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Abstract

Collective motion is a phenomenon commonly seen in nature such as in
schools of fish and flocks of birds. The Standard Vicsek Model (SVM) is
a simple model of collective motion that can result in complex behaviour. In
this thesis, we first demonstrate the phase transition exhibited by the SVM,
running simulations with the order parameter (normalised average velocity)
as a function of noise and density. We study some of the different variations in
the implementation of the model from other works throughout the years such
as update rules, and noise types. It is then shown that though the update
rule has minimal effect on the nature of the phase transition, noise type can
affect its order with extrinsic (vectorial and simple extrinsic) noise resulting
in first-order transitions and intrinsic (angular) noise resulting in second-
order. However, arguments from the literature compiled and expounded on
here seem to show that the order of the phase transition in the SVM still
cannot be definitively settled as experiments with much larger system sizes
might still be required. Afterward, we discuss and recreate results of a Modi-
fied Vicsek Model proposed by Costanzo & Hemelrijk [Journal of Physics D:
Applied Physics 51(13),134004 (2018)], which involves two new parameters,
field-of-view and maximum angular velocity. We demonstrate some of the
findings from this study, namely that the addition of these two parameters
leads to new patterns of motion such as bands, lines, and mills. Particular
attention is given to the conditions that are favourable for milling (particles
moving in a circular pattern around a common centre). We show that high-
density, low-noise, environments combined with a moderate field-of-view and
moderate absolute and maximum angular velocities are conducive to milling.
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Chapter 1

Introduction

Vicsek & Zafeiris define collective motion as the “phenomenon occurring in collec-
tions of similar, interacting units moving with about the same absolute velocity”
[36]. Studying this phenomenon is of interest due to how often it appears in many
different systems throughout nature. This is perhaps most apparent when groups
of birds fly together as a flock, when fish swim in schools, or when animals move
as a herd.

All these cases fit into the above description of collective motion since (a)
each animal in the group is quite similar to each of the other animals, (b) the
animals perceive and interact with each other, moving in a way that keeps them
from simply colliding, and (c) they move together as a group with similar absolute
velocity (otherwise some animals will end up separated from the group). Because
these examples from nature are so apparent, some of the early work into the study
of collective motion focused on animals such as birds and fish.

In 1982, Aoki published his work on a model that simulated the schooling of
fish by programming each individual fish with three interaction rules: attraction,
avoidance, and parallel orientation (with rules applying depending on the positions
of neighbours relative to each fish) [3]. Despite each fish having limited perception
(not knowing every position and heading in the school) and the absence of a leader
fish, the simulated fish still moved together as a cohesive school.

In the interest of efficiently generating computer animations, Reynolds intro-

5



CHAPTER 1. INTRODUCTION 6

duced a computational model for the flocking of birds [31]. The model shares a few
key things with the one proposed by Aoki for fish, most notably the lack of a leader
and the concept of agent perception, where simulated birds do not have complete
information about every other member of the flock. Instead, they interact with
nearby neighbours, devising flight paths that keep them from colliding with each
other while maintaining a proper velocity to keep up with the flock. Using this
method from Reynolds, the animator no longer needs to directly chart the path
of each bird [31]. All that is required is to program the behaviour of a general
bird agent in response to its perception of the environment. What emerges then
is a pattern of motion that is a good enough facsimile of birds flocking as to look
pleasant when used in animated films.

Further studies have found forms of collective motion in other biological sys-
tems. Ben-Jacob et al. observed some strains of bacteria (which they referred to
as vortex morphotype) under a microscope and found that millions of cells would
move in a circular pattern around a common centre [8]. They then proposed a
simulated model where particles achieved similar patterns of motion with a com-
bination of velocity-alignment interactions and reactions to local concentrations of
a secreted chemical signal.

Collective motion can be found not only in biological systems such as those
mentioned earlier, but also in chemical and physical systems. For example, Schaller
et al. demonstrate the emergence of collective motion in actin filaments propelled
by molecular motors on a plane [32]. Through their experiments, they found that
the filaments would move coherently in an ordered phase above a critical density
𝜌𝑐 ∼ 5 filaments per square micrometre, but below this critical point, filaments
would simply perform random walks.

