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Abstract

This project is aimed at studying the dynamics of swarms by Vicsek model. It

would first reproduce a simple Vicsek model on Matlab. Then, the model would

be modified, adding the functions of limited vision angle and adaptive individual

speeds respectively. Finally, The parameters and convergence properties of the

model are studied. The influence of the starting speed for particles in the system

on the order parameters and which value of certain parameters can make the

movement of particles be synchronized fastest were found.
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Chapter 1

Introduction

1.1 Motivation

From cellular migrations to flocks of sheep, from cooperative behavior of molecular

motors to flustered people, collective motions of abundant organisms universally

exist in living nature (Ginelli, 2016).

Although the perception and intelligence of individuals in many swarms are

not very high, the entire group can show complex behaviors, for instance, keeping

individuals consistent in their speed of movement and migrating toward the same

target (e.g. food or habitat) (Parrish and Hamner, 1997). Some swarms can even

form special structures to deal with emergencies such as avoiding obstacles or

predators (Inada and Kawachi 2002, Couzin et al. 2003).

The study of dynamics of swarms is a way to understand biological complexity.

On the other hand, research can apply this distributed strategy to the control the-

ory of autonomous multi-agent systems (e.g. drone clusters) (Tanner et al., 2003).

By designing some control rules, the system can produce the desired behaviors.

The research on dynamics of swarms may also be used to explain the reasons why

some species are not very intelligent, but through cooperation between others,

they can show some very intelligent behaviors (Jadbabaie et al., 2003). Thus, the

study of swarms has potential application values in engineering (Olfati-Saber and

Murray, 2002).

1
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1.2 Background

There are two balanced and opposite behaviors in a school of fish or a flock of

birds in nature (Partridge, 1982): Expect to move closer to the center of adjacent

individuals: avoid collisions with adjacent individuals. Birds seem to be able to

divide the entire group into three categories, namely: themselves, nearby birds and

other individuals. Many researchers have tried to explain how the group animals

achieve the same direction of action without unified control.

With the development of computer science, Reynolds (1987) proposed three

laws of individual movement based on observations of birds in 1987 i.e. individual

birds will fly according to the following rules: 1) Gather: try to get close to each

other to avoid isolation; 2) Repel: avoid collisions with surrounding individuals; 3)

Synchronize: try to keep the velocity consistent with the surrounding individuals.

Reynolds established the earliest calculation model based on these three rules.

In subsequent studies, researchers usually consider the specific actions of in-

dividual birds in flight in the model. The most typical example is that Heppner

and Grenader in their model proposed an arithmetic differential equation with 15

parameters (Heppner and Grenander, 1990). However, for a cellular migrations

system with hundreds of individuals, it is difficult to draw general conclusions from

a complex mathematical model.

In 1995, the Hungarian physicist T. Vicsek proposed a simple and effective

model for simulating cellular migrations, i.e. Vicsek’s model from the perspective

of statistical mechanics. In the Vicsek model, each individual involved in cellular

migrations can be regarded as an independent self-propelled individual and each

individual moves in a two-dimensional plane with a constant speed. The speed and

direction at the next moment are related the average velocity of other individuals

around it (including itself). After a limited number of steps, all individuals will

eventually reach a common velocity, i.e. the movement directions of all individuals

tends to be the same (Vicsek et al., 1995).

In the Vicsek model, the status of each individual is equal, but it is different

in the real world. A good example is the migration of wild geese. There are

often some ”leaders” among them, which play a leading role in the movement of

the flock. Based on this phenomenon, the Vicsek model with some ”leaders” was
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proposed (Couzin et al., 2005). Moreover, natural enemies have a huge influence on

their group behavior in some populations. Therefore, some models with predators

are proposed. Gazi and Passino (2002) studied the self-organization behavior of a

model formed by self-propelled individuals with interactions and found that in two-

dimensional situations, all individuals rotate around a common center;Jadbabaie

et al. (2003) studied the colony behavior of bacteria, the migration movement of

bacterial colonies and so on.

In addition, Czirók et al. (1997) further linked biological cellular migrations

with ferromagnetic dynamics, and applied the average field method for ferromag-

netization to biological cellular migrations. Subsequently, many physical methods

were introduced to the study of cellular migrations. Simha and Ramaswamy (2002)

gave an explanation of fluid mechanics. Olfati-Saber and Murray (2004) discussed

the influence of information organization structure. In addition to in-depth ex-

ploration of cluster behavior description methods, many scholars began to study

the impact of individual or partial behavior on the entire group. Mu et al. (2005)

pointed out that in the model with a leader, the larger the cluster size, the smaller

the proportion of individuals (e.g. leaders) who need to know the cluster goals.

Three years later, Ballerini et al. (2008) pointed out that regardless of the clus-

ter density, when an individual has a fixed number of neighbors, it has the best

robustness against obstacles and external attacks.

