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Abstract

This paper presents the framework by which electricity markets, particularly the

Nord Pool, operates and elucidates how it was created and how it currently works.

It uses R and Excel to produce a statistical analysis of electricity prices from the

Nord Pool (ranging from January 1999 to January 2007). This analysis has a

strong focus on extreme events (ie. the situation in which prices exceed the normal

range of daily fluctuations, defined to be at 60EUR/MWh). The paper also takes

into account the complex seasonality present in the data to model it using different

methods, and produces forecasts. Finally, residuals are analysed and weaknesses of

the analysis are highlighted.

2



Contents

1 Introduction 5

1.1 Contents of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Motivation for this work . . . . . . . . . . . . . . . . . . . . . 7

2 The Nord Pool 8

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Nordic countries’ characteristics . . . . . . . . . . . . . . . . . 10

2.3 How does the Nord Pool work? . . . . . . . . . . . . . . . . . 13

2.4 Market power issue . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Empirical analysis 18

3.1 Data set description . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Extreme events . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Extreme value theory basics . . . . . . . . . . . . . . . 21

3.2.2 Exceedances in the data set . . . . . . . . . . . . . . . 22

3.3 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Minimum, maximum and mean values . . . . . . . . . 26

3.3.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 CDF and PDF . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Stationarity definition and testing . . . . . . . . . . . . . . . . 34

3.5 Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Modelling time series 37

4.1 Complex seasonality . . . . . . . . . . . . . . . . . . . . . . . 37

3



CONTENTS 4

4.2 Price decomposition . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Fitting and forecasting . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Evaluation of forecasts . . . . . . . . . . . . . . . . . . 48

4.4.2 Residuals examination . . . . . . . . . . . . . . . . . . 50

4.4.3 Weaknesses of the analysis . . . . . . . . . . . . . . . . 51

5 Conclusion 52

A Modelling with the complete data set 54



Chapter 1

Introduction

The International Energy Agency (International Energy Agency 2013) empha-

sised back in 2013 how vital energy has become to our society, playing part in

the economy, the environment and how we live. Today 90 per cent of global

electricity demand belongs to industry and buildings. In fact, according to the

Sustainable Development Scenario, electricity is expected to experience a rise

in consumption by 2040 - primarily driven by the spread of electric automo-

biles (International Energy Agency 2019). Due to its prominence, organisms

such as the European Union guarantee the supply of energy to citizens by cre-

ating a “common energy market ruling” (European Commission 2019). The

premise behind this approach is that, by enabling the free flow of electricity to

those countries or regions where it is needed the most, Europeans will benefit

from trade across frontiers and competition.

The existence of this common market, only commenced relatively recently

at European level, and was inspired by the Nordic pooling system. The main

basis of the European Union Treaty (free movement of goods, services, capital

and people) did not seem to apply to the energy sector. In fact, the European

Union’s electricity sector in the 1980s was constructed as a regulated monopoly

(KU Leuven Energy Institute 2015). Each country had one or several com-

panies that maintained the generation and supply of electricity. The turning

point occurred after the Maastricht Treaty was signed in 1992, when the free

movement of goods, including energy, was satisfied. Jan Roönnback, Director

of Market Coupling of the Nord Pool, stated in August 2019 that the Nord

5



CHAPTER 1. INTRODUCTION 6

Pool “can lay claim to having invented the modern power exchange”, since

they were the first to arrange cross-border power trading (Rönnback 2019).

1.1 Contents of the thesis

The history of the Nord Pool is only recent. As it is explained in Chapter

2, the birth of this market started in 1991, when the electricity trading mar-

ket was deregulated in Norway, and started growing in 1996 with the joint

Norwegian-Swedish power exchange foundation. As of today, there are over

300 participants from all over the world trading in this market that is shifting

towards a low carbon economy. In pooled markets such as the Nord Pool,

energy flows to those areas where it is needed the most, enabling users to

benefit from competition. Nonetheless, trading electricity presents a short-

coming: supply has to equal consumption on an immediate basis, as it cannot

be stored. Additionally, Chapter 2 presents the different electricity markets

that exist in order to achieve the flexibility needed: day-ahead markets and

intra-day markets, and introduces organisms such as the Balance Responsible

Parties (BRPs) and the Transmission System Operators (TSOs), which ensure

the balance between supply and consumption.

Despite the existence of these mechanisms to ensure balance, prices can vary

greatly due to political decisions, meteorological conditions or disturbances oc-

curring in power plants. The paper uses data of electricity prices from the Nord

Pool, ranging from January 1999 to January 2007. In Chapter 3, exceedance

prices are defined and analysed in R in an hourly, weekly and monthly ba-

sis. Most of these exceedances are explained by daily rhythms and industrial

activity. The paper then moves on to present summary statistics (mean, vari-

ance, etc.) of the hourly logarithmic returns. Skewness and kurtosis are both

numerically and graphically tested, and an analysis of the cumulative distri-

bution function (CDF) and the probability density function (PDF) is shown.

Finally, the paper defines stationarity and how to test it formally, using the

Augmented Dickey-Fuller test. Chapter 3 ends up by defining conditional het-

eroskedasticity and graphically proves that the data do present it.



Chapter 4 models the data in order to produce accurate forecasts. Seasonal

patterns are graphically analysed in the first place, by plotting the average

prices and the coefficient of variation across months, days of the week and

hours of the day, and also by plotting autocorrelation functions. It is con-

cluded that the data present yearly, monthly, weekly and daily seasonality.

Once this is done, the paper moves on to theoretically explaining the mod-

els that will be used: ARIMA, ETS (both using LOESS regression), TBATS

and seasonal Näıve method. The Näıve method is included as a benchmark

model. Once these models are produced, the accuracy of each is measured and

one model is chosen (the aim is that the chosen one performs better than the

Näıve model). Finally, residuals are checked in case there is correlation, and

criticisms and future improvements of the analysis are presented.

1.2 Motivation for this work

Price spikes are a recurrent issue in electricity markets, and it could also be

extrapolated more widely to financial markets in general. Academics have

been trying to find a good approach to model and predict them. It is valu-

able to understand how prices behave, being the variance notably germane.

Future prices are unclear, and they should be defined using a probability dis-

tribution. This entails that statistical methods are the legitimate approach to

study them. Once insights about price behaviour are available, they can be

used to diminish risk or make more accurate decisions about the future.

Nowadays, forecasting is of vital importance across many sectors, being one

of them the electricity sector. The motivation for this work is to study and

accurately forecast electricity prices of the Nord Pool using R and Excel. It

is important to have access to this information, as power plants can more ac-

curately plan their outputs and engage in successful contracts, and consumers

can plan accordingly. Moreover, it could also incentivise governments to sub-

sidy prices at certain times - particularly for low-income families or certain

industries - now that electricity is such a vital good.
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CHAPTER 2. THE NORD POOL 8

Chapter 2

The Nord Pool

The Nord Pool is said to “have invented the modern power exchange”. This

section presents its history and current aims, followed by information about

the Nordic nations where the Nord Pool operates (ie. Norway, Sweden, Fin-

land and Denmark). It then moves on to describe how electricity markets,

particularly the Nord Pool works and how prices are agreed on.

2.1 History

Until 1991, Nordic electricity markets were controlled by vertically integrated

publicly owned power companies. This meant that prices and investments

were informally regulated. It was in 1991 when the electricity trading mar-

ket was deregulated in Norway, and only two years later Statnett Market AS

established itself as an independent company. Deregulation refers to the fact

that the state does not run the power market, and competition is adopted.

Statnett Market AS generated a value of NOK 1.55 billion in the first year

of operations, which would correspond to over GBP 123 million today (Nord

Pool 2019).

Despite the Norwegian financial electricity market being developed without

formal regulation, the Securities Trading Act stated that the exchange “shall

be carried out with due consideration to principles of efficiency, neutrality and

equal treatment of trading participants, as well as ensuring that the market as

such is transparent”. This approach was taken since it would build a more
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effective market that would further secure the supply (as power capacity can

be more efficient when covering large regions). Along these lines, in 1996 a

joint Norwegian-Swedish power exchange was founded and renamed as Nord

Pool ASA. Each half of the Nord Pool ASA was owned by the Norwegian and

Swedish TSOs. By 1998 Finland joined, and in the year 2000 Denmark joined.

In 2001, Nord Pool ASA de-merged into Nord Pool Spot AS that operated

two markets: the day-ahead market (ie. Elspot market) and the hour-ahead

balancing market (eg. Elbas market). The Elspot market is the largest and

most important physical market of the Nord Pool that can trade up to 36 hours

in advance. The Elbas market was born because of the need to create a market

for trade in contracts as near as possible to the delivery hour. It trades up to

1 hour before the delivery hours, and is where Swedish and Finnish members

originally traded, joined later on by Danish and Norwegian market partici-

pants. In 2005, the Kontek bidding area was opened in Germany (previously

referred as Vattenfall Europe Transmission control area), which is one of the 4

transmission system operators for electricity in the country. This provided the

Nord Pool with access to the 50Hrtz Transmission GmbH. The Elbas market

(an intra-day market) was licensed in the Netherlands and Belgium in 2011,

and in Latvia and Lithuania in 2013. And finally, in 2014, the Nord Pool took

exclusive control of the UK market. Ever since, it has continued expanding

and in 2019 it launched day-ahead trading for Central and Western Europe,

being the first offerer of day-ahead markets across Europe (Nord Pool n.d.).