In another study, Ibele, Mallouk, and Sen found collective motion in silver
chloride (AgCl) particles in deionised water when they were exposed to ultraviolet
light [21]. In this case, there is interaction among particles in the form of ions that
they secrete, the concentrations of which influence the motion of other particles,
causing a “schooling” type of behaviour [21].

Proposed by Vicsek et al. in their pioneering paper, the Standard Vicsek Model
(SVM) is one of the simplest models that allows for collective motion [35]. This
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model shares many features with the earlier mentioned models from Reynolds
and Aoki: (a) the lack of a leader, (b) the programming of behaviour rather
than an explicit path of motion for agents, and (c) the implementation of agent
perception and interaction. Despite the simplicity of the model, it can at times
exhibit complex behaviour. Most notably, it features a transition from an ordered
to a disordered phase as a function of multiple parameters.

Due to its simplicity, the Vicsek Model also serves as a good foundation for
extensions that may augment its behaviour and bring about new results. Costanzo
& Hemelrijk propose a Modified Vicsek Model (MVM) that allows for new patterns
of motion, while only introducing a few new parameters and without adding new
interaction rules [15]. This thesis will explore different properties and behaviours
of the SVM and MVM under a variety of conditions by presenting and expounding
upon numerical results from simulations of the models.

1.1 Motivation for this work
Due to collective motion being commonplace in nature, the Vicsek Model and its
variants may often serve as a starting point to better study some real-world sys-
tems. Yet, despite the apparent simplicity of the model definition (to be formally
defined in later chapters), the Vicsek Model can behave in complex ways. Because
of this, quite a number of studies have been conducted on the model with a variety
of implementations that have at times given different results [5, 19, 29]. It may
be of value then to review the model and its variations, while creating a dialogue
between different, sometimes conflicting sources regarding the model.

1.2 Contents of the thesis
The remainder of this thesis will be split into three other chapters, the first focusing
on the SVM (as defined in [35]), the second on the MVM (based on [15]) followed
by a concluding chapter summarising the work done.
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1.2.1 Chapter 2
Chapter 2 will expand on the SVM, first giving a formal definition of the model
and the order parameter of the disordered-ordered phase transition that it exhibits.
Simulation results are then presented, including the order parameter as a function
of other model parameters. Afterward, some variations on the standard model are
tackled and their impact on simulation results is shown.

1.2.2 Chapter 3
Chapter 3 zooms into the MVM, first giving a formal definition and highlighting
in what way it is different from the SVM. Key implementation details are then
briefly explained. Particular focus is then given to the phenomenon of milling,
how it is quantified, and the proportion of milling cases as a function of different
parameters.

1.2.3 Chapter 4
Chapter 4 will summarise the work done and present conclusions made using the
results from experiments.

1.3 Hardware and Software Notes
Simulation results in the proceeding sections were generated with code written
mostly in the Julia programming language (and Python for some visuals) with the
use of some software packages [10, 11, 12, 20, 26, 27, 28, 30, 34, 37] on standard
laptop hardware: an AMD Ryzen 7 3750H CPU and 16GB of RAM. Because of
this, there are limitations with regard to the size of the simulations and the length
of time the systems can be evolved. When systems with large numbers of agents
or particles are involved, it is usually asymptotic behaviour (the number of agents
𝑁 → ∞ and 𝑡 → ∞) that is of interest. Even at smaller scales, however, some of
the properties of the Vicsek Model can still be studied (though with the awareness
that finite size effects may affect results).



Chapter 2

The Standard Vicsek Model

The Standard Vicsek Model has been the topic of numerous studies throughout the
years. This has spawned different variations in the implementation and definition
of the model. While it is often argued that these changes do not impact the
asymptotic results of the simulations, some of them appear to do so (as will be
tackled later in this chapter). We focus first on the original model in the paper by
Vicsek et al. [35] then tackle these said variants later on.