1.3 Outline of Project

In the first step of this project, The research program reproduced the Vicsek model

proposed by Vicsek et al. in 1995 with Matlab and named it basic VM (i.e. basic

vicsek model). Then the simulation results would be compared with the original

paper to verify whether the model can work correctly.

In the second step, different starting speed and noise were used to do the

simulations and studied the influence of these parameters on the order parameter

(i.e. average normalized velocity).

In the third step, the code of the two improved models were built in mat-

lab and whether they can run correctly would be verified. Then we investigated
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whether the improved models have the same parameter properties as basic VM,

which was found in the second step.

In the fourth step, a rule was design for judging whether the order parameter

has converged and it would be applied into the three different VMs. Then we stud-

ied the convergence properties of the models and found out under what conditions

the models converge fastest.



Chapter 2

About Vicsek Model (VM)

This chapter describes the details of three different VMs. The basic VM was

proposed by (Vicsek et al., 1995) and the other two VMs was improved on the

basic VM, to which the limited vision field angle and adaptive speed were added

separately.

2.1 Basic Vicsek Model

A basic Vicsek model (VM) describes the movements of N self-propelled particles

(to be regarded as mass points) in an L ∗ L map. The initial conditions of the

VM meet the following rules: 1) The initial location of each point is randomly

distributed in the map; 2) The initial movement direction of each individual is

randomly distributed in (−π, π]; 3) The moving distance of each step of the particle

is constant (i.e. the moving speed is constant). Let xi(t) be the location of the

i-th point at time t, and then the update rule follow as

xi(t+ 1) = xi(t) + vi(t)∆t (2.1)

where ∆t donates the time between step t and step t+ 1, vi means the velocity of

the i-th point at time t. Because the speed is constant for each point, the update

of velocity is only related to the direction. For the i-th point, the the angle of

5
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direction at time t θi(t) is obtained from the expression

θi(t+ 1) =< θi(t) >r +∆θi (2.2)

where ∆θi is a random number that obeys a normal distribution from the interval

[−η
2 ,

η
2 ] and it represents the noise in the update. The < θi(t) >r donates the

average directions angle of all points (including the point i) within the radius r

and the it satisfies

< θi(t) >r= arctan[
< sinθi(t) >r
< cosθi(t) >r

]. (2.3)

For a given size system, there are three free parameters: η, ρ and vel, where ρ

donates the density of the system which ρ = N/L2. The vel is the starting speed

of each point and it also represents the distance of each point makes from t to

t+ 1.

Vicsek et al. (1995) did the simulations according to the above rules obtained

some interesting conclusions as shown in Figure 2.1.
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Figure 2.1: In this figure, the velocity of each particles vel = 0.03 and the

arrows indicate the direction of particles movement. The number of particles

is N = 300 in each case. (a) L = 7, η = 2 when t = 0; (b) L = 25, η = 0.1;

(c) L = 7, η = 2; (d) L = 5, η = 0.1.

The simulation result shows that in the condition of low density and noise,

the system tends to be stable after a number of steps and form groups in random

directions (Figure 2.1(b)); For high density and noise, the particles seems moving

randomly (Figure 2.1(c)); In the high density but low noise condition, the motion

of particles converge to the same direction (Figure 2.1(d)).

In order to evaluate the order degree of the system, Dr.Vicsek introduced the
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average normalized velocity as the order parameter

va =
1

Nv
|
N∑
i=1

vi|. (2.4)

If the direction of the particles in the system distributes randomly, the order

parameter va tends to be zero. If va → 1, all particles move in the same direction

in the system.

From the simulation results of Figure 2.1, it can be known that the density and

noise of the system have the impact on the moving state of the particles. Thus,

they studied the effects of noise and density separately on va.

Figure 2.2: (a) The value of va versus the noise η in different number of

particles with a constant density ρ = 4. (b) The L = 20 and the noise η is a

constant value.

The Figure 2.2(a) shows that as the noise increases, the final value of va in

the system will decrease. And only in the low noise situation, the particles in the

system can reach a state of synchronized movement. The Figure 2.2(b) shows that

when the noise is fixed, va increases with the increase of density i.e. the movement

of the particles in the system can only be synchronized, when the density is greater

than a certain value.

According to the simulations, Dr.Vicsek pointed out that when the density is
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fixed, as the noise increases, there is a critical value about noise ηc that makes va =

0. Also, when the noise is fixed, as the density increases, there is a critical value

of density ρc that makes va = 0. Assuming that the critical values of noise and

density when L→∞ are ηc(ρ) and ρc(η) respectively, then the average normalized

velocity can be written as

va ∼ [ηc(ρ)− η]β, va ∼ [ρ− ρc(η)]δ (2.5)

where β and δ are critical exponents (i.e. β = ln (ηc) and δ = ln (ρc)). When

the map size L is limited, the critical values ηc and ρc both depend on L, which

are denoted as ηc(L) and ρc(L). Then they take the logarithm of Eq 2.5 and

ploting ln va as a function of ln [(ηc(L)− η)/ηc(L)] and ln [(ρ− ρc(η))/ρc(L)] for

some fixed value of η and ρ in Figure 2.3.