Moreover, not only Nordic countries take part in the market: there are more

than 300 participants (from other European countries and the US) that trade

in Nord Pool markets. What originally started as a simple market, whose aim

was to develop an efficient exchange to trade power, ended up causing the

emergence of a financial market that set the basis for the modern power ex-

change. Today, the Nord Pool’s main aim continues to be to maximise social

welfare (Rönnback 2019). But it also recognises the existence of challenges

such as climate change, and regulatory and security factors. It is committed

to maintain the security in supply while moving towards a low carbon econ-

omy. Nonetheless, it must be borne in mind that the introduction of renewable
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energies presents challenges such as higher risk of blackouts and high initial

costs.

2.2 Nordic countries’ characteristics

Thanks to the wide governmental support in terms of innovation, Nordic na-

tions present a strong position compared to other countries, since they generate

more than 30 per cent of the global production of wind energy technology. In

the field of biomass-based generation of power, Nordic countries have a propor-

tion of almost 30 per cent of all the biomass-based heat and power worldwide.

Energy innovation is such a crucial activity, that according to Nordregio, the

International Research Centre for Regional Development and Planning, it ac-

counts for around 6 per cent of revenues and employment in the area, and the

export of energy translates into around 5 to 9 per cent of industrial exports

(Nordregio 2019).

Not only Nordic countries generate electricity from renewable resources at a

level 4 times higher than that of OECD countries, but also present high levels

of consumption of electricity from renewable resources. The share of renewable

sources in final energy consumption across these countries in plotted in Table

2.1. As it can be observed, Norway and Sweden are in the lead with more

than half of electricity consumption coming from renewable sources, followed

by Finland and Denmark.

Country Share of renewables in final consumption

Norway 59.5 per cent
Sweden 51.4 per cent

Denmark 33.1 per cent
Finland 42 per cent

Table 2.1: Share of renewable sources in final energy consumption.
Source: IEA, 2016 (International Energy Agency 2016)

The four Nordic nations are small in terms of their population, but the elec-

tricity consumption per capita is one of the highest in Europe, especially in
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Norway and Finland as can be seen in Table 2.2. Metropolitan regions, as

expected, present particularly high consumption of electricity. It is worth

highlighting the consumption levels of cities such as Stockholm, Västra Göta-

land and Oslo. These cities present as well a higher share of service sectors.

And of course, households also account for a big proportion of consumption,

particularly in Norway and Sweden. It must be noted that despite presenting

one of the highest consumptions of energy per capita in the world, greenhouse

emissions are moderate due to their little reliance on fossil fuels.

Country Electricity consumption per capita

Norway 24.1 MWh/capita
Sweden 13.1 MWh/capita

Denmark 5.8 MWh/capita
Finland 15.8 MWh/capita

Table 2.2: Electricity consumption per capita.
Source: IEA, 2018 (International Energy Agency 2018)

The high consumption of energy is explained apart from the cold climate these

countries share, by the varied industrial activities across them. Norway has

electricity-intensive industries according to Nordic Energy Research, and the

use of electricity is more widespread in the aim to heat spaces and water

(Nordic Energy Research 2012). Sweden and Finland count on heat intensive

industries and Denmark has a modest energy-intensive industry.

Source Norway Sweden Denmark Finland

Industry 3,956 ktoe 4,380 ktoe 737 ktoe 3,315 ktoe
Residential 3,414 ktoe 3,881 ktoe 848 ktoe 1,936 ktoe

Commercial/Public serv. 2,151 ktoe 2,370 ktoe 920 ktoe 1,518 ktoe
Fishing 18 ktoe 0 ktoe 0 ktoe 0 ktoe

Transport 79 ktoe 213 ktoe 35 ktoe 66 ktoe
Agriculture/Forestry 160 ktoe 98 ktoe 151 ktoe 133 ktoe

Table 2.3: Electricity consumption by sector.
Source: IEA, 2018 (International Energy Agency 2018)

On top of this, the distribution of the population is sparse, which is translated
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into a higher demand for individual transport and the corresponding rise in

energy demand (Nordregio 2019). As it can be observed in Table 2.3, indus-

trial consumption is the highest across these Nordic countries. Among these

industries, the metallurgic industry in Norway and Sweden stands out. And in

fact, these two countries present the highest industrial electricity consumption.

It is also worth highlighting other energy-intensive industries such as the pulp

and paper sectors, particularly relevant in Finland and Sweden. Finally, it is

interesting to look at the amount of energy consumed by Norway in fishing -

as Norway is the biggest fishing country in Europe.

Another interesting characteristic is that the power generation system across

these countries is very varied, as can be seen in Table 2.4.

Source Norway Sweden Denmark Finland Total

Hydro 11,986 5,294 1,348 1,143 19,771
Oil 9,245 9,898 6,190 8,144 33,477

Natural gas 6,093 1,000 2,657 2,179 11,929
Biofuels, Waste 1,834 12,203 4,728 10,158 28,923

Coal 823 2,201 1,571 4,184 8,779
Wind, Solar... 333 1,475 1,348 520 3,676

Nuclear 0 17,145 0 5,939 23,084

Table 2.4: Total primary energy supply by source in 2018 (Units in ktoe).
Source: IEA, 2018 (International Energy Agency 2018)

Hydropower is the main power in Norway, especially in the south of the coun-

try, thanks to the geographical suitability to generate this kind of energy.

Hydropower controls the north of Sweden as well, but there is also a high

presence of nuclear plants. In fact, most urban regions in the south are sup-

plied by them. Denmark mainly utilises thermoelectric generation and power

generation based on fossil fuels (Bergman 2003a). Finland also uses power gen-

eration based on fossil fuels, particularly in the south, that is supplied with

nuclear and thermoelectric energy, the latter being generated from natural gas

and biomass. The northern part of Finland presents more hydropower plants,

and there is a high use of biomass.
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2.3 How does the Nord Pool work?

The financial electricity market refers to “trading in electricity-related commer-

cial paper and derivatives for which electricity is the underlying commodity”

(Finansinspektionen 2005). An example of the financial electricity market is

the existence of electricity derivatives, which enable the prices contracted by

the customers to be hedged beforehand, or the existence of a financial market

for emissions, whose aim is to cut off carbon dioxide emissions. The conditions

for a physical market to become a successful financial market are the existence

of sufficient trading volumes, and of a supervisory organ to ensure that prices

are genuine. If the underlying price reference is not authentic and liquid, as

it happens in some European power markets, then financial trading will not

develop. The reference price for the financial Nordic market is the system

price determined by the Nord Pool. And, when entering financial contracts,

technical conditions (eg. grid congestion) are not taken into account.

In the past, buyers and sellers of electricity negotiated long-term contracts

in order to set the price of electricity on a bilateral basis. But currently, elec-

tricity can be traded in three different markets: in a power exchange, where

market participants submit their respective generation and demand bids and a

single price is determined; in bilateral over-the-counter trading, where a gen-

erator and a consumer agree on a trade contract and the market price can

be the one published by the power exchange as a reference price; and in or-

ganised over-the-counter trading, where participants submit their respective

generations, and demand bids that are cleared continuously. This last type of

trading allows that one market participant may accept bids at two different

prices.

Nevertheless, despite the electricity sector being considered as more of a “nor-

mal” sector in the last decades, electricity as a commodity presents a limita-

tion: “generation has to equal consumption (plus grid losses) on an instanta-

neous basis”. To prevent electricity markets from collapsing, they are designed

to deal with this characteristic. This is why, on the supply side, there are differ-

ent electricity markets depending on the time lag with respect to the moment
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of delivery. Forward and future markets, like in financial markets, offer con-

tracts to supply or consume an agreed amount of electricity at a stipulated

price in the future. These were set up in 1993 in the Nord Pool as one of

the first more developed complex products introduced for trading. Electricity

is traded the day before the day of delivery in day-ahead markets. And, the

intra-day market, trades on the same day of delivery. Since electricity cannot

be stored, these different markets allow buyers to guarantee that consumption

will be satisfied through long-term contracts. All while ensuring that actual

consumption (which is harder to forecast), is satisfied via short-term contracts

(KU Leuven Energy Institute 2015). In spite of consumption being planned

in advance by market operators and the flexibility the market provides, there

are deviations in reality.

