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1 Introduction

1.1 Fractals

Fractals first began to gain traction in the 1970s, primarily due to Benoit Mandelbrot’s
work. Simply, a fractal is a geometric object which is similar to itself. What this means
visually, is that if you zoom into said object, it will look similar to the original shape.
We find that fractals occur both in nature, such as snowflakes but can also be generated
with the use of computers.

One of the first examples of using computers to generate a fractal was done by
Mandelbrot and, his method was used to visually represent the Mandelbrot set as shown
below in fig. 11.

Figure 1: The Mandelbrot Set

1Mandelbrot, B., 2004. Fractals and Chaos. 1st ed. New York: Springer-Verlag. p56
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We are able to observe that the various components that make up this image, are similar
to each other, or it can be said that the Mandelbrot set contains smaller Mandelbrot
sets, which leads us to discuss the concept of self-similarity.

1.2 Self-Similarity

An object that is self-similar can be said to be either exactly or approximately similar to
itself. One important observation to make is that self-similarity does not have to occur
on the same scale, what I mean by this is that a fractal can have self-similar parts which
are smaller than the overall fractal. We saw this in the representation of the Mandelbrot
set in 1.1 and, another example used to best demonstrate this is the Koch Snowflake (fig.
2)2.

Figure 2: Koch Snowflake

When magnified, the Koch snowflake displays infinite self-similarity - we can zoom into
the fractal and observe that the shape does not change. More formally, the Koch
Snowflake is scale-invariant. An object that has scale invariance shows no changes to its
shape or properties when changing its scale by a certain amount. Fractals that are
constructed through iterated function systems are often scale invariant given the large
number of iterations used in their generation.

2Trube, B., 2012. Fractals You Can Draw (The Koch Snowflake or Did It Really Snow
In Cleveland In Late April?). [online] [BTW] : Ben Trube, Writer. Available at:
¡https://bentrubewriter.com/2012/04/24/fractals-you-can-draw-the-koch-snowflake/¿ [Accessed 31
March 2021].
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2 Iterated Function Systems

Iterated function systems, or IFSs are a method used to construct fractals that are in
most cases self-similar. The fractals are actually generated as the fixed attractor set of
the IFS.3 An attractor is said to be a set of numerical values, which a system has an
inclination to evolve towards. In our case, the result of this evolution is the image we
generate. In order to achieve this, an IFS is made up of functions, known as affine
transformations.

2.1 Affine Transformations

An affine transformation, is a recursive function of the type:(
xn+1

yn+1

)
=

(
a b
c d

)
=

(
xn
yn

)
+

(
e
f

)

Each affine transformation will often yield a new attactor in the final image. The shape
of the attractor is pre-determined through the choice of coefficients a through f , which
also determine transformation itself. In order to generate a desired shape, a number of
affine transformations may be used and, this method is what is referred to as an IFS.4

2.2 The Hutchinson Operator

The union of our affine transformations is known as the Hutchinson operator and, we
use this operator to iteratively traverse through all possible movements in our set of
transformations.

If we let {fi : X → X | 1 6 i 6 N} be an IFS, from a closed and bounded set X
to itself, then the Hutchinson5 operator H is defined over subsets S ⊂ H as

5

There are a few ways we can use the Hutchinson operator to generate our images, some
more computationally expensive than others due to exponential scaling, which occurs
when we iterate a large number of times. In order to avoid this, we will use the Hutchinson
operator in the context of a chaos game, which is generally the most computationally
feasible method to generate images with IFSs.

3Riddle, L., n.d. Iterated Function Systems. [online] Larryriddle.agnesscott.org. Available at:
¡https://larryriddle.agnesscott.org/ifs/ifs.htm¿ [Accessed 31 March 2021].

4Bradley, L., n.d. Iterated Function Systems - Chaos Fractals. [online] Stsci.edu. Available at:
¡https://www.stsci.edu/ lbradley/seminar/ifs.html¿ [Accessed 31 March 2021].

5Hutchinson, J. E.,Indiana University Mathematics Journal Vol. 30, No. 5 (1981), Indiana University
Mathematics Department
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2.3 Chaos Games

It should be made clear that in 2.2 we are iterating through sets however, the chaos
games used for our implementation will iterate through points.