Figure 2.3: (a) is for ρ = 4; (b) is for L = 20 and η = 2.

According to the slope in Figure 2.3, they obtained the β = 0.45 ± 0.07 and

δ = 0.35± 0.06.
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2.2 VM with Limited Vision Field

The vision field of basic VM is a circle which the particle is the circle center and

r is the interacting radius (i.e. the vision field is 360-degree). However, in nature,

creatures with a 360-degree vision field are rare. The most creatures have a limited

vision field (e.g. vision field of horses is 350 degrees and vision field of sheep is

from 320 degrees to 340 degrees) and the vision field is also determined by the

intersection area (i.e. stereo vision zone) and the number of eyeballs.

In this project, we designed a simplified limited vision angle mechanism, i.e.

ignoring the influence of cross vision and the number of eyeballs on the field of

vision, only limiting the perception range of particles.

Figure 2.4: This is the interacting circle with radius r. The shaded part is

the vision field of particles and the ω is the angle of vision field.

As the Figure 2.4 shown, the arrow indicates the direction of particle move-

ment, the ω indicates the angle of vision field and the part covered by the shadow

is the vision field to a particle. In the simulation process, the particle no longer
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considers the average direction of all other particles in the circle, but only consid-

ers the average speed in the shaded part in Figure 2.4 (i.e. The fan-shaped area

with ω as the angle and r as the radius in the particle movement direction).

2.3 VM with Adaptive Speed

In basic VM, the speed (i.e. the distance moved in each step) is a fixed value (the

value of starting velocity vel). Only the direction changes when the particles are

moving. However, in a real particle system such as fish schools or sheep flocks, the

moving speed of individuals is different, so giving each particle different moving

speeds may shorten the time required for system convergence (the definition of

convergence in this project will be explained in chapter 3). In this project, a

modified VM with adaptive speeds for each particles proposed by Zhang et al.

(2009) would be adopted. This model was designed to shortening the time required

for the convergence of order parameter (Zhang et al., 2009).

In the original Vicsek Model, particles adjust their moving direction by other

particles within the interacting radius (i.e. take the average direction as the next

moving direction of the particle). However, if the movement of surrounding parti-

cles is very chaotic, only changing directions without adjust the moving speed will

make the result become weird. For instance, assuming that particle A is moving

to the π/2 direction and there is only one particle near it moving to the −π/2
direction. Then based on the update rule (Eq. 2.3), the moving direction of par-

ticle A at the next moment equals to 0, but the result makes no sense. Another

disadvantage of the fixed moving speed is that when the particles move chaotically

and the moving speed is fast, the communicated information might be wasted be-

cause the particle will move to a new position before fully communicate in the old

position. When the particle movement is orderly and the moving speed is slow,

it will make a lot of useless repeated communication. The particles are expected

to have a lower speed when the other particles nearby moving chaotically and a

higher speed when the surrounding particles move toward a similar direction. Thus

in this model, Zhang et al. (2009) introduced the concept of order parameter φi
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which can be written as

φi =
|
∑Ni

j=1 v
(i)
j |∑Ni

j=1 |v
(i)
j |

, (2.6)

for the i-th particle, Ni is the number of particles within the interacting circle; v
(i)
j

is the velocity of j-th particle near the particle i. As the same with va, the value

of the local order parameter φi is from 0 to 1 and the larger the value, the better

the direction consistency. However, we cannot simply take the value of the local

average normalized speed as the particle’s speed at next moment because if the

system is very chaotic, all particles will tend to stop since the local average speeds

will be very small. In this project, an update rule designed by Zhang et al. (2009)

would be used

vi(t+ 1) = vel × exp [β(φi(t)− 1)], (2.7)

where vi(t + 1) is the speed of the i-th particle at time t + 1, vel is the value of

starting speed and β is the control parameter. If β = 0, the improved model will

become a basic VM (i.e. vi = vel for all i at each moment); If β > 0, the range of

vi is [vel e−β, vel]. When v
(i)
a → 0 (i.e. the movement of other particles nearby is

very chaotic), the speed of particle i at the next moment will be much smaller than

the starting speed vel; when v
(i)
a → 1 (i.e. the local particle movement direction

tends to be the same), the speed of particle i at next moment will be very close to

vel. Overall, the speed adaptation process of particles is



CHAPTER 2. ABOUT VICSEK MODEL (VM) 13

Algorithm 1 The speed of particle i at the next time

Input: Starting speed: vel; The speed of all particles at time t: v(t); The

position of all particles at time t: X(t); Interacting radius: r; Control

parameter: β;

Output: The speed of particle i at the time t+ 1: vi(t+ 1);

1: Based on X(t), calculate the distance between particle i and other par-

ticles and return the speed of particles whose distance is less than r as

v(i);

2: Calculate the local order parameter φi(t) based on Eq 2.6;

3: Calculate the vi(t+ 1) with vel, β and φi(t) based on Eq 2.7.

