit ‘’D’’ with the thick black line 
and is stable where is corresponded to a periodic solution. In addition, is observed 
the trajectory starting from fixed point B is enclosed in the D closed cycle’[3].


A numerical computation of phase portraits can be done by applying the Runge - 
Kutta method in vector points in the trajectory field as can be applied when 
computing the Hindmarsh rose model in python code in 3D phase plane. A 
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representation of a plot of the directions fields could be segmented by null clines to 
separate the vector arrows in corresponding directions of each trajectories. 

2.10 Introduction to Bifurcation of dynamical systems 
In previous sections introduced some elements describing the flow of the trajectory 
in a dynamical system.In this section is introduced the main elements of the 
anatomy of the dynamical system and how these elements change the system is 
vital to describe the bifurcation. Any dynamical system is consisted of the function 
where describes the dynamics of the system, the vector of values of state of the 
system, the time where the system involves in time, or with a  specific example, 
how the brain changes in time. In mathematical terminology, there are variables and 
some control parameters or not control parameters where we want to understand 
the dependence of them in dynamics in the system. Defining the term bifurcation 
with simple way, is any change of the dynamics in any dynamical system is called 
bifurcation. Small disturbances in the dynamical system can change the dynamics 
and the prediction of our model in near future states. In order to examine the 
nonlinear phenomena of the Hindmarsh Rose dynamical system, we recall the 
qualitative changes in the flow and dynamics as called bifurcation and is adopted 
for analysis and understanding of the model using the geometrical representation of 
the mathematical function. When we talk for qualitative, we mean a geometrical 
change or sometimes a topological change of the phase portrait, or more 
specifically the change of fixed points, when they are created, disappeared, change 
their stability status or further changes in closed orbits or saddle connections and 
other various trajectory structures with the parameters changes. In the following 
section will be mentioned some different kind of bifurcation structures where some 
of them could be appeared and be part of the present study.
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2.11 Saddle node bifurcation  

The saddle node bifurcation or fold bifurcation is the basic type of bifurcation for the 
construction or destroy of the fixed points, where also can be seen in limit cycles as 
well. It worth to mention that any kind of bifurcation can occur to any dimension 
from one dimensional to two or three dimensional system depend on the motion of 
the dynamical system. The following two dimensional example shows the status of 
saddle node bifurcation.


dx=m-x2         equation in x-direction    


dy=-y             equation in y-direction


refer to the following graphical representation of the above equations.


                              Figure 7 Saddle node bifurcation stages [3]   

The above phase portraits occurs when parameter ‘μ’ changes. In more detailed 
explanation ‘when μ>0 then is observed two fixed points, due to the equation status 
as well, one stable (x*, y*)=( √μ, 0)  and an unstable saddle at (-√μ, 0). In order to see 
the progress of change as parameter ‘μ’ increases we observe the middle portrait a 
collision between the saddle point and the fixed point creating a half stable node 
when μ=0. When parameter ‘μ’ continue decreasing examining the last picture at 
μ<0 then is observed a disappearance of the saddle node, which they leave a 
‘ghost’ where actually sucked some trajectories.’[3]. There is actually a critical value 
of parameter μc where the bifurcation occurs. 
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2.12  Transcritical and Pitchfork Bifurcations 

There are case where the difference between the saddle node bifurcation and the 
transcritical bifurcation is that the two fixed points do not disappeared but is 
changing their stability, which is element of transcritical bifurcation.


‘The pitchfork bifurcation or pitchfork trifurcation is applied to physical cases where 
there are cases with spatial left and right symmetry in diagram, and in these 
circumstances the fixed points appeared or disappeared in symmetrical pairs’.[3] 
There are two kind of pitchfork bifurcations, the supercritical and subcritical where 
are presented graphically in following vector fields and the bifurcation diagrams.


Looking first the supercritical case, in the example below is observed the change of 
vector field when parameter ‘r’ is changing on particular function and further 
represented in the bifurcation diagram. 


The corresponding function is dx=rx-x3 represented in the vector fields below.


Figure 8 Vector field of different values of r. [3] 

‘This example introduces the invariant wording, where the equation is invariant 
where that means when change the x to -x, even with the change of signs we 
achieve the same equation and also because of the invariance the symmetry is 
achieved left and right direction. In addition, observing  the vector field and the fixed 
point status, when r<0 then is observed a stable fixed point, or when r=0 then is still 
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stable but weakly, and when r>0 then we see the origin unstable fixed points and 
another symmetrical stable fixed points left and right, at x*= ±√r.’[3]


The pitchfork bifurcation diagram between x and parameter r is visualised in the 
following figure for the case above.