In order to correct any deviations that may occur, the figure of the Balance

Responsible Parties (BRP) exists. It is an administrative entity that balances

supply and demand from generators, suppliers and consumers. Balance Re-

sponsible Parties are “responsible for the market’s imbalances or fluctuations

before the actual delivery” (Glowacki Law Firm 2019). However, the definitive

liability is under the Transmission System Operator (TSO), responsible for

the instantaneous generation-consumption balance. Nordic TSOs use the spot

market in order to manage congestion in the short-term. Its price mechanism

is a useful instrument to handle potential insufficient transmission capacity

(bottlenecks). Before the early commencement of trading, each TSO notifies

the Nord Pool Spot of the capacity of interconnectors. Congestion in Sweden,

Finland and Denmark is dealt with by the TSOs through counter-trade. In

Norway, congestion is dealt with, by splitting the market in a way such that

it reflects the limitations in the volume of transmission in the planning stage,

and utilising counter trades in the operational one. TSOs can activate the

amount of system reserves, also known as the Net Regulation Volume (NRV).

Reserves refer to how power plants may boost or diminish their production

depending on the needs of the market. Power grids employ tools such as

the frequency, to keep the grid steady when forecasts are not accurate or un-

expected events occur. The frequency of the electricity grid should have a
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nominal value of 50.0 Hz (Fingrid 2016). Maintaining this frequency is vital,

and generators must spin at this speed or the system may become unstable.

In the situation of over-frequency, grid operators can respond by reducing the

output from generators. In the situation of under-frequency, there are three

stages. In the primary control stage, generators automatically adjust their

output through frequency sensors. After 10 seconds, Automatic Generation

Control is activated. If the under-frequency is not corrected within minutes

through the previous stages, tertiary frequency control is prompted. It re-

quires the manual adjustment of the output of the power plant by the power

grid operator.

In order to achieve market balance, financial settlement of the BRP imbal-

ances by the TSO must take place. This refers to the tariffs that the TSO

imposes after the actual delivery to those BRPs that present an unbalanced

portfolio. These tariffs are based on the Marginal Incremental Price (MIP),

which is the highest price paid by the TSO for ascending activations for a given

quarter of an hour, and on the Marginal Decremental Price (MDP) which refers

to the lowest price received by the TSO for descending activations for a given

quarter of an hour (KU Leuven Energy Institute 2015).

Market balance

Using the Elspot market (day-ahead market that trades one-hour duration

power contracts) as an example, how the Nord Pool establishes the price will

now be explained. Every day at 10pm TSOs perform a “guaranteed transfer

capacity” preparing the bidding areas for the next day deals. At noon on the

day before (day D-1), market participants present to the Nord Pool their offers

or bids for the next 24 hours (starting at 1am on the next day, day D). The

minimum contract size is of 0.1 MWh (Vehviläinen and Keppo 2001). Once

the bidding for the following day is cleared, the Nord Pool makes cumulative

supply and demand curves to balance production and consumption. The price

of each hour is, of course, the equilibrium point or the point where both supply

and demand cross. If there is sufficient transfer capacity, the equilibrium price

will be the effective price (EnergyNet 2017).
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Figure 2.1: Time framework to forecast market prices for the Nordic day-ahead
energy market.
Source: Price Forecasting in the Day-Ahead Energy Market by an Iterative
Method with Separate Normal Price and Price Spike Frameworks (Sergey
Voronin and Jarmo Partanen 2013)

Nevertheless, the situation in reality is usually different, and the Nord Pool

must check if there are grid congestions in the power transmission grid, which

can be potentially caused by the equilibrium price. In the case these bottle-

necks are found, “area spot prices” will have to be estimated so as to encourage

trading up to a point below the limited capacity of transmission. These “area

spot prices” can also be thought of as different price areas that can be made

up of different bidding regions. At 1pm, consumption and prices are published

for the following day as can be seen in Figure 2.1.

2.4 Market power issue

The main issue in electricity markets is the existence of conflicts of interest,

explained by the nature of the market. It is vital that any controversies are

identified and disclosed to prevent any possible confidence issue. Lack of con-

fidence in the market could result in a decrease in efficiency and liquidity.

Electricity prices have always cleared despite the denominated supply shocks

caused by alterations in the supply of hydropower in Norway and Sweden,

which are the biggest producers. In fact, after the creation of the Pool mar-
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ket, productivity seemed to increase, and lower electricity prices were achieved

(Bergman 2003b). Nonetheless, there are significant spikes in prices that could

be explained by the exercise of market power at certain times when supply is

scarce. Market power and monopoly are used interchangeably by economists

(American Bar Association 2005). Nevertheless, some scholars do make a

distinction across both terms. Those firms with “trivial amounts of market

power” caused by uniqueness across products of competing firms, or because

of superiority explained by innovation, should not raise antitrust concerns.

Nevertheless, those firms with “a substantial amount of market power, may be

said to have monopoly power or antitrust monopoly power”.

There are two dimensions to the problem of market power. The first one

arises when generators do not use all of their available capacity, increasing

their profits by decreasing supply. The second one refers to the residual de-

mand left every hour, after all generators except the biggest one, produce at

full capacity. In this scenario, the biggest generator is a monopolist in rela-

tion to the hourly residual demand, which is inelastic. This means that the

market price can be very easily altered by restraining their capacity. In fact,

there was a claim that generators were colluding and withdrawing capacity

from the Nord Pool to cause an increase in prices. The majority of the worry

about market power is related to the withholding of hydropower back in 2002,

which was a particularly dry year. Prices were expected to increase due to the

decrease in generation, but the surge in prices was much higher than expected.

A more formal way to analyse whether there is market power or not, is by

using the Lerner Index. It is a measure of market power that uses the differ-

ence between output price and cost, and divides it by the output price. It lies

between 0 (perfect competitions) and 1 (strong market power). In the case of

the Nord Pool, the degree of market power has been small through the years

(Bergman 2003a).



Chapter 3

Empirical analysis

3.1 Data set description

The data set used in this paper corresponds to the day-ahead market operated

by the Nord Pool. It contains hourly price data in EUR/MWh, ranging from

the 1st January 1999 to the 26th January 2007. In total, there are 70,752 data

points. The crucial aspect that differentiates financial time series analysis,

such as the one presented in this section, from other time series analysis, is

the element of uncertainty inherent to financial analysis (Tsay 2005). Due to

this unpredictability element, statistical methods are vital in financial time se-

ries analysis. It is relevant to understand how prices fluctuate, and statistical

methods are the legitimate approach to investigate them.

Figure 3.1: Plot of electricity prices January 1999 - January 2007

18
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A time series Yt is a “discrete time, continuous state, process where t; t =

1,...,T are certain discrete time points” (Aas and Dimakos 2014). Generally,

points occur at equally spaced intervals. In the data set used in this paper, the

intervals are hourly. Figure 3.1 presents over 70,000 successive hourly prices

of the Nord Pool in the aforementioned period. A slim upward trend can be

noticed. It can be seen as well, that there are big variations across prices, and

these seem to be cyclical.

When analysing financial assets, it is common to focus on the returns rather

than the actual prices. There are two main motives that explain the focus

on them (Campbell, Lo, and MacKinlay 2012). First of all, returns offer a

“scale-free summary of the financial opportunity” and second, they offer sta-

tistical features that make working with them more appealing than working

with prices.

As Dańıelsson stated, there are two kinds of returns (Danielsson 2011): simple

or arithmetic, and compounded or logarithmic returns. Simple returns are

referred to as the percentage change in prices, and formally defined as:

Rt =
Pt − Pt−1

Pt−1
(3.1)

Continuously compounded returns are the “sum of continuously compounded

single-period returns”. They are formally defined below, and the logarithms

used are natural logarithms.

rt = ln(
Pt

Pt−1
) (3.2)

In Figure 3.2, the plotted logarithmic returns of the prices can be observed.

There are plenty of high and low peaks coinciding with sudden increases in the

raw prices, being the pattern along 0. These peaks illustrate extreme changes

in prices, ie. extreme events.
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Figure 3.2: Plot of logarithmic returns of electricity prices January 1999 -
January 2007

3.2 Extreme events

As it was explained before, it is obvious that due to the way of the market, the

electricity market is particularly affected by extraneous factors that cannot be

controlled, both in the short and long-term. Extreme events are caused by

many factors, one of them being the weather. Bad meteorological conditions

such as storms can damage power or distribution lines which may result in

power cuts. Infrastructure needs to be repaired, and this results in higher

electricity prices. Nonetheless, meteorological conditions such as heavy rain

or snow can as well increase the generation of electricity. Since prices are

also driven by supply and demand, an increase in supply would bring prices

down. Nevertheless, this second example is less common, because the energy

mix is greatly varied. Other examples of these factors that affect the elec-

tricity market (apart from the weather) are “production disturbances in power

plants, events affecting buyer decisions made by government agencies, and po-

litical decisions” (Finansinspektionen 2005). It should be noted that political

circumstances in particular, affect this market to a greater degree than the

majority of markets.

World events also explain extreme events, particularly if there is an unset-

tling situation in countries that produce gas and oil. The latest example at

the time of writing this paper, was the negative prices of oil barrels (WTI

crude) due to the COVID-19 pandemic. It was the first time in history where
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oil prices - particularly known for its volatility - turned negative. Lockdown

greatly decreased transport use across the planet, and the need to store the

commodity in very specific conditions explains this drop. This implied that

producers paid buyers to store the commodity.