4: return vi(t+ 1);
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Experiment

3.1 Building Models

This section describes how to build the three VMs with Matlab and verify

whether the program can be run correctly.

3.1.1 Basic VM

The code of basic VM in this project is mainly improved on the code in vic-

sek model.m provided on the Matlab official website: mathworks.com (2020). We

have made some optimizations such as vectorization and parallel operations to the

original code to improve the operating efficiency and added a function to calcu-

late the average normalized speed. Except this part, all codes in this project are

original.

14
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Figure 3.1: The vicsek model.m can simply do the simulation of basic VM and

plot the map of particles at each moment. The figure shows the simulation

using vicsek model.m, which plot the particles position at the initial moment

(t = 0) and the first three steps (t = 1, 2, 3). The particles number N = 300,

map size L = 7, noise η = 2, starting speed vel = 0.3 and interacting radius

r = 1.

In the vicsek model.m, the matrix M should be explained because it is very

important for judging whether a particle is within the interaction circle of another

particle. M is a format distance matrix and the value of Mij is the distance between

particle i and j. Because the distance between particles i and j is equivalent to the

distance between j and i, M is a symmetric matrix and the diagonal elements are

equal to 0. Each column (or row) of M represents the distance between the one

particle and the remaining particles. The Code box 1 shows how to generate the

matrix M and update the direction angle θ using Matlab.
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1 %%% Code box 1

2 %% 'x' is the abscissa of particles (type: array);

3 %% 'y' is the ordinate of particles (type: array);

4 %% 'theta' is the direction angle of particles (type: array);

5 %% 'noise' is the noise parameter (type: double).

6

7 D = pdist([x' y'],'euclidean'); % Calculation of distance ...

in the interacting circle

8 M = squareform(D); % Matrix representation for the ...

distance between particles

9 [l1,l2] = find(0≤M & M<r); % Search for particles within ...

the interacting circle

10

11 % update moving directions theta

12 for i = 1:N

13 list = l1(l2==i);

14 ave theta(i) = ...

atan2(mean(sin(theta(list))),mean(cos(theta(list))));

15 end

16

17 % update directions

18 theta = ave theta + noise'*(rand(1,N) − 0.5);

The same parameters were used as in Figure 2.1 to simulate the model, and

the result (Figure 3.2) shows that our model has the same properties as the model

proposed by Dr. Vicsek in 1995 in the way of particles movement.
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Figure 3.2: Observing the distribution of particles, we can see that the sim-

ulation results of (a) and (b) are similar to Figure 2.1; For (c), the average

normalized velocity va = 0.698 means that the particles moving randomly as

the same as Figure 2.1(c); For (d), va = 0.999 shows that all particles move

in the same direction like Figure 2.1(d).

The research program rewrote the code of the basic VM into a function (shown

in Appendix) which return the last value of va in the system. The function was run

100 times using the ‘parfor’ statement for each result and took the arithmetic

mean as the final value of va. In addition, the number of running times should be

as large as possible because if the running times is not big enough, the data will

be too discrete to catch the features (e.g. as the different between Figure 3.3(a)
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and 3.3(b)).

Using the same parameter in Figure 2.2(a), we achieved a very similar result

when N = 40, 100, 400 (shown in Figure 3.3). However, in view of the limitations

of hardware equipment, we cannot reproduce the simulation when N = 4000 and

N = 10000 because the simulation time was too long to accept. But in this project,

simulation experiments were not done with more than 400 particles and the good

performance of the code when N ≤ 400 is enough to show that it has implemented

the model proposed by Vicsek et al. in 1995 very well.

Figure 3.3: As the same with Figure 2.2(a), the starting velocity vel = 0.03,

interacting radius r = 1 and the density of system ρ = 4 (ρ = N/L2). For

(a), each point was simulated 10 times and took the average value; For (b),

each point was simulated 100 times and took the average value.

3.1.2 VM with Limited Vision Field

In the Code box 1, a distance matrix M was generated. Each element in M

represents the distance between two particles (e.g. Mij represents the distance

between particle i and particle j). All the particles within the interaction circles

can be located by finding the qualified particles in M (i.e. searching the value of

element within (0, r) and return their index). In this part, M was produced by the

same size matrix A pointwisely to zero the elements corresponding to the particles

outside the vision field angle ω controlled by the vision coefficient F with ω = 2πF
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(F ∈ [0, 1]). This new matrix A ◦M would then replace the original M and be

used to locate the eligible particles. Since the program will search for the values

greater than 0 and less than r in the matrix, the particles outside the vision field

will be excluded.

This is the algorithm to calculate the value of Aij when i 6= j; If i = j, Aij = 0.

Algorithm 2 Determine whether particle j is in the vision field of particle i.

Input: The abscissa of particles i and j: x; The ordinate of particles i and

j: y; Moving direction of particle i: θi; Vision coefficient: F .