 


Figure 9 Supercritical pitchfork bifurcation diagram.[3]


Referring to the following paragraph in this section, we will focus on subcritical 
pitchfork bifurcation where is more challenging in terms of dynamics. In opposite of 
stabilisation of the above function, now we have in this function dx=rx+x3 
destabilising of fixed points then we have a subcritical pitchfork bifurcation as the 
digram shows as follow.


Figure 10 Subcritical pitchfork bifurcation diagram.[3] 
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From the above diagram, the non zero fixed points x*= ±√-r, are unstable as we see 
from the dotted curve lines and appeared when r<0 where defines the subcritical 
terms. The origin is stable and the unstable fixed points bifurcate from the origin 
when r=0. In the case when r > 0 then the cubic term of the equation leading the 
trajectories to infinity as involves with the time.


‘In real physical systems the stabilising term x5 added to the previous equation, 
where results the equation dx=rx+x3-x5 shows that the unstable curves with dotted 
lines turns to stable fixed points when r=rs where rs is a saddle node bifurcation and 
is rs<0 at x5 as it can be observed from the following figure.’[3]


                 


                         


                            Figure 11  Hysteresis pitchfork bifurcation [3] 

As we can see in the above figure where shows the bifurcation states when r is 
compared with rs and varies along the function.


From the above figure within the ‘r’ there are two stable states, one at the origin 
where is stable and another stable state starting at rs, as mentioned previously. 
Because of these two stable states interrupted with the unstable dotted line when r 
varies, leads to the possibility of jumps and the phenomenon of hysteresis. 


Explaining more, the above figure when the stable state starting from the origin and 
keeps its stability until the r=0. Further to zero, when r increases loosing its stability 
with a small disturbance where will cause this jump to one of the large amplitude 
branches. on the other hand when r is decreased and reach let’s say the value of rs 
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or below is observed a jump back to stable state as it was in the origin, this 
phenomenon is called hysteresis.


2.13 Hopf bifurcation  

The hopf bifurcation is very important and appeared as common phenomenon 
especially in the subcritical hopf bifurcation in nerve cells, aeroelastic flutter in 
turbine blades and airplane wings. 


As a general definition, ‘the appearance and disappearance of a periodic orbit 
through a local change in the stability properties of a fixed point is called a hopf 
bifurcation’.[8] introducing further the mathematical explanation is when occurs 
‘local bifurcation in which the fixed point in the system loses stability, as a pair of 
complex conjugate eigenvalues of the linearisation around the fixed point and 
passes the complex plane in imaginary axis.’[8]


In the hopf bifurcation in phase plane the limit cycle observed an elliptical shape 
and its shape is changing as the parameter ‘μ’ changing where ‘μ’ defines its 
distance from the fixed point. So, is observed a change in topological form of the 
limit cycle. The hopf bifurcation as the pitchfork bifurcation has a subcritical and 
supercritical  form as well.


Firstly, we introduce below an example for supercritical hopf bifurcation case in 
phase plane as shown in the figure.


Consider the following system of equations.


dr = μr - r3                                                                              	 	 	 	   


dθ =  ω+ br2                                                    	 	 	 	  


‘In the above equations there are three parameters, the ‘μ’ where is a control 
parameter and controls the stability of the fixed point at the origin, the ‘ω’ where  
introduce the infinitesimal oscillations and the ‘b’ where determines the frequency 
on amplitude for larger amplitude oscillations.’[3]
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                           Figure 12 Supercritical hopf bifurcation. [3] 

In the above graph is shown the change in phase portraits where ‘μ’ is below or 
above zero in combination with the other two parameters. ‘when μ < 0 and the 
origin r=0 then is observed a stable spiral, where the parameter ‘ω’ gives the 
rotation according the sign. For μ = 0 the origin is still stable spiral, but then when μ 
< 0, is observed an unstable spiral form at the origin as shown from notation with 
open circle dot, and a stable circular stable cycle at r= √μ in the right picture’.[3]


To investigate how the eigenvalues behave during the bifurcation a conversion of 
the equations to cartesian form and write the Jacobian calculation is necessary. Is 
important to mention that the conversion is omitted at this stage and is introduced 
below only the expected eigenvalues formula as final result.


         λ = μ ± iω                                                                            	  


where ‘i’ is an imaginary term and ‘λ’ the eigenvalues.