These external events that greatly affect prices are defined as “extreme events”

in statistics. Of course, the economic and social consequences of extreme events

are “a matter of enormous concern” (Ghil1 et al. 2011). On top of this, elec-

tricity markets present a very inelastic demand. Since these price spikes are a

recurrent issue in electricity markets, and we could also generalise to financial

markets in general, academics have been trying to find a good approach to

predict and deal with them. It is vital to do so, to guarantee that producers

respond optimally to the pool and engage in successful contracts.

3.2.1 Extreme value theory basics

The aforementioned extreme events can be modelled through the extreme value

theory. Extreme value theory started being developed in the 1950s in the field

of civil engineering and it “provided a framework in which an estimate of an-

ticipated forces could be made using historical data” (Coles 2001). As extreme

values are scarce by nature, extrapolation from observed to unobserved levels

is needed. In fact, much of the research made on predicting electricity spot

prices only focuses on forecasting the next period prices. This limitation is a

result of the high volatility present, and how easily can prices spike in short

periods. The aim of extreme value analysis is to “quantify the stochastic be-

haviour of a process at unusually large - or small - levels”. Its paradigm is the

following:

Mn = max(x1, ...xn) (3.3)

Assuming that x1, . . . , xn are observations up to period n. If the conduct of xi

were known, the analogous conduct of Mn would be known. Since the conduct

of the observations is not known, it is impossible to obtain Mn. Nevertheless,

given certain premises and letting n tend to infinity, models to derive Mn can

be accomplished. This is attained by disentangling the randomness in the ob-
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servations’ process.

It is not only important to look at how prices spike, but the time between

those spikes. According to novel research, “the time between spikes has a sig-

nificant impact on the likelihood of future occurrences”. Results indicate that

there is evidence of dependence across the time between extreme events in the

markets, which are directly related to the intensity of the stochastic process

of price spikes. There are different approaches, one of them being the classi-

cal time series approach used by Conejo et al. (Conejo et al. 2005). Other

academics focused on the estimation and forecasting of risk measures, propos-

ing hedging strategies such as Vehviläinen et al. (Vehviläinen and Keppo

2001). And finally, others rather than concentrating on forecasting the price

trajectory, focused on predicting the likelihood of extreme price events such

as Lindsay et al. (K A Lindsay and T M Christensen and A S Hurn 2015).

3.2.2 Exceedances in the data set

Following the example of other papers, such as the aforementioned by Lind-

say et al., this paper defines price exceedances as the situation where “price

exceeds a particular threshold value that is chosen to lie substantially outside

the normal range of daily fluctuations”. To do so, in Figure 3.3, the median

and the 10th and 90th percentiles are laid out. To obtain this plot in R, the

data have been subset by creating vectors of positions for each hour of the

day. That way, the position for values at 00:00 was formed by values starting

in 1 (since the data set starts at 00:00), ending at 70,752 (the last data point)

and the increment of the sequence was equal to 24 (as a day has 24 hours).

Once these vectors of positions were defined, prices at those positions were

grouped. That way the prices corresponding to each hour of the day were

grouped. For each group of price points, the median was calculated by using

the command median, and the quantile by using the command quantile, and

specifying the desired percentile (either 0.1 or 0.9). The defined price spike or

exceedance price must be above those lines. Therefore, the exceedance price

was defined as 60/MWh, since the 90th percentile is still regarded as “natural”.
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Figure 3.3: Median hourly spot prices plotted against 10th and 90th quantile

The tables below present the number of exceedances above 60/MWh on an

intra-hour, intra-day and intra-month basis. The count of these extreme val-

ues was done in Excel. First, a column was added indicating either the hour

of the day (from 00:00 to 23:00 and back to 00:00 again), the day of the week

(24 rows with the value “Monday” followed by 24 rows with the value “Tues-

day”, and so on) or the month of the year (744 rows with the value “January”

(also 744 rows for those months with 31 days), 672 or 696 rows with the value

“February” depending on whether it was a leap year or not, and 720 rows with

the value ”April” (also 720 rows for those months with 30 days)). Once this

was done, another column was added where the IF formula was used, which

pointed out those price values greater than 60. Or, in other words, the bound

to designate extreme values. Finally, a pivot table was created and filtered

by those cells that contained values greater than 60 (obtained through the IF

command). This way, the pivot table displayed exclusively the count of those

extreme values. The results are highlighted below.

In the intra-hour exceedances table presented below (Table 3.1 ), the num-

ber of exceedances above 60/MWh can be observed on an hourly basis. It can

be seen that exceedances are much more likely to occur between 7:00-11:00

and 17:00-20:00, than at any other time of the day. At these particular times,
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over 110 exceedances were found, the largest number of exceedances occurring

at 8am. This is potentially explained by consumers’ daily rhythms - waking

up hours before work, and “at home” hours after work. On the other hand,

few exceedances occur from 2:00 to 05:00. This is explained by the fact that

the use of electricity at those times is, and has been, consistently low for some

hours. This therefore, keeps the price typically low.

Time Count of exceedances above 60/MWh

00:00 81
01:00 75
02:00 76
03:00 73
04:00 75
05:00 81
06:00 88
07:00 114
08:00 148
09:00 137
10:00 127
11:00 113
12:00 106
13:00 105
14:00 101
15:00 99
16:00 104
17:00 117
18:00 117
19:00 112
20:00 100
21:00 96
22:00 96
23:00 86

Table 3.1: Number of intra-hour exceedances

In the intra-day exceedances table (Table 3.2 ), which plots the number of ex-

ceedances on a daily basis, it can be seen that they are much more likely to

occur on weekdays, particularly Wednesdays and Thursdays. Both of these
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days present over 380 exceedances, while weekend days present just over 280.

This is consistent with the previous hypothesis about daily rhythms. More

exceedances will be present on weekdays, since it is on these days where con-

sumers wake up earlier and mostly at the same time, causing a sharp rise in

electricity demand.

Weekday Count of exceedances above 60/MWh

Monday 371
Tuesday 355

Wednesday 387
Thursday 382

Friday 363
Saturday 282
Sunday 286

Table 3.2: Number of intra-day exceedances

Finally, Table 3.3 groups exceedances by month. It can be observed that the

month that presents the highest number of exceedances is December followed

by September, August and January.

Month Count of exceedances above 60/MWh

January 396
February 40

March 44
April 16
May 0
June 1
July 0

August 534
September 631
October 79

November 19
December 667

Table 3.3: Number of intra-month exceedances

Interestingly, most spikes in the summer months occur in the year 2006. Ac-
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cording to Lewiner, this is explained by adverse hydro conditions, “the impact

of emissions and a general overreaction of market players and speculators”

(Lewiner 2007). An added problem, were the unexpected plant outages in

Sweden, that put pressure on prices. The Nord Pool still presented the lowest

mean spot trading price in Europe, but 2006 was a tricky year where the his-

toric price gap with respect to the rest of Europe was eliminated. Furthermore,

according to the literature, the intensity of these exceedances does exhibit a

temporal dependence.

3.3 Summary statistics

Table 3.4 plots several summary statistics (minimum and maximum values,

mean and median) of the logarithmic returns at each hour of the day. It also

presents information about the skewness, kurtosis and variance at each hour.

These results were obtained in R. To attain them from an hourly perspective,

the data have been subset by creating vectors of positions for each hour of the

day. That way, the position for values at 00:00 was formed by values start-

ing in 1 (since the data set starts at 00:00), ending at 70,752 (the last data

point) and the increment of the sequence was equal to 24 (as a day has 24

hours). Once these vectors of positions were defined, the logarithmic returns

of the prices at those positions were grouped, in order to create the vectors

corresponding to the logarithmic returns corresponding to each hour of the

day. The mean, median, minimum and maximum values were obtained by

using the command summary, the variance by using the command var and the

skewness and kurtosis by the commands skewness and kurtosis respectively.