Output: Whether particle j is in the vision field of particle i: Aij;

1: Use particle i as the origin O to center the coordinates;

2: Use the new coordinates of particle j to calculate the angle α between

Oj and the x-axis;

3: Let Θ = |θi − α|, if Θ ≥ F , Aij = 1; if Θ < F , Aij = 0.

4: return Aij;

The test result of the model is shown in Figure 3.4. When the vision field of the

particles is 360 degrees, the simulation result is the same as the basic VM; when

the field of view of the particles is 0 degrees (i.e. can only see objects directly in

front), the system is always in a disordered state.



CHAPTER 3. EXPERIMENT 20

Figure 3.4: In the simulations, N = 100, L = 5, r = 1. The va points took

the average of 100 independent simulations. The ’baseline’ in the legend is

simulated by the basic VM using the same parameters.
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3.1.3 VM with Adaptive Speed

Because the method of judging the interaction relationship between particles is the

same with basic VM, the study needs to add the part of the calculation of local

order parameter φ inside Code box 1. Then the speed update rule was added in

the bottom of Code box 2.

1 %%% Code box 2

2 %% 'x' is the abscissa of particles (type: array);

3 %% 'y' is the ordinate of particles (type: array);

4 %% 'theta' is the direction angle of particles (type: array);

5 %% 'noise' is the noise parameter (type: double).

6 %% 'v' is the current speeds for particles (type: array).

7 D = pdist([x' y'],'euclidean'); % Calculation of distance ...

in the interacting circle

8 M = squareform(D); % Matrix representation for the ...

distance between particles

9 [l1,l2] = find(0≤M & M<r); % Search for particles within ...

the interacting circle

10

11 % update moving directions theta and local order parameter phi

12 for i = 1:N

13 list = l1(l2==i);

14 ave theta(i) = ...

atan2(mean(sin(theta(list))),mean(cos(theta(list))));

15 xx = sum(v(list).*cos(theta(list)));

16 yy = sum(v(list).*sin(theta(list)));

17 phi(i) = ((xx.ˆ2) + (yy.ˆ2)).ˆ0.5 ./ sum(v(list));

18 end

19

20 % update directions

21 theta = ave theta + noise'*(rand(1,N) − 0.5);

22

23 % update speeds

24 v = vel*exp(beta.*(phi − 1));
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The research exported the speed array v to judge whether the speeds of the

particles would change. The result shows that the particle speed is always the

same when β = 0 (i.e. the model becomes a basic VM), when β ≥ 1, each element

in the array v changes significantly, which proves the program can run correctly.

3.2 Study on Order Parameter

This section describes the effect of different starting speeds on order parameters

of different VMs and tried to verity a conclusion declared by Vicsek et al. (1995)

that ”in a wide range of the velocities (0.003 < vel < 0.3), the actual value of vel

does not affect the results”.

For the basic VM, the result cannot perfectly verify the conclusion in Vicsek

et al. (1995) about the range of starting speed. In our simulation, the range of

starting speed can be much more wider. First, extremely small speed cannot

change the curve shape of va (E.g. in Figure 3.5(a). The vel reaches the smallest

number 0.0001 that can be calculated in Matlab but the curve shape does not

change). When the number of starting speed is bigger than the side length L

of the map, the curve shape starts to change. A good instance is that when

N = 100, L = vel = 3.5, the value of vel can still maintain a smooth decline. But

when L < v, the curve tends to be bell-shaped (shown in Figure 3.5(b)). This

phenomenon also occurs in different N number model (e.g. Figure 3.5(c)) and

different L model (e.g. Figure 3.5(d)).
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Figure 3.5: For (a) and (b), N = 100 and L = 3.5; For (c), N = 50 and

L = 3.5; For (d), N = 100 and L = 5. Each point takes the average value of

100 independent simulations.

The correlation test on the data also supports the above conclusion. Firstly,

Lilliefors test confirm that all the data obey normal distribution. Then take the

simulated data when vel = 0.03 as the baseline (this is because the most used

starting speed in the paper proposed by Vicsek et al. (1995) was 0.03, so we

regard 0.03 as the most ”typical” starting speed for the vicsek model) and did the

analysis of variance between baseline and data with other speeds (we used different

speeds and map length data to do the test, but the density are the same in each

data to eliminate the influence of irrelevant variables). The P-value for each test

is shown in Table below.
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L\vel 0.0001 0.003 0.3 3 5 7 9

3.5 0.95 0.95 0.63 0.55 4.1e-04 2.6e-16 3e-19

5 0.87 0.89 0.51 0.38 0.36 0.01 1.1e-11

7 0.66 0.82 0.5 0.32 0.32 0.31 0.01

The table shows that when the values of starting speed is outside the range

(0.003, 0.3) but less than L, there is no significant difference with the baseline

(because P > 0.05). When vel > L, the P-value is smaller than 0.05. It means

that the data is significantly different from the baseline.