From the above formula is shown that the eigenvalues crosses the imaginary axis 
from left to right as ‘μ’ increases from negative to positive numbers.’[3]


The subcritical hopf bifurcation case is more dangerous in several applications in 
nature and engineering where can result a fatal damage. In general, ’the physical 
evolution is after the subcritical hopf bifurcation the trajectories must jump to a 
distant attractor, which may be a fixed point, a limit cycle, infinity or in a higher 
dimensions, a chaotic attractor.’[3]
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‘Keeping the same example as above with the additional term r5  in the first equation  
of the system and refer to the following plots in order to explain the bifurcation 
graphically.


dr = μr + r3  - r5                                                                                                                	  


dθ = ω + br2                                                                                                                   		   


The difference in the subcritical case with the supercritical is that the term r3 is 
destabilising where leads the trajectories far from the origin. The following plots 
describe the evolution of the subcritical hopf bifurcation.’[3] 

                                    Figure 13 Subcritical hopf bifurcation [3] 

In the first plot when μ < 0 , is observed a stable limit cycle, an unstable limit cycle 
with the dotted line and a stable fixed point in the center of the phase portrait. ‘As 
the parameter ‘μ’ the unstable limit cycle tightens around the fixed point. The 
subcritical hopf bifurcation occurs when μ = 0, and the unstable limit cycle reduced 
the amplitude to zero and surround completely the origin and convert it to unstable 
fixed point. In second picture of the above plot is when μ > 0 is observed the 
unstable fixed point at the origin where now forced to grow into large amplitude 
oscillations and the phenomenon of hysteresis is shown in this case, where a large 
oscillation begun and cannot return back when μ = 0’.[3]


Another distinction form of hopf bifurcation is the degenerate hopf bifurcation.An 
example where shows that is, in the case lets say, of a damped pendulum equation, 
when we change the μ from positive to negative, the fixed point at the origin is 
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changed from stable to unstable spiral and becomes a nonlinear center at μ = 0 
rather a weak spiral as per requirement of hopf bifurcation resulting not having limit 
cycles, but closed orbits surrounding the origin. 

2.14 Homoclinic bifurcation  

Homoclinic bifurcation is another type of bifurcation where appeared in nonlinear 
problems. In the following figure will be described the homoclinic bifurcation in 
combination with other trajectories structures created in the phase portraits. ‘The 
main element of the homoclinic bifurcation is the bifurcation orbit where the 
bifurcation orbit is a trajectory of a flow in a nonlinear system where starts from that 
saddle node and returns back again to that point’.[11] In order to understand 
graphically one of the possible scenarios of homoclinic bifurcation construction, 
refer to the following graphical example produced by the below equation system.


Figure 14  Interpretation of homoclinic bifurcation [3]            
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In the following system of the equations produced the above figures and with the 
changes of parameter μ , the changes in phase portrait presented where the 
progress of bifurcation occurs.


System of Equations


dx = y                                                                                            	 

dy = μy + x - x2 + xy                                                                      	 


‘Numerically the bifurcation occurs when the value is  μc = -0.8645.  According the 
value of μ, in different case comparing with μc  the  phase portrait involves as shown 
above.  when μ < μc  for example μ = -0.92 is observed stable limit cycles encircle 
the saddle point but is close to the saddle point at the origin in picture (a), and when 
the value of μ increases close to μc, then is observed an expansion of limit cycles as 
shown in (b), then where touch the saddle node in ( c ) is created a homoclinic orbit, 
where lastly, when the μ > μc  then the saddle connection breaks and the loop is 
destroyed as shown in figure (d)’.[3]


2.15 Introduction to Bifurcation of Hindmarsh Rose model 
In this section is introduced elements from the analysis upon completion of 
simulation from the selected article of ‘Macro and micro-chaotic structures in the 
Hindmarsh Rose model of bursting neurons’ , in order to describe and introduce a 
few types of bifurcation as mentioned previously in this chapter and some other 
new elements due to the nonlinearity and chaotic behaviour where arise during the 
neuron activation as included in referenced document. Due to the complexity and 
variety of nonlinear phenomena arise from neurons function, the author will mention 
a few nonlinear forms selectively and will split them in two major categories of 
interest as macro and micro chaotic structures, where described further in more 
detail resulting from the particular reference. 
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2.16 Macro Chaotic structure of Hindmarsh Rose model 
Prior introducing the elements of this structures is important to mention that as part 
of neuronal dynamics, is to see how robust to perturbation or any change in terms 
of transformation of dynamics the system is, and where is depending on the 
parameters which is a major part of the bifurcation analysis.


‘The macro structure due to neuron spike adding cascade is characterised by fold 
bifurcation and period doubling bifurcation curves originating in codimension-two 
homoclinic bifurcations. In this section will be reported the global organisation of the 
bifurcation structure in selected parameters where constructed upon the specific 
activity of neurons, concerning the spike -quantification approach as represented in 

following parameter plane in detailed.’[1] 

Figure 15 (b-I) parameter sweep of HR model.[1]       Figure 16 (b-I) parameter sweep of HR model[1] 

In the above large scale diagrams is investigated the regions and the transitions, 
‘corresponding to periodic tonic spiking, chaotic and regular bursting of the square-
wave and plateau-like type’ [1]. 