3.3.1 Minimum, maximum and mean values

Different conclusions can be obtained by looking at Table 3.4. First of all,

the highest drop in logarithmic returns occurs at 00:00, followed by 08:00 and

17:00. This means that at the aforementioned times, there was most likely a
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Time Min Max Mean Median Variance Skewness Kurtosis

Overall -1.264 1.955 0.0000067 -0.0029334 0.003491878 1.930427 86.41983

00:00 -1.264 0.0434 -0.03579 -0.02126 0.002927647 -8.095034 127.4326

01:00 -0.564 0.693 -0.025681 -0.014131 0.003010217 2.952077 75.96874

02:00 -0.756 0.145 -0.0178828 -0.0039849 0.00333136 -8.036666 82.91733

03:00 -0.711 0.506 0.004152 0.005652 0.002718644 -1.841327 42.28428

04:00 -0.246 1.02 0.041234 0.025797 0.00491896 4.635324 43.7548

05:00 -0.663 0.856 0.04870 0.03473 0.00522026 2.284948 25.84884

06:00 -0.424 1.955 0.06142 0.04093 0.009349064 6.936157 87.69128

07:00 -0.101 1.13 0.04965 0.02508 0.007659255 5.366954 40.82311

08:00 -1.147 0.589 0.004674 0.002853 0.003642484 -3.770894 71.4212

09:00 -0.883 0.172 0.002181 0.002727 0.001984682 -7.710851 115.9262

10:00 -0.955 0.22 -0.007825 -0.003360 0.001857343 -10.77955 183.7601

11:00 -0.63 0.06 -0.017432 -0.009981 0.001020176 -7.318405 87.33456

12:00 -0.324 0.093 -0.013289 -0.007805 0.0004714429 -4.613383 42.57078

13:00 -0.23 0.152 -0.010609 -0.006369 0.0003677554 -2.048213 18.13248

14:00 -0.238 0.5 -0.005468 -0.004536 0.001046861 4.199396 62.82241

15:00 -0.193 0.809 0.005864 0.001552 0.001863455 6.603826 95.34644

16:00 -0.277 1.249 0.0182720 0.0088300 0.002734446 10.42916 185.4612

17:00 -1.104 0.692 -0.0001489 -0.0006579 0.003248869 -2.947752 87.77065

18:00 -0.83 0.298 -0.016335 -0.009851 0.003205587 -7.067578 78.00707

19:00 -1.011 0.2 -0.01630 -0.01426 0.001671708 -8.035321 152.7783

20:00 -0.287 0.313 -0.004282 -0.003650 0.000580473 0.6134044 29.0255

21:00 -0.263 0.165 -0.0139099 -0.0132510 0.0006825597 -0.2084758 6.117713

22:00 -0.394 0.06 -0.03762 -0.02912 0.001094724 -2.389097 11.3119

23:00 -0.984 0.408 -0.013423 -0.005953 0.003212052 -3.923047 49.93816

Table 3.4: Summary statistics per hour

sudden drop in demand that caused the price to fall dramatically. On the other

hand, the highest increase in logarithmic returns occurs at 06:00, followed by

16:00 and 07:00. A sudden increase in demand or decrease in supply, caused

the price to jump forcefully. These are unique events, and it is therefore more

illustrative to look at the mean of the logarithmic returns. The highest mean

is the one corresponding to 6am, followed by 7am and 5am. At these times,
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the logarithmic returns are the largest on average, which implies that in these

one-hour frames, the demand of electricity increased significantly causing the

consequent rise in price.

This is explained by the fact that most consumers wake up between 5:00 and

7:00, increasing demand sharply. On the other hand, the lowest mean average

returns are observed at 10pm, followed by midnight and 1am. This implies

that the prices presented a decreasing jump due to two main factors. After

10pm, many consumers decrease their use: less laptops, washing-machines or

dish-washers are in use, and many factories and offices close. A further de-

crease in use happens later on, since most users are already sleeping. This,

combined with the fact that generators still produce energy, drives prices even

lower. The overall mean is very close to zero but of course this is not signifi-

cant for the hourly means - which as it has been seen, range from negative to

positive values.

3.3.2 Variance

The variance is more widely known in financial analysis as volatility. It is de-

fined as “a statistical measure of the dispersion of returns (...). In most cases,

the higher the volatility, the riskier the security” (Kuepper 2020). In simpler

words, volatility measures how much a price swings around the mean price, or

how variable is the price. As it has been previously stated, the mean overall

price is around 0. Therefore, the volatility will measure how much prices peak

(ie. how much the price will swing or fluctuate around 0). The overall vari-

ance of the logarithmic returns is equal to 0.003491878. As before, this is not

very significant. For that reason, variance per hour should be the focus of the

analysis.

The smallest variance is present at 1pm and the largest variance at 6am.

This means that the market is the most volatile and presents the most price

fluctuations at 6am. Again, this could be explained by the fact that consumers

may wake up around that time, demanding a lot of electricity particularly in
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winter, and causing prices to rise. It is true that most consumers wake up

around 7:00 and 8:00, but at these times the volatility (ie. the jump in prices

above the average) is smaller because the “jump” has already happened (in

this case, explained by those waking up at 6am). On the other hand, the

smallest volatility is found at 1pm. At this time most users are already sleep-

ing, and have been for a while. Therefore, the demand is consistently low, and

it has been for a couple of hours. Consequently, prices that have already been

stable for some time, remain stable.

3.3.3 Skewness

Skewness refers to “the distortion or asymmetry in a symmetrical bell curve,

or normal distribution in a set of data” (Chen 2019), and is formally defined,

according to Dr Donald Wheeler (Wheeler 2004), by:

a3 =
∑ (Xi −X)3

ns3
(3.4)

where Xi is the value, X is the mean, n is the sample size and s is the standard

deviation. A symmetrical data set will present a skewness of 0 because for each

data point at distance t there will be a data point at distance -t, balancing it

out.

An essential characteristic of normally distributed observations, is that “they

are completely described statistically by the mean and the variance (ie. the

first and second moments)” (Danielsson 2011). This entails that skewness is

identical for all normally distributed variables, meaning that it is equal to 0.

Negative skewness occurs when the mean is less than the mode. In this case,

the left tail will be larger than the right tail. Positive skewness occurs when

the mean is greater than the mode. The right tail will be larger than the left

tail in this situation.

From the previous explanation, it can be inferred that the existence of spikes

produces skewness. The lowest value is present at 21:00, where skewness is

equal to -0.20. Since it is the closest to zero, it can be understood that the
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distribution is roughly symmetric. A graphical proof of it will be shown in the

following section. On the other hand, the skewness for the overall dataset is

equal to 1.93. When skewness is greater than |1|, the data are highly skewed.

And, in fact, the property of extreme skewness is typical in electricity price

data (K A Lindsay and T M Christensen and A S Hurn 2015). Furthermore,

according to the empirical literature, these spikes display seasonal dependence.

3.3.4 Kurtosis

Kurtosis measures “the degree of peakedness of a distribution relative to the

tails” (Danielsson 2011). Excessive kurtosis, like the one present in the data,

suggests that “more of the variance is due to infrequent extreme deviations

than predicticted by the normal, and is a strong, but not perfect, signal that a

return has fat tails”. In line with this, it is important to explain that kurtosis

is rejected by some academics, whose reasoning is the following. Despite being

a “measure of the peakedness of a distribution” according to Dr Donald, “the

central portion of the distribution is virtually ignored (...). While there is a

correlation between peakedness and kurtosis, the relationship is an indirect and

imperfect one at best”.

By having observed these two measures, it can be concluded that the data

is far from normal. Still, there are more formal tests such as the Kolmogorow-

Smirnow and the Jarque-Bera tests, and graphical tests such as the use of

quantile-quantile plots or sequential moments. Quantile-quantile plots, or qq

plots for short, gauge whether data points follow a specific distribution (Ford

2015). By plotting two sets of quantiles against the other, and in the case

that both sets of data followed the same distribution, a (pseudo)straight line

of dots would be achieved. Figures 3.8 and 3.9, present the qq plots for data

points at 08:00 and 21:00. The blue line represents the normal prediction,

the horizontal axis measures the standard normal and the vertical axis shows

the results of the data. These are obtained by using the qqPlot and qqline

commands in R.
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Figure 3.4: qq-plot: Returns at 08:00

Figure 3.5: qq-plot: Returns at 21:00

As it can be observed by the “s” shape in Figure 3.4, the data points diverge

from the normal prediction. These fat tails that entail non-normal returns,

have different effects on how financial data is handled and which conclusions

can be obtained. This is mainly caused by the normality assumptions made

by the models that are often used, particularly regarding risk handling (where

risk is underrated). The closest returns to a normal distribution, as was men-

tioned in the skewness analysis, are prices at 21:00, as the dots follow an almost

straight line. This can be observed by looking at Figure 3.5

3.3.5 CDF and PDF

Further analysis of the distribution of the data set will be performed by look-

ing at both the cumulative distribution function and the probability density

function. This is done, since high skewness could imply that the mean and

variance are not representative and should not be used.

A cumulative distribution function presents the “probability that the variable

takes a value less than or equal to x”. Or, more formally, the cumulative

distribution function Fx(x) of a random variable X is defined by:

Fx(x) = P (X ≤ x) (3.5)
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It follows the definition of the probability density function of X that

P (X ≤ x) =

∫ ∞
−∞

fx(t)dt (3.6)

The empirical cumulative distribution function (ECDF) is established on the

“relative frequencies of the observed data”. It is defined as a step function, as

it is constant between consecutive order statistics. The ECDF plotted against

the CDF is presented below. It was obtained by using the command ecdf. As

it can be observed, the ECDF is equal to 0 for smaller values than zero, and it

is equal to 1 for larger values than zero. Through the ECDF, one can obtain

the shape of the frequency distribution. As it can be inferred from Figure 3.6,

it presents heavy tails.

Figure 3.6: ECDF of logarithmic returns

On the other hand, the probability density function is the “idealised frequency

distribution of observable random variables” (Gentle 2020). Or, in other words,

the PDF enables one to obtain the probability for a random variable to apper-

tain to a particular collection of values. Probability density can be formally

defined as:

A random variable X is continuous if there is a function fx such that for
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all intervals [a,b],

P (X ∈ [a, b]) =

∫ b

a

fx(x)dx (3.7)

We call the function fx the probability function of X (or pdf of X).