The algorithm6 to do this was originally described by Barnsley in 1998 and, is as
follows:

1. Pick a random point inside a regular polygon.

2. Draw the next point a fraction of the distance between the random point in step 1
and a random vertex of our polygon.

3. Repeat step 2. If we continue to do so, the result of this chaos game can sometimes
result in a fractal.

More formally, if we begin from any point x0 in the plane and then recursively define
xk = f̂k(xk−1), where each f̂ is chosen independently and with equal probability from
(f1,f2,f3). With probability one, the sequence of points (xk)k≥0 approaches and moves
ergodically around and, increasingly closer to the attractor S. For this reason F is called
an iterated function system.7

In order to implement this in python and, plot the points mentioned in step 2, we will
define some functions, such that our initial point mentioned in step 1 can choose from
them. The attractor will be the shape defined by the iteration through these functions
and is what ultimately yields the final image. For our first implementation, I have
chosen Sierpiński’s triangle, as the transformations used are relatively simple.

For our second implementation we will use a similar method with some adjustments to
generate the Barnsley fern. These adjustments are needed if instead f̂k are selected from
(f1, f2, f3) with probabilities (p1, p2, p3) respectively where each pi > 0 and
p1 + p2 + p3 = 1. Then it can be said the same set S is determined by the sequence
(xk)k≥0 but the points accumulate unevenly and the resulting attractor can be thought
of as a greyscale image on S or probability distribution on S or as a measure. In this
case (f1, f2, f3; p1, p2, p3) is called an IFS with weights and, we will define these weighted
probabilities in section 4.7

6Weisstein, E., n.d. Chaos Game – from Wolfram MathWorld. [online] Mathworld.wolfram.com.
Available at: ¡https://mathworld.wolfram.com/ChaosGame.html¿ [Accessed 2 April 2021].

7Barnsley, M. F., et al., 2008. V-variable fractals and superfractals p.4
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3 Sierpiński’s triangle

3.1 Background

Sierpiński’s triangle, named after Waclaw Franciszek Sierpiński, is a fractal that is an
equilateral triangle divided into smaller equilateral triangles.

It is also referred to as Sierpiński’s gasket by Mandelbrot, which is his description due to
an alternate method of construction (fig. 3)8.

Figure 3: Construction of Sierpiński’s gasket

This method of construction relies upon cutting out holes from the original triangle and
is as follows:

1. Start with an equilateral triangle.

2. Dissect this triangle into four congruent parts, each part similar to the original
triangle.

3. Delete the central part as shown in the second step of fig. 3.

4. Dissect the three remaining similar triangles and delete their central part.

5. From the remaining 27 congruent triangles, dissect each and then remove their
centers.

Repeating this process a sufficient number of times yields what is known as Sierpiński’s
triangle shown in fig. 4 below.

8Mandelbrot, B., 2004. Fractals and Chaos. 1st ed. New York: Springer-Verlag. p142
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Figure 4: Construction of Sierpiński’s gasket

In 1.2, we discussed the concept of self-similarity which is apparent when looking at the
finalised construction of Sierpiński’s triangle as shown in fig. 4 - the overall triangle is
made up of smaller similar triangles of varying scales.

Although this method of construction is feasible, to generate Sierpiński’s triangle in
python, it is more computationally efficient to use a chaos game as described in 2.3,
which leads us to define our IFS.

3.2 The IFS Method

In order to define this IFS, we must carefully choose our functions such that the
attractor defined by these is Sierpiński’s triangle. We must also ensure that with each
iteration, our newly generated points are stored so that they can be plotted.

1. Define a triangle with three points acting as its vertices and, call them A, B and C.

2. Choose a random point P , that lies inside our triangle.

3. Create another point midway between P and a randomly chosen vertex. In order
to do this, we define three functions, each having an equal chance of being chosen
by our point:

f1(P ) = A+P
2 , f2(P ) = B+P

2 and f3(P ) = C+P
2

for P ∈ R2

4. Repeat step 3, storing each newly created point.

Given we choose a suitable number of iterations, the result of storing and plotting each
point created in step 3 should yield Sierpiński’s triangle.