Referring to the spike quantification approach, is when the number of spikes within 
a complete revolution of burst orbit around the spiking manifold is taken into the 
account. ‘When there is a fixed number of spikes per bursts is an indication of 
regular bursting but when there is unpredictable number of spikes associated with 
the chaotic dynamics, this is examined computationally with evaluation of Lyapunov 
exponent’[1]. ‘Also when there is an increasing inter-spike interval at the end of the 
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burst, this is a signature of square wave bursting where indicates a homoclinic 
bifurcation’[1].


The dark blue region considered a stable single spiking activity. The ‘gradual 
change of colour in stripes where this correspond to bursting, showing an 
incremental number of spikes due to spike adding cascade’[1]. Bursting become a 
chaotic near the transition to tonic spiking in a chain of ‘’onion’’ like regions as is 
observed in figure a the dark red stripes and the change of colours in picture b) 
above. In addition, the sudden change in the number of spikes per bursts is 
associated with the transition from square-wave to plateau-like bursting. 

Fig 17. Present the 1st and 2nd Lyapunov  ex[1]                         Fig18. Shows SPQ in same region. [1]


In the figure above is shown the typical structure for all the regions by evaluating the 
range of the Lyapunov exponent based on the range of parameter b and parameter 
‘I’. ‘In picture a) represents the bi-parametric sweep using the Lyapunov exponents, 


λ2 ≤ λ1.’[1]. ‘The increasing value of the first, maximum Lyapunov exponent, λ1>0 
indicate the chaotic dynamics and quantifying the disorder degree and is 
represented by change of colour from blue to red. when there is λ1 = 0 on a periodic 
orbit within its existence region, is evaluated the second Lyapunov exponent, λ2 that 
determined its stability’ [1]. ‘Negative values of λ2 are coloured in grey and with 
black colour means is close to zero, where means that corresponding multiplier of a 
periodic orbit is close to +1 or -1 and is about to go to period doubling or saddle 
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node bifurcation. So a single black line passing through symmetrically grey area in 
the diagram should be interpreted as stable periodic orbit loosing stability through 
period doubling bifurcation’[1]. ‘From picture a) above is shown that the transition 
from tonic spiking to square-wave bursting must pass through the a strip of chaotic 
dynamics.’[1]


 Interpreting the picture b) where representing the bi-parametric sweep using the 
spike qualification, ‘it can be observed from the diagram that the blue colour shows 
the tonic spiking or single-spike bursting. In this picture is shown the increase of 
spikes where numbered in circles and represents the number of spikes for bursts 
where the spike numbers fluctuating over the time in this phase plane and when 


reaching a threshold limit for some single parameter values where is associated with 
red black, thus indicating a chaotic bursting’[1]. In both pictures above observed the 
change in these region related to chaotic dynamics.


                         Figure 19  spike quantification sweep for  ε=0.001.[1] 

In the picture 19 c) is represented the spike quantification sweep with the parameter 
ε=0.001 where is the same notation with parameter ‘r’ in previous examples, ‘where 
decreasing the value of ‘ε’ that results an proportional increase of spikes per regular 
bursts, so is observed a condensed structure’.[1] The numbers in the circle 
represent the spikes in this region as mentioned in previous pictures as well. 
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2.17 Micro Chaotic structure of Hindmarsh Rose model 
In this part of the chaotic structure will be examined the micro structure where includes the 
co-existence of the chaotic bursting and the periodic orbits as can been seen from the 
magnification of the below picture as extracted from figure 4 of the selected reference [1].


Figure 20 Magnification of micro chaos and coexistence region .[1] 
In the above picture is observed the notation PD1 where comes from the orbit flip 
bifurcation points with lower b values in the homoclinic curve.


In the magnified region picture 20 a) where extracted from figure 4 of the document 
in reference one, ‘is shown the crossing of the first period doubling bifurcation curve 
with the rest of the bifurcation curves of the chaotic layer. From the green line of 
picture a) as shown a projection below in picture b) the bifurcation diagram 
represent the co-existence of two attractors in respect to the values of parameter b 
higher than the corresponding value of first period doubling bifurcation as shown in 
picture d). Where this is due to fold bifurcation (yellow dotted ) curve where touching 
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the period doubling bifurcation and resulting one the attractor unstable.’[1] As is 
observed in picture d) the attractors with the red colour has fewer spikes in 
comparison with the attractor with black colour where becomes chaotic due to the 
bifurcations.