PDFs have two main properties:

1.
∫∞
−∞ fx(x)dx = 1

2. fx(x) ≥ 0

for all x.

Dividing the sample into bins is done in order to obtain an overview of the

frequency distribution. The most typical representation of this is through a

histogram. And, the capacity of the bins dictates how “smooth” the histogram

will be. In order to determine the number of bins, the Sturge’s rule has been

used in R, and 12 bins were determined to be employed. It is important to

bear in mind that the larger the bin scope, the smaller the variance and the

larger the bias. The PDF is plotted in Figure 3.7 , and as it can be observed,

it presents very long tails (particularly the right tail).

Figure 3.7: PDF

Therefore, as the previous section indicated, the data is highly skewed. Nonethe-

less, when narrowing down the data set into hourly data points, the skewness

decreases. As example of this, are data points at 21:00. This has been proven

both numerically and graphically in the last section.
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3.4 Stationarity definition and testing

Another important characteristic to look at is stationary. Intuitively, station-

arity means that “the statistical properties of a process generating a time series

do not change over time” according to Palachy (Palachy 2019). Or, in other

words, the time series does not present any systematic change in its mean and

variance and has no periodic variations.

There are two types of stationarity. It must be borne in mind that strict

stationarity does not imply weak stationarity or vice versa. Strict or strong

stationarity refers to when the distribution of a time series is the same through-

out time. More formally, the time series Xt, t ∈ Z is said to be strictly sta-

tionary if the joint distribution of (Xt1 , Xt2 , ..., Xtk) is the same as that of

(Xt1+h, Xt2+h, ..., Xtk+h) (Palachy 2019). In other words, strong stationarity

means that the joint distribution only depends on the “difference” h, not the

time (t1, ..., tk).

On the other hand, in weak stationarity only the mean and covariance are

invariant throughout time. For this reason, weak stationarity is also known as

covariance or mean stationarity. It is formally defined below:

The time series Xt, t ∈ Z (where Z is the integer set) is stationary if:

1. The first moment or expected value of xi is fixed, E[xi] = µ where µ is

independent of i.

2. The second moment or variance of xi is finite for all t, E[x2i ] < ∞ (which

also implies that variance is finite for all t).

3. The cross moment or auto-covariance depends only on the difference u −
v,∀u, v, a, cov(xu, xv) = cov(xu+a, xv+a).

To sum up, a weak stationary time series presents a constant expected value,

finite variance and the auto-covariance only depends on u-v, not on u or v.

This can be visually checked by plotting the mean and variance, and seeing

whether they are constant over time. As it can be observed in Figure 3.8,

the mean at each hour (plotted in red) is not constant and therefore does not
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Figure 3.8: Mean and variance plot

respect the first condition stated above regarding stationarity (ie. the first

moment is fixed). When looking at the variance at each hour (in blue), it can

be seen that it is not constant. This does not respect the second condition

stated above. The dotted black line is a straight line at the value 0, achieved

by using the command abline. It was added to improve the layout and use

of the graph.

Non-stationarity can be solved by calculating the difference across succes-

sive data points, also known as differencing. The intuition behind this is the

following: if the initial data set does not have fixed features over time, the

variation from period to period might do. To check more rigorously whether

differencing is required in the current data set, there are several tests available.

The tests that assess whether a time series is non-stationary and has a unit

root are called unit root tests (Dhankar 2019). Unit root tests were pioneered

by statisticians David Dickey and Wayne Fuller. The rationale behind these

tests is the following. They start off with:

yt = ρyt−1 +mt (3.8)

where mt is a white noise error term.



By subtracting yt−1 from both sides, the following would be otained,

∆yt = (ρ− 1)yt–1 +mt (3.9)

where δ = ρ - 1 and ∆ is the first difference operator. The null hypothesis is

that δ = 0, which entails that ρ = 1 and implies the existence of a unit root

and the non-stationarity of the time series.

When performing the Dickey-Fuller test in the data by using the command

adf.test, the p-value obtained is equal to 0.01. This means that the null

hypothesis (stating that the data is non-stationary) needs to be rejected. Nev-

ertheless, it must be noted that stationarity tests are not totally trustworthy,

since they assume that variance is constant. This could generate distortions

in the results of these tests.

3.5 Heteroskedasticity

Conditional heteroskedasticity can be explained as “volatility clustering, in

which large changes tend to follow large changes, and small changes tend to

follow small changes” (Wang et al. 2005). This can be more intuitively ex-

plained when referring to the stock market. In those instances where these

markets suffer a considerable decrease, panic is generalised and the automated

risk management systems in place short their positions. This further depresses

prices. Therefore, what was an initial drop in price, “leads to significant fur-

ther downward volatility” (Auquan 2017).

In the current dataset, heteroskedasticity may be caused by a decrease in

production or power outages, initially supported by reserves but causing a

higher and higher rise in prices. Therefore, these series are conditional het-

eroskedastic.

36
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Chapter 4

Modelling time series

Forecasting is of vital importance, not only in the financial sector currently,

but has been since 300BC when people would consult the Oracle (Hyndman

and Athanasopoulos 2018). The demand for electricity can be relatively eas-

ily forecasted since the causes of high demand are understood and there is

historical data regarding demand and weather conditions. Nevertheless, when

talking about electricity prices, more considerations have to be taken into ac-

count and the only accessible information is historical data.

4.1 Complex seasonality

High frequency time series such as cash requests at ATMs and electricity us-

age, tend to display complex seasonal patterns (Hyndman and Athanasopou-

los 2018). In these instances, data may present two or even three seasonalities

(weekly, monthly and yearly, for example). This is the case of the data set

this paper deals with. To treat this complex seasonality, the msts class is used

in R, since the ts class can only deal with one type of time series seasonality.

In order to find the existing seasonalities, the following graphical analysis was

performed in Excel.

Figure 4.1 presents the average electricity price at each month of the year

(from 1999 until 2006) and the coefficient of variation, which is calculated by

dividing the standard deviation by the mean.
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Figure 4.1: Monthly means

This is done in Excel, by grouping all prices by each month of the year, and

calculating the average and the standard deviation. The coefficient of variation

shows the dispersion around the mean. In those instances where the coefficient

of variation is high, the level of dispersion around the mean is higher (Institut

national de la statistique et des études économiques 2016). When it is low,

then the mean estimation can be considered as precise. When looking at Figure

4.1, it can be seen that there is a decrease in average prices in warmer months

(from May to July). In fact, standard deviation is the lowest in May. This is

explained by the decrease in the use of electricity as the hours of light per day

increase, and temperatures rise. On the other hand, standard deviation is the

highest in January. This is possibly associated with the holiday season and

the decrease in temperatures. From this graph, the monthly seasonal effect

can be distinctly observed, so it must be included when modelling.

Figure 4.2 shows daily average prices and daily coefficient of variation. The

aforementioned coefficient is notably higher on Sundays, Mondays and Satur-

days, indicating the high level of dispersion around the mean. When looking

at the average price, there are consistently high prices from Mondays to Thurs-

days, that decrease on Fridays and contract further as the week approaches

its end. This is probably caused by the shut down of the industrial sector

during weekends, causing supply to outweigh demand. As demand increases

sharply on Mondays once the working week starts again, the average price is

the highest. By looking at this plot, the weekly seasonal effect can be observed.
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Figure 4.2: Daily means

Lastly, the plot of hourly means on weekdays can be seen in Figure 4.3. The

highest average price is on Mondays equal to 32.26 EUR/MWh at 08:00, and

the lowest on Sundays, equal to 23.28 EUR/MWh at 06:00. This is a difference

of 8.98 EUR/MWh between the highest and the lowest hourly prices.

Figure 4.3: Hourly means across weekdays

When looking at the coefficient of variation, it can be seen that it is consis-

tently greater than the mean at night (from 00:00 to 05:00). This indicates
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that the level of dispersion around the mean is high. The highest price on

working days is at 08:00, and it is usually accompanied by a rise in the coef-

ficient of variation. As it can be expected, on weekends the price is lower in

the mornings when compared to the rest of the week. There is a clear daily

seasonality that must be taken into account.

Figure 4.4: ACF

To sum up, it can be assumed that there is a monthly, a weekly and daily

seasonality, as it has been explained in the previous analysis. The aforemen-

tioned daily seasonality can be seen in Figure 4.4, where the Autocorrelation

Function (acf) is plotted. The daily autocorrelation plot includes 75 lags, to

be able to detect the autocorrelations of 3 days. As it can be observed, auto-

correlations follow a similar behaviour every 24 hours.

4.2 Price decomposition

The decomposition of prices is plotted below, according to the seasonalities

reached in the previous section (daily, weekly and monthly). The plot was

produced by using the msts command in R. The aim of this decomposition is

to be able to separate the deterministic components (trend, Tt and seasonality,

St) from the random noise, Rt. Formally, decomposition can be written as:

yt = (Dt +Wt +Mt + Yt) + Tt +Rt (4.1)
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where (Dt +Wt +Mt + Yt) is the sum of the seasonalities in yt.