2.1 Model Definition
The Standard Vicsek Model is a simple model for the motion of self-propelled
particles (SPPs) defined in [35]. At time 𝑡 = 0, 𝑁 particles are randomly placed
on a two-dimensional 𝐿 × 𝐿 space with periodic boundary conditions, each with
some direction of motion 𝜃𝑖(0) selected uniformly at random from the interval
[−𝜋, 𝜋]. They then move off-lattice with the same absolute velocity 𝑣0. There are
three free-parameters to the model: (1) the density of particles 𝜌 = 𝑁/𝐿2, (2) the
level of noise in the system 𝜂, and (3) the absolute velocity 𝑣0 [35].

After each time step of size Δ𝑡, particles move based on their current direction
of motion. The new position is then found with the equation

𝑥𝑖(𝑡 + Δ𝑡) = 𝑥𝑖(𝑡) + v𝑖(𝑡)Δ𝑡, (2.1)
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where v𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡 given by

v𝑖(𝑡) = 𝑣0 [
cos(𝜃𝑖(𝑡))
sin(𝜃𝑖(𝑡))

] . (2.2)

Each particle 𝑖 interacts with others by aligning its direction of motion with its
neighbours, defined as all particles within some interaction radius 𝑟 (including the
particle 𝑖 itself). We assume here, as is standard in the literature, that Δ𝑡 = 1 and
𝑟 = 1 [4, 19, 29, 35]. Let ⟨𝜃(𝑡)⟩𝑟,𝑖 be the mean direction of motion of all particles
within the radius 𝑟 around particle 𝑖 given by the following equation

⟨𝜃(𝑡)⟩𝑟,𝑖 = arctan (
⟨sin(𝜃(𝑡)⟩𝑟,𝑖
⟨cos(𝜃(𝑡)⟩𝑟,𝑖

) . (2.3)

Given this, the new direction of motion is updated for all particles simultaneously
according to

𝜃𝑖(𝑡 + Δ𝑡) = ⟨𝜃(𝑡)⟩𝑟,𝑖 + Δ𝜃𝑖, (2.4)

where Δ𝜃𝑖 is a noise term generated uniformly at random from the interval [−𝜂/2, 𝜂/2]
[15, 35]. Figure 2.1 shows particle positions and velocities resulting from Vicsek
Model simulations.

2.2 On the Phase Transition
One of the most interesting behaviours of the Vicsek Model is the phase transi-
tion from disordered to ordered motion that it exhibits. In the disordered phase,
particles move about randomly, while in the ordered phase, almost all particles
have just about the same direction of motion [35]. In this section, we first pro-
vide some background on phase transitions and briefly go through a few examples.
Afterward, we show results on the phase transition exhibited by the Vicsek Model.
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Figure 2.1: Positions of particles on a 2D plane with arrows indicating the
direction of motion at 𝑡 = 100 and the tails representing positions in the
last 20 time steps. To make the images cleaner, tails were cut off if particles
passed through the edges of the frame. Values of the parameters used here are
similar to those in [35]. In all cases, 𝑁 = 300 and 𝑣0 = 0.03. (a) If the density
of particles is relatively small and the noise is low, particles form small flocks,
each moving in its own direction (𝐿 = 25, 𝜂 = 0.1). (b) For moderately dense
cases with moderate noise, (𝐿 = 7, 𝜂 = 2.0), the particles still move toward
the same general direction, but in a rather turbulent manner as shown by
the way the tails are shaped. (c) In high-density, low-noise cases (𝐿 = 5,
𝜂 = 0.1), the Vicsek Model exhibits an ordered state where all particles have
almost the same direction of motion. (d) For cases with very high noise
(𝐿 = 7, 𝜂 = 5.0), particles move in random directions (resulting in velocities
that often cancel each other out).
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2.2.1 Background
Systems of interacting units may at times undergo a transition into another phase
with markedly different properties as a result of some other external parameters
[36]. These phase transitions may be seen throughout Physics, such as in matter
changing from a liquid to a gaseous phase. When some water moves from a liquid
to a gaseous phase, the system is still made up of the same water molecules, but
taken as a whole, it now behaves in a very different way.