For the improved models, the baseline was the same to analyze the influence of

different parameters on order parameters. The VM of limited vision shows that if

one narrows the field of vision, the phase transition shifts and may ultimately even

disappear. It also means that the smaller the particle’s vision angle, the greater the

influence of noise on the order of system. Figure 3.6(a) shows the result simulated

by vision angle ω varies from 0 degree to 300 degree (F is the vision coefficient

that ω = 2πF ). The result of VM with adaptive speed is almost the same with

the baseline when 0 < β ≤ 5. When β > 5, the order parameters are significantly

higher than the baseline in the high noise area (noise > 3) (Figure 3.6(b)).

Figure 3.6: For both images, N = 100, L = 3.5, r = 1, vel = 0.03 and each

va took the average of 100 independent simulations.

It is found that when the value of starting speed becomes extreme, the shape
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of the order parameter points would undergone the same change as the basic VM,

which means when the value of map side length is greater than the value of starting

speed, the order parameter points will tend to become a h-shape (Some samples

are shown in Figure 3.7).

Figure 3.7: N = 100, L = 3.5, r = 1 and each va took the average of

100 independent simulations. For (a), the vision coefficient is 0.5 (i.e. the

range of 180 degrees in front). It can be seen that when vel ≤ 3.5, the

order parameter points increase slightly with the increasing speed but not

obviously. When vel > 3.5, the shape of order parameter points begin to

become an h-shape. For (b), β = 1. The results are the same with the basic

VM.

3.3 Study on Convergence Time

In this section, the definition of the convergence time T would be given firstly and

how to obtain the T value in this project will be described. Then the effect of

different parameters on the convergence time would be presented.

The ”convergence” here means the value of the order parameter va converge to

a specific value after a period of time and the convergence time T represents the

number of steps used for the order parameter convergence. When the noise = 0

in the system, the order parameter va will always converge to a value very close

to 1 (0.999± 0.0005 in 10000 runs). When the noise is small, the order parameter
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value will fluctuate in a small range. As the noise increases, the fluctuation of

order parameter value will become larger and cannot be considered as convergent

(Figure 3.8(a)). As we did not find out what degree of fluctuation of the order

parameter can be defined as convergence, and the evolution of models will be

very complicated when there is noise, so this project only considers the situation

without noise. In this project, the first number of steps reaching 0.999 as T was

set. Also, T can be regarded as the time when the particles’ moving direction is

synchronized in a system without noise.

Figure 3.8: (a) shows the value of order parameter from first step to the

200-th step with different noise. The histogram with 100 bins in (b) shows

the distribution of T value after 500 independent simulations under the same

parameters without noise. The red curve is a fit of the distribution using the

Gamma density function. Both Figures used N = 100, L = 5 to simulate.

According to a large number of independent simulations, the skewness of the

T value distribution under the same parameters is large (often greater than 1) and

they often have some very large outliers. These outliers are accidental phenomena

in multiple simulations but it will have a great impact on the arithmetic mean (A

good example is that in Figure 3.8(b), the arithmetic mean of the data is 70.052

and the median is 61. According to the histogram, we can see that most of values

are concentrated around 40 to 60, so the median can better reflect the data).

Therefore, we used the median of 500 repeated simulation results as the T value
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points in this project.

In the experiment, the influence of the interacting radius r and the particles’

number N on the convergence time was firstly analysed. For the selection of

parameters, the randomness of the system will become very large when there are

too few particles, which will cause the results of independent repeated simulation

to vary greatly; When there are too many particles in the system, the simulation

process will be so slow that it cannot be completed in an acceptable time. Thus,

the number of particle N from 50 to 200 was decided to be used. Within this range,

the randomness and efficiency of the simulation are acceptable. For the interacting

radius r, we chose [0.5, 1] as the experimental range. When r < 0.5, because the

information received by each particle is too little, many particles appear to behave

like random walks, which greatly increases the randomness; when r > 1, the area

ratio of the interaction circle to the map is too large , Which makes the particles

obtain too much information. It will make the model lose locality and reduce

simulation efficiency.

For the basic VM, according to the simulations, we found that When r in-

creases, the convergence time T will shorten; when the number of particles in-

creases (in the case of a fixed map area L), the convergence time will also shorten

(Figure 3.9 shows a example with L = 5).
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Figure 3.9: In this simulation, L = 5 and v = 0.03. The maximum value of

T is 239, and the corresponding parameter (N, r) = (50, 0.5); the minimum

value of T is 62, and the corresponding parameter (N, r) = (200, 1).

By performing linear regression on the data in Figure 3.9, we found that when

the value of N is fixed, T and 1/r2 show a similar proportional relationship with

a y-intercept (Figure 3.10(a)) and the slope of the fitted line will decrease as

N increases. When we fixed the r value, T and the 1/N also show a positive

relationship. When the interacting radius is smaller, the slope of fitted is greater

(Figure 3.10(b)).
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Figure 3.10: The ’k’ in the legend shows the slope for each fitted line. The

relationship between r and T can be written as T = k1
r2

+ b1 + ε where the k1

and b1 are coefficients related to N . Also, the relationship between N and T

is T = k2
N

+ b2 + ε where the k2 and b2 are coefficients related to r. ε is the

error between the fitted line and the real data.