The random noise should present stable variations and no trend. The first

plot in Figure 4.5, “data”, presents the raw data of electricity prices. It is

also defined as the observed component. As it can be observed, it presents

increasing jumps in year 2 (2001), year 3 (2002) and year 5 (2004). The sec-

ond component, the “trend”, presents the pattern that the series follows. As

it was stated before, the series presents an upward trend, which can be clearly

seen in the plot. The trend does not present any pattern, meaning that any

seasonal effects have been successfully captured. In the case in which no com-

plex seasonality had been specified, the decompose command would not have

outputted a de-seasonalised trend.

Figure 4.5: Decomposition visualisation

The “seasonal” components present the yearly (Seasonal8760), monthly (Sea-

sonal720), weekly (Seasonal168) and daily (Seasonal24) variations in price. It

is calculated by obtaining the average for “each time unit over all periods, and

then centering it around the mean” (Prastiwi 2019). As it can be seen, yearly

and monthly components present a remarkably clear seasonality. Lastly, the

“random” component presents what cannot be explained by neither the trend

nor the seasonal components.
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4.3 Theoretical framework

ARIMA model

When it comes to forecasting, ARIMA models are one of the most popu-

lar approaches used. ARIMA models are made up of both an autoregressive

(AR) and a moving average (MA) component. Autoregressive models, as it

can be inferred by the name, use a regression of the variable against itself.

Basically, they explain the present value of the series yt by using past values

yt−1, yt−2, ..., yt−p. More formally, an autoregressive process of order p (also

referred to as AR(p)) is written as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + zt (4.2)

where zt is white noise and it is not correlated to ys for each s < t. These

models are significantly adaptable when dealing with a wide range of time

series sequences.

Moving average models are defined as “the previous forecast errors”. After

a forecast is made, an error term will be outputted, and these error terms may

enhance successive forecasts (Kacapyr 2014). Values of yt can be seen as “a

weighted moving average of the past few forecast errors”. More formally, yt is

a moving average process of order q if:

yt = c+ zt + Θ1zt−1 + ...+ Θqzt−q (4.3)

where zt is white noise and Θ1, ...,Θq are constants.

As it was stated before, these two models can be combined and generalised into

an ARIMA (Autoregressive Moving Average) model, which can be written as:

(1− Φ1B − ...− ΦpB
p)(1−B)dyt = (1 + Φ1B + ...+ ΦqB

q)zt (4.4)

where zt ∼ WN(0, σ2), and d is a non-negative integer. The d-term refers to

the degree of differencing utilised. In the situation in which d = 0 (usually

when the data are already stationary and do not need differencing, as sta-

tionarity is a requirement for these models to be implemented), the ARIMA
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(p,d,q) model is equivalent to an ARMA (p, q).

ARIMA methodology is executed through an iterative process until the most

suitable model is found. It is a “step-by-step process of model identification,

specification, estimation, diagnostic and forecast” (Siluyele and Jere 2016).

ARIMA models are particularly useful for short-term forecasting, as they

strongly stress recent past means.

ETS (M,N,N) model

Once the data are decomposed, the ETS approach is used in order to make a

forecast. ETS refers to simple exponential smoothing with multiplicative er-

rors, and stands for Error, Trend, Seasonal, or ExponenTial Smoothing (Hyn-

dman and Athanasopoulos 2018). The main benefit of this method is that it

can deal with any type of seasonality, and seasonality can vary.

Among others, this model is considered a state space model. These models

are made up of an equation that details the observed data, and state equa-

tions that present how the other components vary as time passes by. It can

be formally defined as:

yt = lt−1(1 + εt) (4.5)

lt = lt−1(1 + αεt) (4.6)

This comes from making the errors relative,

εt =
yt − ŷt|t−1
ŷt|t−1

(4.7)

LOESS regression

The Seasonal and Trend Decomposition (stlf in R) will be used in ARIMA

and ETS methods. It uses the decomposed version of the data in order to

make forecasts. In order to obtain the trend through the stlf method, the
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LOESS regression will be used. It merges the clarity of the linear least squares

regression with the adaptability of the non-linear regression. It does so, by

“fitting simple models on local subsets of data to create a function that de-

scribes the deterministic part of the variation in point-to-point data” (Najera

2019).

To prevent over and underfitting, the goal is to get the number that min-

imises the estimation errors. In order to obtain this figure, the loess.as

function will be used in R. According to R’s help file, this command “fits a lo-

cal polynomial regression with automatic smoothing parameter selection”. The

obtained value is equal to 0.05048568.

TBATS model

The TBATS model was introduced by De Livera, Hyndman and Snyder in

2011. It is an “exponential smoothing method, which includes Box-Cox trans-

formation, ARMA model for residuals and the Trigonometric Seasonal” (Orhan

Altug Karabiber and George Xydis 2019). All of this enables this method to

decrease the number of components in the model, all while dealing with high

seasonality.

An advantage of TBATS, is that it does allow seasonality to vary slowly.

Furthermore, TBATS will “acknowledge models with and without trend, Box-

Cox transformations and with non-seasonality” (Skorupa 2019). Then, it will

choose the most appropriate model by using the Akaike information criterion

(AIC). The main downside is that it takes a lot of time to process.

Seasonal näıve method

A seasonal näıve method will be used as a reference point with respect to

the other models (Orhan Altug Karabiber and George Xydis 2019). If any

of the other models performs worse than the näıve method, then they will be

discarded. This is based on the main assumption of the näıve method, which
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considers the forecast equal to the last observed value from the same season

(Hyndman and Athanasopoulos 2018).

That is, if prices decreased in December 2006, the model will assume that

they decrease as well in December 2007, 2008 and so on (for yearly seasonal-

ity). This can be formally expressed as:

ŷT+h|T = yT+h−m(k+1) (4.8)

where m stands for the seasonal period and k is the number of full seasons in

the forecast period before time T + h.

4.4 Fitting and forecasting

Before performing the forecast, the data set has to be divided into the train

and test sets. The test set will then enable the accuracy check to be per-

formed once the forecast is made. The chosen test set has a length of 20 per

cent the length of the data set. The forecasting produced by using all 70,752

data points is included in Appendix A. In order to obtain a higher accuracy

and to guarantee that processes such as the tbats work relatively quickly,

2,880 data points were selected, which accounts for 4 months worth of data.

As the selected data is a subset of the whole data set, only daily and weekly

seasonalities will be included. The train set will have a length of 2,304 and

the test set will be composed of 576 data points.

Forecast with SLT and Arima

As it was already mentioned, the daily and weekly seasonalities have been

included - as the sample is not long enough to include the monthly and yearly

ones. This has been included in the forecast command (stlf) by adding the

s.window specification. Furthermore, the value obtained with the LOESS re-

gression (0.05048568) is included as well by including the t.window argument.

The selection of the ARIMA method has been stated as well, and the non-



CHAPTER 4. MODELLING TIME SERIES 46

stationarity of the data has been solved by differencing once (as d=1). The

fitted values in green, can be observed in Figure 4.6.

Figure 4.6: Forecast using SLT and ARIMA (2,1,2) against real values

Figure 4.7: Training against fitted values using SLT and ARIMA

As it can be observed, the model seems to be quite accurate. Furthermore,

when comparing the forecast produced with the observed values (the test set),

the model seems to be relatively accurate, as can be observed in Figure 4.7,

and confidence intervals are not too big.

Forecast with SLT and ETS

The same arguments have been included when building the ETS model, by

using the t.window, s.window and method specifications. The fitted values

are plotted along with the observed values in Figure 4.8. Once again, the

model seems to be accurate. When comparing the forecast produced with the

observed values (the test set), Figure 4.9 is outputted. As it can be seen, the

confidence intervals at 80 and 95 per cent are much wider than the ones out-

putted by ARIMA. Just by looking at these plots, it can already be observed

that the ARIMA forecast is more accurate.
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Figure 4.8: Training against fitted values using SLT and ETS

Figure 4.9: Forecast using SLT and ETS against real values

Forecast with TBATS

The main downside from the TBATS method (tbats function) is that pro-

cessing is very slow.

Figure 4.10: Fitted values against real values using TBATS

Figure 4.11: Forecast against observed values using TBATS method

For that reason, the number of data points chosen to perform these forecasts

was reduced. Otherwise, R would be interrupted unexpectedly. The fitted

values can be observed in Figure 4.10. The model seems to accurately fit the

observed values. The forecast produced by TBATS is plotted against the ac-

tual values in Figure 4.11. As it can be seen, the forecast follows a similar

pattern to the one followed by the observed values and the confidence intervals
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seem to be relatively small.

Forecast with seasonal näıve method

Finally, as it was previously explained, the seasonal näıve method (snaive

method in R) was used as a benchmark model. The fitted values obtained by

using this method are plotted in Figure 4.12.

Figure 4.12: Training against fitted values using näıve method

Figure 4.13: Forecast against observed values using näıve method

As it can be observed, the model fits the observed data relatively well. When

comparing the forecast produced with the observed values, Figure 4.13 presents

how accurate the forecast is.