7



3.3 Implementation in Python

As a preface, we will be using functions from the matplotlib and random libraries.
Matplotlib will enable us to visually represent our points by using functions from the
pyplot module, whilst the randint function from random will allow our points to choose
from the three functions we define. Importation of matplotlib and random is as follows:

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t

We then create a set which will store our points, initially containing only our first point.
This point will choose between our three functions and is also the point used in our first
iteration.

1 x , y = [ 0 ] , [ 0 ]

We then set the number of iterations we wish to execute and, create a variable which for
each iteration can take the value of 1, 2 or 3 using randint.

1 for n in range (100000) :
2 t rans fo rmat ion = randint (1 , 3 )

We now define our three functions within some if statements. With each iteration, if the
transformation variable is given a value of 1, we will apply function 1 to transform our
point and so forth with functions 2 and 3. These functions will return the midpoint
between the point in the iteration and a chosen vertex as defined in our IFS method. We
will also add each point created in every iteration to the set of points we initially created
(lines 13 and 14) by appending to our initial set after each iteration.

1 i f t rans fo rmat ion == 1 :
2 x [ n ] = ( x [ n ] − 3) / 2
3 y [ n ] = ( y [ n ] ) / 2
4
5 e l i f t rans fo rmat ion == 2 :
6 x [ n ] = ( x [ n ] + 3) / 2
7 y [ n ] = ( y [ n ] ) / 2
8
9 else :

10 x [ n ] = ( x [ n ] ) / 2
11 y [ n ] = ( y [ n ] + 3) / 2
12
13 x . append ( x [ n ] )
14 y . append ( y [ n ] )

8



Finally, we use the plot function from matplotlib to plot all the points that have been
created and stored in our set of points. We also use some colouring in lines 2 and 3
below to make the image more presentable.

1 p l t . t i t l e ( ’ S i e r p i n s k i Tr iang l e ’ )
2 p l t . s c a t t e r (x , y , s =0.5 , edgeco l o r=’ Blue ’ )
3 p l t . s c a t t e r (x , y , s =0.001 , edgeco l o r=’ White ’ )

Putting this all together, our finalised code is as follows.

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 3 )
8
9 f t rans fo rmat ion == 1 :

10 x [ n ] = ( x [ n ] − 3) / 2
11 y [ n ] = ( y [ n ] ) / 2
12
13 e l i f t rans fo rmat ion == 2 :
14 x [ n ] = ( x [ n ] + 3) / 2
15 y [ n ] = ( y [ n ] ) / 2
16
17 else :
18 x [ n ] = ( x [ n ] ) / 2
19 y [ n ] = ( y [ n ] + 3) / 2
20
21 x . append ( x [ n ] )
22 y . append ( y [ n ] )
23
24 p l t . t i t l e ( ’ S i e r p i n s k i Tr iang l e ’ )
25 p l t . s c a t t e r (x , y , s =0.5 , edgeco l o r=’ Blue ’ )
26 p l t . s c a t t e r (x , y , s =0.001 , edgeco l o r=’ White ’ )

Executing this gives us the following image:
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Figure 5: IFS Sierpiński’s triangle

Our IFS has successfully generated Sierpiński’s triangle. We have an equilateral triangle
that has been divided into many smaller, similar equilateral triangles. Our method of
construction relied on the points converging to the attractor defined by our functions, as
opposed to repeatedly cutting holes.

The code itself reached completion relatively quickly, although this is dependent on
the processing power of the machine. I chose 100000 iterations and, was able to generate
the image in less than 10 seconds, which shows our choice of using chaos games was
computationally efficient. Of course we can reduce the number of iterations to make
the process faster - at the cost of clarity in the final image. However, I found 100000
iterations to be suitable for both speed and clarity.

10



4 Barnsley Fern

4.1 Background

The Barnsley fern is a fractal (depicted in fig. 6)9 that can be generated through an IFS
and was first described by Michael Barnsley in ”Fractals Everywhere”10.