‘The coexistence of the chaotic attractors with the small basin of attraction as 
shown in picture 21 c)  and d) , defined as the micro chaotic structure.’[1]


The second phenomenon that mentioned before is examined is the case of the bi 
-stability, is the hysteresis loop and will be described and visualised in the following 
picture.


Figure 21 Structure of different  bifurcation structures in micro chaos.[1] 

In the above picture b) it can be seen the two hysteresis loops where the vertical 
dotted line shows the two saddle node bifurcation points, and looking the lines we 
can see the two solid lines representing the stable case and the dotted line 
represent the unstable, so resulting this bi stability of two attractors where 
separated by an unstable threshold. ‘There are different types of bi-stability in 
Hindmarsh Rose model but a typical one is the coexistence oft stable periodic 
orbits, one of which has an extra spike, as shown in picture d) above, results every 
spike adding bifurcations.’[1] 
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As a global picture of the existence between the micro chaos and macro chaos 
structure we refer to the following picture. 

Figure 22 Global organisation of bifurcation diagram.[1] 

In the above picture is represented a variety of the features, ‘such as islands of 
micro and macroscopic chaos, and also including saddle node, period doubling, 
homoclinic bifurcation, spike addition regions and other elements describing the 
complex dynamics.’[1] 

The strategy for exploration and bifurcation analysis of the model will be discussed 
in chapter 3 starting initially from the exploration and identification of fixed points  
as part of bifurcation process. 
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3.0 PRESENTATION OF RESULTS 
3.1 Insights in 3D phase space due to parameters change  
The first attempt from the author was to explore the changes in the trajectories 
during the simulation where the values of the several different parameters changing 
and producing bifurcation in the dynamical system. The author has adopted and 
modified a code of the Hindmarsh Rose model in python software by changing the 
values of parameters in order to observe the changes in the trajectory in the three 
dimensional space. This computational attempt was carried out in order to 
understand the sensitivity of the model in global and general form in 3D phase 
space due to the changes and the importance of the parameters in bifurcation and 
in general the nonlinear structure. Typical representative plots as shown below 
showing a global picture of the model. 

Figure 23, b=3.05, r=0.001,I=2.5   Figure 24, b=2.87, r=0.001,I=2.5  Figure 25, b=2.626, r=0.001,I=2.5      

According with the author reading and the outcome from this simulation, the 
pictures above interpreted as an indication of the chaotic attractors in 3D space and 
when involves during the time, is observed such an initiation of periodic orbits with 
parameter value b=2.626 looking from the right picture to the left with the increase 
of parameter value ‘b’ value from 2. 626 to 2.87 and finally ‘b=3.05 where is 
observed an increasing number of turns (spikes) of bursting orbit. The current 
remained fixed 
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and the parameter r, and only the parameter b, changed for this comparison.In 
addition, is observed a high amplitude of outer spiking manifold reducing to lower 
amplitude in the next turns further inside in parameter space. In this picture was not 
quantified the number of spikes or examined the inter-spike interval or explained 
other further bifurcation states.





Figure 26, r=0.1, b=3.05, I=2.5  Figure 27, r=0.01, b=3.05, I=2.5  Figure 28, r=0.002, b=3.05, I=2.5


From the literature it was used the range of r between 0<r<1, and from the above 
outcome of the simulation, looking the figure 26 with r=0.1, b=3.05 and current 
I=2.5 is observed only two turns with large inter-spike interval between them and as 
compared with the middle picture where the r=0.01 we do not see any significant 
change in the non-linear structure geometrically and topologically. On the other 
hand when the r=0.002 then is observed a lot of turns with a structure similar to 
previous case but with the difference that at the end of the last turn the line comes 
back along all the way to the homoclinic orbit.


Figure 29, I=3.5, b=3.05, r=0.01,  Figure 30, I=2.5, b=3.05, r=0.001    Figure 31, I=3.5, b=3.05, r=0.1 
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From the figure 29, is observed periodic orbit with inclined turns and at the end of 
the last turn the line of the orbit reruns back to the first turn where this phenomenon 
seems that undergoes a chaotic basin but not so complete. In this first picture of 
the simulation the values set with the current I=3.5, b=3.05 and r=0.01. In the 
middle figure 30 there is a combination of parameter setting with current I=2.5, 
b=3.05 same as before and change of r=0.001. With those settings the pattern that 
we receive is similar to the figure 29 from the first simulation. In order to highlight 
the complex dynamics that occurs from the different combination of parameters 
values resulting variations of orbits, we can look the last picture with I=3.5, b=3.05 

and r=0.1, where we get completely different orbit in the 3D phase plane.                                                                                   

In order to investigate and explore more detailed the nonlinear structure of this 
continues dynamical system of the above computational results where related to 
the periodic orbits stability, fixed points or any other element, a mathematical 
analysis required which this important part of the next section.The following section 
introduces the first initial step by re- arranging the equations and use them for 
producing plots for exploring the Hindmarsh Rose mathematical model. 