4.4.1 Evaluation of forecasts

Now that the forecasts have been produced, it is relevant to look at which

model has more predictive power, by using the accuracy command in R which

compares the forecasted values to the observed values. This command “returns

a range of summary measures for the forecast accuracy” according to the R

library. It provides measures such as the mean error, root mean squared error

and mean absolute scaled error.
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Those indicators that will be used in this paper, will now be formally defined.

• The Mean Absolute Error (MAE) calculates the mean of the absolute

values of the errors. It is defined as:

MAE =
1

n

n∑
t=1

|et| (4.9)

• The Root Mean Squared Error (RMSE), calculates the unit root of the

square of the error. It is defined as:

RMSE =

√√√√ 1

n

n∑
t=1

e2t (4.10)

• The Mean Absolute Percentage Error (MAPE) measures the accuracy

of the forecast. It is defined as:

MAPE =
1

n

n∑
t=1

|At − Ft

At

| ∗ 100 (4.11)

where A represents the observed values, and F the forecasted ones. In

this occassion, the MAPE will be presented as a percentage.

Model MAE RMSE MAPE

ARIMA 3.057064 4.518536 10.79683

ETS 5.467870 6.303011 20.59352

TBATS 4.561776 5.590668 17.0143

Näıve 5.342726 6.272032 20.33706

Table 4.1: Predictive power across models

Table 4.1 presents the error evaluation for each method. As it can be ob-

served, the ETS model presents a very high mean average percentage error.

This entails that it is not an accurate model, despite being a more sophisti-

cated model. The Näıve method, despite being used as a benchmark, performs
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relatively well with respect to it. Both the ARIMA and TBATS models per-

form better than the benchmark model, being the ARIMA model superior

in terms of accuracy. Therefore, it can be concluded that the more accurate

forecast is the first one.

4.4.2 Residuals examination

Now that the best model for forecasting is chosen, it is vital to check whether

the residuals present a random pattern. Residuals can be thought of as the

difference between observed data points and the model’s fitted values.

Figure 4.14: Residual analysis

Good residuals should have zero mean and be uncorrelated. The mean of

the residuals is equal to -0.001617934, meaning that the forecast is biased.

The second condition stems from the need to capture all of the relevant infor-

mation for the forecast to perform well. Figure 4.14, was obtained by using

the checkresiduals command in R. As it can be observed in the top plot,

residuals present no seasonal behaviour. This indicates that the multiple sea-

sonalities included in the ARIMA model (weekly and daily), capture all the

seasonal behaviours in the specified time period. By looking at the bottom

left plot, it can be seen that the residuals do present some correlation. This

entails, as it was explained before, that some information is missing from the

model. The series presents a slightly similar distribution to the normal as it

can be seen in the bottom right plot. Nevertheless, the right tail is too long.
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Figure 4.15: qq plot of residuals

Figure 4.15 presents a qq plot that was obtained by using the qqnorm and

qqline commands, and applying them to the residuals. It shows that the

residuals do not follow a completely normal behaviour. This could be already

noticed in the histogram in Figure 4.14. The residuals should form a pseudo-

straight line. Nevertheless, they form a slight s-shaped line which means that

there are heavy tails. Therefore, it can be concluded that the model can be

further improved.

4.4.3 Weaknesses of the analysis

Given the results of the residual analysis, there is still scope to improve the

model. More sophisticated models could be used, such as the GARCH model.

External regressors could be used to create a dynamic model as well. Tem-

perature data could be included (as electricity demand could be negatively

correlated with temperatures, consequently increasing prices), or amount of

rainfall (as electricity supply could be positively correlated with this variable,

consequently decreasing prices). The aim of these improvements is to decrease

the Mean Absolute Percentage Error below 10 per cent - which is considered

an “excellent” percentage error, and to obtain totally uncorrelated residuals.
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Conclusion

The role of energy in our daily lives and in the industrial sector will not cease

to gain importance in the coming years. Nevertheless, electricity counts on a

limitation explained by its nature: “supply has to equal demand on an instanta-

neous basis”. Thanks to pooled markets such as the Nord Pool, and organisms

such as the BRPs and TSOs, its supply at affordable prices to a wide range

of consumers is guaranteed. Nevertheless, extreme weather conditions, the

potential existence of market power, or controversial political decisions may

cause prices to fluctuate. Price fluctuations took place in a striking manner in

the Nord Pool in summer 2006, caused by unexpected plant outages in Swe-

den, and in 2002, which was a particularly dry year. Prices were expected to

rise, but not as much as they did. Nevertheless, the market was resilient and

prices stabilised.

The paper has studied these extreme price increases. Extreme prices were

determined to be those higher than 60EUR/MWh, after an analysis of the

median and 10th and 90th percentile was performed. Further examination of

exceedance prices in an hourly, weekly and monthly basis is presented. The

paper also statistically analyses the logarithmic returns of prices at different

times of the day. The main takeaways are that electricity prices are highly

related to daily rhythms and industrial activity. This is explained by the fact

that volatility rises between 5am to 8 am, and reaches its lowest point at

1pm. And, average prices are much higher on weekdays than on weekends.

Electricity prices also follow a highly skewed distribution, and seem to be non-
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stationary and conditionally heteroskedastic.

Finally, the paper seeked to find an accurate model in order to predict elec-

tricity prices. Four methods were used: ARIMA, ETS (both using LOESS

regression), TBATS and Seasonal Näıve method. This last method was in-

cluded to be used as a benchmark. Those models performing worse than that

given by the Näıve method would be rejected. As it was stated before, the

TBATS model takes long to process data so in order to guarantee that R

would not abnormally crash, 2,880 data points were selected (corresponding

to 4 months worth of electricity prices). After assessing their accuracy, the

most precise model was the ARIMA model - it presented the lowest MAE,

RMSE and MAPE. Residuals of this model were analysed, and the analy-

sis was relatively satisfactory. Residuals presented some correlation and their

mean was different from zero. Given the results of the residual analysis, there

is scope to improve the models. More sophisticated methods could be used,

and external regressions could be included to create a dynamic model (using

temperature data or amount of rainfall, which are potentially correlated with

electricity prices). The aim of further dynamic analysis and forecasting is to

decrease the MAPE below 10 per cent and to obtain uncorrelated residuals.

It is important for governments and producers to have access to forecasting

information, and to study exceedances. What are the drivers of high prices on

both the supply and demand side, and how often these happen is an invalu-

able piece of information. This way, power plants can more accurately plan

their outputs and engage in fruitful contracts, and consumers can plan accord-

ingly. Furthermore, due to the increase in importance of electricity - which will

continue growing - having access to this information could incentivise govern-

ments to subsidy prices at certain times, particularly for low-income families

or certain industrial sectors. This would be an efficient way of planning and

supporting these collectives.
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Modelling with the complete

data set

The forecasts that will be presented in this Appendix, do contain all the 70,752

data points available. As before, 80 per cent of the available data points, that

is 56,600 data points will be part of the training set, while the remaining will

make up the test set.

Forecast with ARIMA and ETS

The same procedure as before was followed to obtain the forecast with the

ARIMA and ETS methods. In this instance, the value obtained from the

LOESS regression is equal to 0.05005558.

Figure A.1: Training against fitted values using SLT and ARIMA (2,1,2) and
Forecast using SLT and ARIMA (2,1,2) against real values

By using the aforementioned stlf command, and specifying the daily, weekly,
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monthly and yearly seasonalities, and indicating the desired length of the fore-

cast (14,150) the following plots were produced. As it can be observed, it seems

that the ARIMA forecast is better than the one obtained by ETS, as the latter

presents wider confidence intervals.

Figure A.2: Training against fitted values using SLT and ETS and Forecast
using SLT and ETS against real values

Forecast with TBATS

It is important to highlight that the yearly seasonality has not been included

in this model, as the main downside of the TBATS method is that processing

is very slow. For that reason, the training set has been shortened to over

20,000 data points.

Figure A.3: Fitted values against real values and Forecast against observed
values using TBATS method

As it can be observed, the forecast presents wide confidence intervals, and the



APPENDIX A. MODELLING WITH THE COMPLETE DATA SET 56

forecasted values do not seem to be very accurate.

Forecast with seasonal Näıve method

The forecast obtained by the benchmark seasonal Näıve method is plotted

below. It is used as benchmark in order to reject those models performing

worse than it does.

Figure A.4: Training against fitted values using näıve method and Forecast
against observed values using näıve method

Evaluation

Table A.1 presents the errors for each model. The ETS model stands out in

accuracy, followed by the ARIMA model. Nevertheless, the Mean Absolute

Percentage Error is well above 20 per cent, which is the accepted upper bound

for MAPE. It can therefore be concluded that there is scope to improve the

models.

Model MAE RMSE MAPE

ARIMA 13.92748 18.44300 29.21889

ETS 13.53223 17.95182 28.47161

TBATS 10.90786 13.64158 29.38031

Näıve 14.39790 18.38815 30.81749

Table A.1: Predictive power across models
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