This fractal resembles the naturally occurring Black Spleenwort Fern and, is often
an example used to demonstrate a self-similar set which shows that its generation is
reproducible at any given reduction or magnification.

Figure 6: Black Spleenwort Fern

In theory, Barnsley’s fern can be plotted by hand however, the number of iterations
needed to actually generate the fractal can be in the tens of thousands so it is suitable to
use a computer. There are a few popular methods to do so, either by iterating through
sets or iterating through points. Fig. 6 shows how sets of triangles are iterated to produce
the Barnsley fern. A transformation takes the triangle ABC to triangle abc and, this is
repeated until the Fern is generated.

However, in 2.2 it was mentioned that iterating through sets can be computation-
ally inefficient and, that is why for our IFS method we will iterate through points instead
as described in 2.3. As long as we ensure the transformations given by Barnsley are
correct in our implementation - utilising his matrix of constants, we will produce a Black
Spleenwort fern. The difference here versus our Sierpiński’s triangle IFS is that the
algorithm we used in 3.2 can be said to be a random IFS that acts as a generalisation of
the chaos game, whereas here we will use a deterministic IFS algorithm that makes use
of weighted probabilities, which we will now define.

9Barnsley, M. F., 1993. Fractals Everywhere. 2nd ed. s.l.:Academic Press p.102
10Barnsley, M. F., 1993. Fractals Everywhere. 2nd ed. s.l.:Academic Press
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4.2 The IFS Method

In 2.3 it was mentioned we would need some adjustments to our IFS algorithm to
generate the Barnsley fern and these come in the form of weighted probabilities which
are attached to the the transformations used in our IFS as illustrated in fig. 7.11 It
should be noted that these transformations are affine transformations of the form
described in 2.1

Figure 7: Transformations with weighted probabilities

We include these probabilities to speed up convergence to the attractor in what is known
as a deterministic IFS algorithm. The reason this is more efficient is beyond the scope of
this paper, but relies on a proof that the similarity dimension agrees with the Hausdorff
dimension and, can be explored in theorem 9.3 of the first edition of Falconer’s Fractal
Geometry. With these weighted probabilities in mind, our IFS method is as follows:

1. We define our first point at the origin where x1 = 0 and y1 = 0.

2. The next point and successive points are iteratively computed by applying one of
the four transformations shown in fig. 7.

a) the first transformation is chosen 1% of the time and generates our stem.

b) the second transformation is chosen 85% of the time and generated copies of
the stem and divided leaves to create the fern.

c) the third transformation is chosen 7% of the time and generates the leaves to
the lower left.

d) the fourth transformation is chosen 7% of the time and generates the leaves
to the lower right.

11Bradley, L., n.d. Iterated Function Systems - Chaos Fractals. [online] Stsci.edu.Available at:
¡https://www.stsci.edu/ lbradley/seminar/ifs.html¿
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4.3 Implementation in Python

Again, we will be using functions from the matplotlib and random libraries. The uses of
these are discussed in 3.3.

Similarly to 3.3, we create a set that stores points, initially only containing our first
point, which will choose between our affine transformations to begin our iterations. We
then choose the number of iterations we wish to execute and use randint to give each
transformation a weighted probability.

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 100)

The difference here, from 3.3 is that we will have numbers 1 to 100 versus 1 to 3, to
assign our transformation variable to with each iteration. This is so we can choose a
range of values as opposed to a single value for our transformations to be chosen from
and these will act as our weighted probabilities.

For example, the second transformation in fig.7 is chosen 85% of the time, so we use an
if statement such that if the randomly assigned value to our transformation variable is
between 2 and 86, this is the transformation that will be chosen. We use this template
and the coefficients given by Barnsley to define our affine transformations, ensuring the
ranges of the transformation variable are set correctly so they represent the correct
weighted probabilities. It is to be noted these transformations are of the form described
in 2.1.