 3.2 Mathematical re-arrangement of HR model equations 
In order to start for the existence of the fixed points, the author used the HR 
equations by substituting the second and third equation to the first one and then 
solving the first equation in respect to x-variable where plotted graphically in next 
section. Refer below the re arrangement steps and representative plots in next 
section at exploring stage of the dynamics by changing as well certain values  in the  
variables equations.


The final equation system of HR model that was used upon substitution of equation 
(4) and (5) in to the equation (1), (2) and (3) are as follow:


dx/dt = y - x3 + bx2 - z + I                                                                   		 (12)


dy/dt = 1  - 5x2 - y                                                                                	 (13)
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dz/dt = r[s(x - xrest ) - z ]                                                                        	 (14)


setting the above equations to zero and re -arranging the equations (13) and (14) in 
order to use them in equation (12) and create one polynomial equation including 
only one variable x.


0 = y - x3 + bx2 - z + I 


0 =1 - 5x2 - y


0 =r[s(x - xrest ) - z ]  


re- arrangement  of the above equations results


0 = y - x3 + bx2 - z + I 


y= 1 - 5x2 


z=r[s(x - xrest ) ] 


Further re -arrangement and set the last two equations to the first results the final 
equation as follow. which was used for the exploration of the fixed points for the HR 
model.


0= 1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I


The following function in respect to x variable and in combination with the rest 
parameters was used for the exploration of the fixed points for the HR model. 


f(x) =1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I                                                        (15)


Some values of the fixed parameters were substituted in above equation as per  as 
mentioned in section 2.1, such as b=3.


In the following section are represented the plots based on the above equation in 
combination with the change of selected parameter values, in order to view the 
change in function dynamics.
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3.3 Computational Insights for exploration of fixed points 

The exploration of the fixed points by using the equation (15) from section 3.2 which 
was derived as represented in the following plots. The plots were separated 
according to the arbitrary selection of the parameters values within the previous 
ranges as mentioned in the literature.


Figure 32 Plot with r=0.1 and I=0                                       Figure 33 Plot with r=0 and I=0


In figure 32 the control parameter r=0.1 and parameter I=0 selected and upon 
completion of plotting, is observed that the function crossing three times the x axis 
where represent three fixed points as it is in figure 33 with r=0, and I=0, where also 
three fixed points are shown.


Figure 34 Plot with r=0.001 and  I=0                                     Figure 35 Plot with r=1  and I=0


In figure 34 with parameter r=0.001 and I=0, still is appeared three fixed points in 
comparison with the figure 35, with values r=1 and I=0  is observed one fixed point, 
as the function line crosses only one time the x-axis.
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Figure 36 Plot with I=-10 and r =0.01                     Figure 37 Plot with I=-2.5 and r=0.01


In figure 36, was used the highest negative current value from the range, I=-10 and 
r=0.01, where the plot shows one fixed point in contrast with the figure 37 where the 
current negative value I=-2.5 and with same r=0.01, the function tend to cross the x-
axis in order to create a fixed point. In both figures, the function lines tend to have 
similar trajectory.


Figure 38 Plot with I=2.5 and r=0.01                         Figure 39 Plot with I=10 and r=0.01


In figure 38 is observed one fixed point crossing the negative part of x axis, where  
the trajectory belongs in the negative partition of coordinate system with value I=2.5 
and r=0.01. Similar trajectory pattern is observed in figure 39 with I=10, and r=0.01 
resulting again one fixed point.
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Figure 40 Plot with b=2.867, I=2.5, r=0.01                     Figure 41 Plot with b=2.635, I=2.5, r=0.01


A combination of parameter values in figure 40, with b=2.867, I=2.5 and r=0.01 the 
trajectory of the function appeared in negative lower left part of coordinate system 
with one fixed point. On the other hand in figure 41 is observed similar trajectory 
pattern from the function with one fixed point with only change in parameter value 
b=2.867. 


The reason of the above exploratory plots is to observe not only the existence of 
fixed points from the polynomial function and the possible number but also with the 
change of control parameter values to see if there is any change in trajectory 
pattern and in which partition of coordinate system could be appeared. In further 
section, will be explored the fixed point for the specific bifurcation diagram as 
produced from parametric plot.