In two improved models, the experimental results show that after fixing the

control parameters respectively (F and β), the relationship between r, N and T

is the same as the basic VM (i.e. as r and N increase, the convergence time T

will shorten). Thus, we fixed the particles number N , interacting radius r and

side length L, only change the control parameter in order to find out the value of

a set of control parameters with the highest convergence efficiency. In the next

experiments, we choose N = 100, L = 5 and r = 1 for the simulations because

these parameters can get reasonable data without consuming too much time.

For the VM with limited vision field, the simulation result shows that When

F ∈ [0.66, 0.76] (i.e. the vision field angle ω from 237.6° to 273.6°), the system

has the highest convergence efficiency. The best vision angle of this model is

244.8°(F = 0.68). At this angle, the movement direction of particles can be syn-

chronized in the shortest time (T = 48) and is 30% faster than basic VM (the

basic VM needs to evolve at least 71 steps under the same parameters to achieve

synchronization).
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Figure 3.11: The picture shows the convergence time of the system at dif-

ferent vision angles. It is important to note that is the system can finally

achieve synchronization at any angle except in 0°, but when the vision an-

gle is very narrow, the system needs to run several hundred steps to make

the order parameter converge. When the vision angle is greater than 180°,
the convergence efficiency of limited vision model gradually approaches and

surpasses the basic VM. At 0°, the order parameter cannot converge because

the particles are almost blind. The display in F = 0 in the figure is due to

the algorithm bug of the program.

For the VM with adaptive speed, it was found that when β changes, the T

value changes but there is no evident law and the adaptive speed model is also no

evident advantage in convergence efficiency compared with basic VM.
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Figure 3.12: When β = 26 and 80, the T value reaches the smallest with

69. Compare with the fastest convergence time in basic VM (T = 71, the

improvement of adaptive speed model is not obvious.
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Conclusion and Future Works

4.1 Conclusion

In this project, the demo code provided in mathworks.comwas first meliorated.

The function of calculating order parameters was added, and operating efficiency

was improved by pre-setting parameter sizes and vectorized operations. Then, two

modified models were proposed. The VM with vision field has added the vision

field angle ω controlled by the vision coefficient F to imitate the real vision field of

animals in nature. In the VM with adaptive speed, each particle in the system has

different moving speeds and they will change their movement strategy according

to the neighbors (i.e. Adjust the movement speed according to the local order

parameter φ of the nearby particles in the interacting circle. The updated speeds

will not be greater than the starting speed vel preset by the system).

Through the study of order parameters, three main conclusions are proposed.

(1)The starting speed vel can be selected in a wider range. Vicsek et al. (1995)

pointed out that when the vel is in the range of (0.003, 0.3), the actual value of vel

does not affect the results. However, in our simulation, when vel is out of the range

(e.g. vel = 0.0001 and vel = 3 in the figure 3.5(a)), the order parameter points did

not changed significantly. (2)When the value of vel is larger than the map length

L, the value of order parameter changes dramatically. When the vel > L, the

order parameter will drop drastically as the noise increases, then raise, and then

32
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drop again. The whole order parameter points present an h-shape and the larger

the value of L, the more obvious the h-shape. (3)The above two conclusions can be

applied to the modified models. Through a number of simulations, we found that

the VM with limited vision field and adaptive speed shows the same properties

described above.

By the study of convergence time, we have three discoveries. (1)Both density

ρ (ρ = N/L2) and interacting radius r have negative correlations with T value.

The larger the value of ρ and r, the faster the convergence time. This conclusion is

applicable to the all the three VMs. (2)For the basic VM, the relationship between

r and T can be written as T = k1
r2

+ b1 + ε where the k1 and b1 are coefficients

related to N . Also, the relationship between N and T is T = k2
N + b2 + ε where

the k2 and b2 are coefficients related to r. (3)The optimal vision field of VM with

limited vision is 244.8°. In this condition, the model has the highest convergence

efficiency and is 30% faster than basic VM.

4.2 Future Works

In this project, the influence of starting speed on order parameter was only studied.

The relationship between other basic parameters such r and L is a future goal of

work. Also, for the VM with limited vision field, more different mechanisms of

vision field (e.g. some birds can only see objects on both sides) could be introduced

to simulate the movement of specific animal swarms. The performance of VM with

adaptive speed in convergence is not as good as expected, and there seems to be no

intuitive connection between the control parameter β and the convergence time T .

The convergence efficiency of this model is not much higher than that of basic VM.

Thus, the in-depth study and improvement of this model is also a work direction.