1 i f t rans fo rmat ion == 1 :
2 x . append (0)
3 y . append ( 0 . 1 6 ∗ ( y [ n ] ) )
4
5 i f 2 <= trans fo rmat ion <= 86 :
6 x . append ( 0 . 8 5 ∗ ( x [ n ] ) + 0 .04 ∗ ( y [ n ] ) )
7 y . append ( −0.04 ∗ ( x [ n ] ) + 0 .85 ∗ ( y [ n ] ) + 1 . 6 )
8
9 i f 87 <= trans fo rmat ion <= 93 :

10 x . append ( 0 . 2 ∗ ( x [ n ] ) −0.26 ∗ ( y [ n ] ) )
11 y . append ( 0 . 2 3 ∗ ( x [ n ] ) + 0 .22 ∗ ( y [ n ] ) + 1 . 6 )
12
13 i f 94 <= trans fo rmat ion <= 100 :
14 x . append ( −0.15 ∗ ( x [ n ] ) + 0 .28 ∗ ( y [ n ] ) )
15 y . append ( 0 . 2 6 ∗ ( x [ n ] ) + 0 .24 ∗ ( y [ n ] ) + 0 . 44 )
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Lines 14 and 15 (above) will append the point generated with each iteration to our set
that stores points. Our final step is to actually plot these points with matplotlib and
and again we can add some colour to make the output more presentable.

1 p l t . t i t l e ( ’ Barns ley Fern ’ )
2 p l t . s c a t t e r (x , y , s = 0 . 5 , edgeco l o r=’ mediumseagreen ’ )
3 p l t . s c a t t e r (x , y , s = 0 .001 , edgeco l o r=’ darkgreen ’ )

Putting this all together, our finalised code is as follows.

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 100)
8
9 i f t rans fo rmat ion == 1 :

10 x . append (0)
11 y . append ( 0 . 1 6 ∗ ( y [ n ] ) )
12
13 i f 2 <= trans fo rmat ion <= 86 :
14 x . append ( 0 . 8 5 ∗ ( x [ n ] ) + 0 .04 ∗ ( y [ n ] ) )
15 y . append ( −0.04 ∗ ( x [ n ] ) + 0 .85 ∗ ( y [ n ] ) + 1 . 6 )
16
17 i f 87 <= trans fo rmat ion <= 93 :
18 x . append ( 0 . 2 ∗ ( x [ n ] ) −0.26 ∗ ( y [ n ] ) )
19 y . append ( 0 . 2 3 ∗ ( x [ n ] ) + 0 .22 ∗ ( y [ n ] ) + 1 . 6 )
20
21 i f 94 <= trans fo rmat ion <= 100 :
22 x . append ( −0.15 ∗ ( x [ n ] ) + 0 .28 ∗ ( y [ n ] ) )
23 y . append ( 0 . 2 6 ∗ ( x [ n ] ) + 0 .24 ∗ ( y [ n ] ) + 0 . 44 )
24
25 p l t . t i t l e ( ’ Barns ley Fern ’ )
26 p l t . s c a t t e r (x , y , s = 0 . 5 , edgeco l o r=’ mediumseagreen ’ )
27 p l t . s c a t t e r (x , y , s = 0 .001 , edgeco l o r=’ darkgreen ’ )

Executing this gives us the following image:
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Figure 8: IFS Barnsley Fern

Again we can see that using 100000 iterations was sufficient to produce a clear image of
the Barnsley fern. By using the weighted probabilities in a deterministic IFS algorithm,
we used a comparatively more efficient process than in the random IFS used for our
generation of Sierpiński’s triangle. The weighted probabilities allowed us to vary the
occurrence of our points choosing a given affine transformation, as some are needed more
so than others which ultimately sped up convergence to the attractor.

15



4.4 Mutant Ferns

Through changing the coefficients of our four affine transformations, we are able to
observe some interesting changes to the Barnsley fern.

Let

Figure 9: Varied coefficients and weighted probabilities

be the new coefficients used in our four affine transformations and, let p be the weighted
probabilities attached to each of these transformations. It is to be noted that our weighted
probabilities here are different from the ones used in 4.2 and 4.3. Using the same code
for our Barnsley fern implementation with this alteration yields:

Figure 10: Mutated Fern

This is an example of a V-variable8 fractal and, Barnsley actually described collections
of these and their probability distributions to be known as a superfractal12.