3.4 Mathematical formulation of the equations in  
parametric form. 

In this section the following equation that was produced previously will be solved 
and re-arranged in term of two parameters in order to construct the equations for 
the parametric plot.


f(x) =1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I   


The parameter values of b=3, s=4, xrest = -1.6 and I=0 will be substituted in later 
stage of re-arrangement.
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0 = 1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I  


(r[s(x- xrest)]) - I = 1 - 5x2  - x3 + bx2


(r[4(x- (-1.6)]) - I =1 - 5x2  - x3 + 3x2


The following equation is the first equation solved for the first parameter.


r = (1 - 5x2  - x3 + 3x2 / 4x+6.4 - 0) 	 (16)


Taking the derivative in respect of x the following equation and solving in respect to 
the second selected parameter ‘b’ we will produce the second parametric equation.


f’(x) =1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I   


re-arranging below, substitute the values from above lead to the following


f‘(x) = 1 - 5x2  - x3 + bx2 - (r[4(x- (-1.6)]) - I 


The derivative of f(x) produces the below


f(x) = -10x -3x2 + 2bx -4r 


0 = -10x -3x2 + 2bx -4r


2bx = 10x + 3x2 + 4r


b = (10x  + 3x2  + 4r / 2x)                                                         		 	 (17)


where ‘r’ can take any arbitrary value within the specified range. 


The author solved the below equation in respect of the another parameter ‘I’ in 
order to use it for another two equation combination of parametric plot.


f(x) =1 - 5x2  - x3 + bx2 - (r[s(x- xrest)]) - I  


0 = 1 - 5x2  - x3 + bx2 - (r[4(x- (-1.6)]) - I 


I = 1 - 5x2  - x3 + bx2 - 4rx+1.6r 


using r=1 and b=3 we have below by re-arranging 


I = 1 - 5x2  - x3 + 3x2 - 4x+1.6                                                    	 	 (18)
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3.5 Parametric bifurcation diagram based on selected 
parametric equations. 

The following bifurcation diagram was constructed from the parametric phase plane 
by selecting the above parametric equations. (16) and (17). The two parametric  
equations are as follow. 


The first parametric equation as follow used for the plot. The selected arbitrary 
parameters values, b=2.626, and I=3.4 within the range -10 to 10.


r = (1 - 5x2  - x3 + 3x2 / 4x+6.4 - 3.4 )  = 1-5x2  - x3 + 3x2 / 4x+3  


The second parametric equation used for the plot is as follow with r=0.01 inside.


b = (10x  + 3x2  + 4r / 2x) = (10x  + 3x2  + 4 * 0.01/ 2x) =  10x  + 3x2  + 0.04/ 2x


Refer below to the parametric bifurcation diagram constructed from the above 
equations. Is important to mention that the scaling of variable x was selected 
carefully in order to capture detailed bifurcation diagram.


           Figure 42 Bifurcation parametric diagram between parameter b and r.
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The fold bifurcation occurs in the partition of the phase plane above and more 
analytically, in terms of lines orientation is shown an intersection almost tangentially, 
between a parabola and the asymptotic line in upper right positive part of the 
parametric plane. The vertical axis is the parameter ‘b’ and the horizontal axis is the 
parameter ‘r’ in the phase plane. Due to the cubic term is expected to have fixed 
points from one to three in different partitions of the parametric diagram above. The 
identification of the fixed points are shown from the following plots constructed 
from the initial polynomial cubic equation from section 3.2 which is used in the 
selected partitions from the bifurcation diagram.


To initialise the identification of fixed points the author selected the lower left 
partition, and selected arbitrary the values b, r, of (-3, -1) from the vertical and 
horizontal axis accordingly, from that partition in phase plane.

The above values belong to the lower left partition and located below to the lower 
curve line from parabolic shape from the line. 


f(x) =1 - 5x2  - x3 + bx2 - r[s(x- xrest)] - I   


entering the values b=-3, r=-1, s=4, I=0, xrest =-1.6, below:


f(x) 1- 5x2  - x3 + (-3)x2 - (-1)[4(x- (-1.6)]) - 0


f(x) =1- 5x2  - x3 -3x2 +1[4x+6.4)]) - 0


Plotting the resulting equation below for this function for b and r values: 


f(x) = -x3 -2x2 +4x+7.4 (19) 
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Figure 43 Fixed point from polynomial equation with b=-3, r=-1


From the above figure is identified three fixed points as we see the function line 
crossing three times the x - axis, where this result from figure 43, resulting that there 
are three fixed points in bifurcation diagram in this partition of the phase plane in 
figure 42 with the selected values b=-3 and r=-1.


In the next paragraph the same polynomial equation and the plot will be repeated in 
the neighbour partition choosing other parameter values b and r from the phase 
plane of that partition in order to prove that the fixed point change by two, resulting 
an alternate behaviour between one and three fixed points in neighbour partitions 
and this is happening in the entire phase plane due to cubic term of the equation.