Moreover, the study on convergence in this project is all carried out in a noise-

free state, because noise will increase the randomness of the system, making the

distribution of order parameter points very scattered, and it is difficult to judge

whether the convergence is happened. In the future work, the further study can

try to measure the degree of dispersion of order parameter points to obtain a value

(e.g. standard deviation). If the value has been less than a threshold for a period
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of time, it can be determined that the system has reached convergence and this

method could be used to study the system in a low-noise environment. Moveover,

this project only studies the Vicsek model on the two-dimensional level. However,

many collective motions in nature occur on the three-dimensional level (e.g. the

movement of a school of fish). Therefore, it will be a very interesting to extend

the model to 3D and study the properties in 3D vicsek model.



Appendix A

The Code of Simulation

1 function [v a,T] = simulation(TMAX,N,L,r,noise,vel,es,F,beta)

2 %This function is used to simulate different Vicsek models

3 % Input: TMAX − Maximum number of steps in system evolution

4 % N − The number of particles in the system

5 % L − The side length of the map

6 % r − The interacting radius

7 % noise − Noise coefficient of the system

8 % vel − The starting speed

9 % es − This is a Logical value, 1: the function

10 % will stop when the order parameter

11 % convergence, 0: the function will not stop

12 % when the order parameter convergence

13 % F − A Coefficient of vision field angle

14 % (omega=2*pi*F) in the VM with limited vision

15 % field; When simulating other VMs, this

16 % parameter should be set to []

17 % beta − A control parameter of the VM with adaptive

18 % speed; When simulating other VMs, this

19 % parameter should be set to []

20 %

21 % Output: v a − The normalized average velocity i.e. the

35
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22 % order parameter in the model.

23 %

24 % T − The number of iterations of the model when

25 % v a converges

26

27 %% Boundary condition

28 PERIODIC=1; % 1: periodic boundary condition, 0: unlimited

29

30 %% Initial condition

31 dt=1;

32 x = L*rand(1,N);

33 y = L*rand(1,N);

34 v = vel*ones(1,N);

35 theta = 2*pi*(rand(1,N)−0.5); % randomly direction

36 Phi = zeros(1,TMAX);

37 % Precision control

38 prs size = 100;

39 prs num = 0.01;

40

41 %% Simulation process

42 for time = 1:TMAX

43 tmp x = zeros(1,N);

44 tmp y = zeros(1,N);

45 ave theta = zeros(1,N);

46 phi = zeros(1,N);

47 D = pdist([x' y'],'euclidean'); % Calculation of ...

average angle in the interacting circle

48

49 % Periodic boundary

50 if PERIODIC==1

51 tmp x(x<r) = L + x(x<r);

52 tmp x(x>L−r) = x(x>L−r)−L;
53 tmp x(r≤x & x≤L−r) = x(r≤x & x≤L−r);
54 tmp y(y<r) = L + y(y<r);

55 tmp y(y>L−r) = y(y>L−r)−L;
56 tmp y(r≤y & y≤L−r) = y(r≤y & y≤L−r);
57 tmp D = pdist([tmp x' tmp y'],'euclidean');
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58 D = min([D; tmp D]);

59 end

60

61 M = squareform(D); % Matrix representation for the ...

distance between particles

62 if ¬isempty(F), M = M.*limitView(F,theta,x,y,N); end ...

% delete the points outside the vision angle omega

63

64 % calculation of average directions

65 [l1,l2] = find(0≤M & M<r);

66 for i = 1:N

67 list = l1(l2==i);

68 ave theta(i) = ...

atan2(mean(sin(theta(list))),mean(cos(theta(list))));

69 if ¬isempty(beta)
70 xx = sum(v(list).*cos(theta(list)));

71 yy = sum(v(list).*sin(theta(list)));

72 phi(i) = ((xx.ˆ2) + (yy.ˆ2)).ˆ0.5 ./ sum(v(list));

73 end

74 end

75

76 %% Update

77 x = x + v.*cos(theta).*dt;

78 y = y + v.*sin(theta).*dt;

79

80 if PERIODIC==1

81 x(x<0) = L + x(x<0);

82 x(L<x) = x(L<x) − L;

83 y(y<0) = L + y(y<0);

84 y(L<y) = y(L<y) − L;

85 end

86

87 % update directions

88 theta = ave theta + noise'.*(rand(1,N) − 0.5);

89

90 % update speeds

91 if ¬isempty(beta), v = vel.*exp(beta.*(phi − 1)); end
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92 %% Compute the normalized average velocity

93 vel x = sum(v.*cos(theta));

94 vel y = sum(v.*sin(theta));

95 Phi(time) = ((vel x.ˆ2) + (vel yˆ2)).ˆ0.5 ./ sum(v);

96

97 if time≥prs size

98 conv Phi = Phi(time−prs size+1:time);

99 if (max(conv Phi)−min(conv Phi)<prs num) && ...

(es==1), break, end

100 end

101 end

102

103 if es==1

104 v a = mean(conv Phi);

105 conv ctr = abs(normalize(conv Phi,'center'));

106 I = find(conv ctr==min(conv ctr), 1 );

107 T = time−prs size+I;

108 else

109 v a = Phi(end);

110 T=NaN;

111 end
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