12Barnsley, M. F., et al., 2008. V-variable fractals and superfractals
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4.5 V-Variable Fractals and Superfractals

In his paper about V-variable fractals and superfractals, Barnsley discusses how IFSs
can provide models for naturally occurring plants, leaves and ferns by virtue of
self-similarity that natural branching structures exhibit. He then goes on to say that
these natural structures also show randomness from one level to the next and that no
two of these are exactly alike.

The construction of V-variable fractals is also detailed in this paper, using the model
situation of two IFSs F and G with fixed points A1, A2 and A3 but with contraction
ratios 1

3 as opposed to 1
2 .

Figure 11: Construction of V-Variable Fractals

Fig. 1113 shows a forward algorithm that generates families of V-variable fractals. We
have level 1 at the top, followed by levels 2 and 3 in the construction of a possibly
infinite sequence of 5-tuples of 5-variable Sierpiński triangles. From level 2 onward, F or
G indicates which IFS is used and the input arrows indicate the buffers to which IFS
was applied.11

The importance of these V-variable fractals is linked to the genetic makeup of the ferns
they describe. Barnsley speculated that when a V-variable geometrical fractal model was
found to have a good match to the geometry of a given plant, then there would be a
relationship between the code trees and the information stored in the genes of the
plant.14

13Barnsley, M. F., et al., 2008. V-variable fractals and superfractals p.5
14Barnsley, M. F., et al., 2008. V-variable fractals and superfractals p.2
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5 Conclusion

5.1 Usage of Python

As shown by our outputs, the implementation of our IFSs were successful. The simple
syntax of python makes it easy to define and use functions on our points, making use of
libraries such as matplotlib and random to visually represent our points and allow them
to choose between the functions we define. The ability to also use Jupyter notebook to
adjust parameters for my transformations and immediately see the output made python
attractive for the implementation of IFSs.

The code in sections 3.3 and 4.3 can be extended to produce other common fractals
through alterations in the number and definitions of functions and when using a
deterministic IFS algorithm, the weighted probabilities. For example, we can easily
generate a Sierpiński pentagon, through the use of two additional functions (fig. 12)15.

Figure 12: Sierpiński pentagon

5.2 Further applications

One way to extend the code I have written, would be to enable user input, coupling this
with a front-end and some functionality to allow those studying IFSs to alter parameters
as they see fit. This would need implementation of both random IFSs and deterministic
IFSs such that the most common IFS fractals were able to be generated, in conjunction
with allowing for users to transform the the visual representations of the fractals
generated with their mouse.

15Riddle, L., n.d. Iterated Function Systems. [online] Larryriddle.agnesscott.org. Available at:
¡https://larryriddle.agnesscott.org/ifs/ifs.htm¿ [Accessed 31 March 2021].
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In fact Larry Riddle, whom produced fig. 11, has an IFS construction kit on his website,
which enables users to design and draw fractals by varying parameters of affine
transformations without the need to code them. Each transformation can be scaled,
rotated, stretched or skewed using a mouse and keyboard and, the user is given
immediate visual representation on how the fractal changes as a transformation is
modified. Either a random or deterministic IFS can be used.

Figure 13: IFS Construction Kit

Here is a screenshot of the program, which shows a matrix representation of the affine
transformations along with the resultant Sierpinski’s triangle on the right hand side. We
can see that we can input values into both the parameter and probability fields to alter
the fractal (fig. 13)16.

Ultimately, the implementation of IFSs in python (which can be extended to other
languages) is relatively straightforward as long as we ensure we model our chaos games
correctly, using weighted probabilities when needed for fractals such as the Barnsley Fern.
We can choose a significant number of iterations, without computational expense due
to the efficient nature of chaos games which makes these implementations feasible for
modern machines.