The b and r following parameters values in this case selected for this point in the 
neighbour boundary curve line from previous case in left side of parametric plane 
from bifurcation diagram in figure 42, in order to be used in following equation and 
extract the number of fixed point in this neighbour partition.


f(x) =1 - 5x2  - x3 + bx2 - r[s(x- xrest)] - I   

Entering the values b=4, r=-2.5, s=4, I=0, xrest =-1.6, below:


f(x) =1 - 5x2  - x3 + 4x2 - (-2.5)[4(x- (-1.6)] - 0
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f(x) =1  - x3 - x2 + 2.5(4x+6.4)


f(x) =1  - x3 - x2 + 10x+16


f(x) = - x3 - x2 + 10x+17 


Plotting the resulting equation below for this function for b and r values:


f(x) = - x3 - x2 + 10x+17 (20) 

                     Figure 44 Fixed point from polynomial equation with b=4, r=-2.5


From the figure 44 is identified one fixed point as we see the function line crossing  
the x - axis, so connecting the result from figure 44, with the bifurcation diagram 
resulting that there is one fixed point in this partition in the phase plane in figure 42.
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4.0 Conclusion  
This dissertation is based on the mathematical exploration of Hindmarsh Rose 
model where considers the analysis of the three ordinary differential equations 
describing the bifurcation under operational neuron activity. The author had to cover 
learning material such as biological neuron physical operation, non-linear dynamics 
and bifurcation types in order to set a strategy for exploring and analysing the 
nonlinear dynamics where occurs in single neuron. The strategy of exploring the 
model is through the construction of the equations in the form in such a way, where 
is suitable to produce analytical plots with the support from literature survey and 
nonlinear dynamics material. The author at the beginning adopted and modified a 
code in python in order to make simulation and visualise the bifurcation of the 
model in 3D phase space. Upon completion of the simulation identified similar 
patterns and nonlinear elements such as periodic cycles, homoclinic pattern and 
basin attractor, comparing with the literature. The important outcome from this 
simulation was that when there is change of the parameter values for example in r, b 
and I, is noticed a change in the trajectory patterns. Since the above simulation 
produced a global picture of the model, the author formulated the HR equations in 
order, first to identify the existence of fixed points by combining the equation and 
producing one polynomial equation by plotting the fixed points. Secondly, the 
author rearranged the equations in parametric form that were used to plot the 
bifurcation diagram in respect to parameter b and r. Lastly, in order to start 
analysing the partitions of bifurcation diagram where the fixed points had to be 
identified in specific bifurcation diagram. The selection of parameter values b and r 
from one partition as arbitrary values in 2D plane from bifurcation diagram used in 
polynomial equation in order to plot and identify the number of fixed point. The 
same attempted again in a neighbour partition to identify the number of fixed points 
as well, where concluding that the number of fixed points change from one to three 
alternate in neighbour partitions separated by the boundary of trajectory lines an d 
this due to cubic term of the polynomial equation and the model.
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4.1 Limitations 
Specific bifurcation software had to be used for further analysis where this can be 
recommended for future work of the author for analysing the bifurcation numerically 
in more structured way. In addition, several computational methods, required to 
analyse in further detail the nonlinear structure in parametric space. Due to the 
variety of model trajectories and different combination of parameters, the author 
selected specific parameters and selected arbitrary values of the parameters around 
the specified range for the equations in order to produce representative plots. 
Additional time was required to produce several diagrams from simulation for big 
range or different combination of parameters in order to analyse the behaviour of 
the dynamics of this model further.


4.2 Further work suggestion

Due to the extensive nonlinear phenomena of the model, several computational 
tools, required to be adopted and used in future in order to explore the variety of the 
nonlinearity in terms of mathematical analysis and other parametric bifurcation 
diagram for interpretation. The author, formulated the equations in parametric form 
in respect of current ‘I’ and could be used in combination with another parameter to 
produce a bifurcation diagram. Further bifurcation types for exploration could be 
very interesting part for future work, where occurs in the bifurcation skeleton of the 
Hindmarsh Rose model under different neuronal activities. In addition, elements 
such as stability, limit cycles, period doubling or different phase portraits arise from 
trajectory patterns can be under investigation by calculations, analysis or 
simulations, providing all those results, as part of bifurcation process can be further 
subject for the author extending the scope of the present study. Different selection 
and combination of parameters could be part for further parametric future analysis 
and production of additional parametric bifurcation diagrams. To work on the above 
mentioned items, suitable training could be part for future improvement for the 
author with particular involvement of learning specific bifurcation softwares or any 
possible relevant future work opportunities arise.
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APPENDIX A 
A.1 Simulation of Hindmarsh Rose model in 3D please space
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