16https://larryriddle.agnesscott.org/ifskit/index.htm
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7 Appendix

7.1 Sierpiński’s triangle

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 3 )
8
9 i f t rans fo rmat ion == 1 :

10 x [ n ] = ( x [ n ] − 3) / 2
11 y [ n ] = ( y [ n ] ) / 2
12
13 e l i f t rans fo rmat ion == 2 :
14 x [ n ] = ( x [ n ] + 3) / 2
15 y [ n ] = ( y [ n ] ) / 2
16
17 else :
18 x [ n ] = ( x [ n ] ) / 2
19 y [ n ] = ( y [ n ] + 3) / 2
20
21 x . append ( x [ n ] )
22 y . append ( y [ n ] )
23
24 p l t . t i t l e ( ’ S i e r p i n s k i Tr iang l e ’ )
25 p l t . s c a t t e r (x , y , s =0.5 , edgeco l o r=’ Blue ’ )
26 p l t . s c a t t e r (x , y , s =0.001 , edgeco l o r=’ White ’ )
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7.2 Barnsley Fern

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 100)
8
9 i f t rans fo rmat ion == 1 :

10 x . append (0)
11 y . append ( 0 . 1 6 ∗ ( y [ n ] ) )
12
13 i f 2 <= trans fo rmat ion <= 86 :
14 x . append ( 0 . 8 5 ∗ ( x [ n ] ) + 0 .04 ∗ ( y [ n ] ) )
15 y . append ( −0.04 ∗ ( x [ n ] ) + 0 .85 ∗ ( y [ n ] ) + 1 . 6 )
16
17 i f 87 <= trans fo rmat ion <= 93 :
18 x . append ( 0 . 2 ∗ ( x [ n ] ) −0.26 ∗ ( y [ n ] ) )
19 y . append ( 0 . 2 3 ∗ ( x [ n ] ) + 0 .22 ∗ ( y [ n ] ) + 1 . 6 )
20
21 i f 94 <= trans fo rmat ion <= 100 :
22 x . append ( −0.15 ∗ ( x [ n ] ) + 0 .28 ∗ ( y [ n ] ) )
23 y . append ( 0 . 2 6 ∗ ( x [ n ] ) + 0 .24 ∗ ( y [ n ] ) + 0 . 44 )
24
25 p l t . t i t l e ( ’ Barns ley Fern ’ )
26 p l t . s c a t t e r (x , y , s = 0 . 5 , edgeco l o r=’ mediumseagreen ’ )
27 p l t . s c a t t e r (x , y , s = 0 .001 , edgeco l o r=’ darkgreen ’ )
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7.3 Mutated Fern

1 from random import rand int
2 import matp lo t l i b . pyplot as p l t
3
4 x , y = [ 0 ] , [ 0 ]
5
6 for n in range (100000) :
7 t rans fo rmat ion = randint (1 , 100)
8
9 i f t rans fo rmat ion <= 2 :

10 x . append (0)
11 y . append ( 0 . 2 5 ∗ ( y [ n ] ) − 0 . 4 )
12
13 i f 3 <= trans fo rmat ion <= 84 :
14 x . append ( 0 . 9 5 ∗ ( x [ n ] ) + 0.005 ∗ ( y [ n ] ) − 0 .002 )
15 y . append ( −0.005 ∗ ( x [ n ] ) + 0 .93 ∗ ( y [ n ] ) + 0 . 5 )
16
17 i f 85 <= trans fo rmat ion <= 92 :
18 x . append (0 . 035 ∗ ( x [ n ] ) − 0 .2 ∗ ( y [ n ] ) − 0 . 0 9 )
19 y . append ( 0 . 1 6 ∗ ( x [ n ] ) + 0 .04 ∗ ( y [ n ] ) + 0 . 02 )
20
21 i f 93 <= trans fo rmat ion <= 100 :
22 x . append ( −0.04 ∗ ( x [ n ] ) + 0 .2 ∗ ( y [ n ] ) + 0 .083 )
23 y . append ( 0 . 1 6 ∗ ( x [ n ] ) + 0 .04 ∗ ( y [ n ] ) + 0 . 12 )
24
25 p l t . t i t l e ( ’ Mutated Fern ’ )
26 p l t . s c a t t e r (x , y , s =0.5 , edgeco l o r=’ mediumseagreen ’ )
27 p l t . s c a t t e r (x , y , s =0.001 , edgeco l o r=’ darkgreen ’ )
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