In general, these transitions involve an order parameter, a normalised value
representing the degree of order in the system that moves from a non-zero value
(indicating an ordered state) to a zero value (indicating a disordered state) as
a function of a control parameter [9, 24, 36]. This transition then occurs when
the control parameter passes some critical value (sometimes called the critical
point). The transition may also be described as first-order (the order parameter
is a discontinuous function of the control parameter) or second-order (the order
parameter is a continuous function of the control parameter, but the derivative
with respect to the control parameter is discontinuous) [33, 36].

Phase transitions do not happen exclusively in thermodynamic systems. With-
out going too deep into the mathematics, we draw two examples from Network
Science based on lecture notes from Bianconi to illustrate this concept [9].

Example 1: Node Percolation An uncorrelated network is a network where
the probability an edge selected uniformly at random is connected to some node
𝑗 is given by 𝑞𝑗 = 𝑘𝑗/(⟨𝑘⟩𝑁), where 𝑘𝑗 is the degree of 𝑗, ⟨𝑘⟩ is the mean node
degree in the network, and 𝑁 is the number of nodes [9].

Suppose then that 𝐺 is an uncorrelated network and each of the 𝑁 nodes has a
probability 𝑝 of being damaged (the node and all its edges being removed from the
network). This particular system exhibits a second-order phase transition with 𝑝
as the control parameter, and an order parameter 𝑆, the fraction of nodes that are
part of the giant component (a connected component containing a finite fraction
of nodes in the limit 𝑁 → ∞) [9].

There is some critical value of the control parameter that becomes the point
of the phase transition. If 𝑝 > 𝑝𝑐, too many nodes are damaged and there is no
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giant component, resulting in a network made up of numerous small components,
but if 𝑝 < 𝑝𝑐 there exists a giant component. Given this, the network then has a
very different topology and thus very different properties depending on how much
it is damaged (based on the value of 𝑝).

Example 2: Epidemic Outbreaks The SIR (Susceptible - Infected - Re-
moved) Model is a simple model of the epidemic spreading process. Suppose there
are 𝑁 individuals that can be in one of three states. Susceptible individuals be-
come Infected by a given disease at some rate 𝛽 and Infected individuals become
Removed at some rate 𝜇 [9]. Once an individual is Removed, they can no longer
be infected again.

This system exhibits a phase transition with control parameter 𝜆 = 𝛽/𝜇, some-
times called the spreading rate of a disease, and order parameter 𝜌, the fraction
of individuals that are not Susceptible (have become Infected or Removed) [9]. If
𝜆 is less than some critical value 𝜆𝑐 then only an infinitesimally small number of
individuals are infected in the large population limit (𝑁 → ∞). On the other
hand, if 𝜆 > 𝜆𝑐 then there is an epidemic breakout and the virus infects a finite
fraction of individuals in the same limit. Given this, the state of the individuals
in the system can be vastly different depending on which phase it is in.

2.2.2 Order and Control Parameters
As mentioned earlier, the Vicsek Model also exhibits a phase transition. Based
on the original model from [35], the order parameter of this transition is the nor-
malised average velocity of the particles given as

𝑣𝑎 = 1
𝑁𝑣0

∥
𝑁

∑
𝑖=0

v𝑖∥ . (2.5)

In the disordered phase, the particles will be moving in random directions,
thus the value of 𝑣𝑎 will be approximately zero. When the system is in the ordered
phase, the value of 𝑣𝑎 will be close to one since almost all particles will be moving
in about the same direction.
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Depending on the system size, the time required for the order parameter to
converge may vary. Based on Figure 2.2, for fixed densities and noise, the amount

Figure 2.2: Value of the order parameter over time for 𝜌 = 4, 𝑣0 = 0.03, and
𝜂 = 0. Note that since there is no noise in this system, it is expected that
almost all particles will have about the same direction of motion, resulting
in a normalised average velocity of one.

of time required for the order parameter to converge increases. This may be due
to the increased number of interactions between particles required for a uniform
direction of motion to be transmitted across the entire system. For the following
results to be presented, we evolve the systems for as long as possible depending on
their size, but due to the earlier mentioned hardware limitations and often slow
convergence, there may still be small fluctuations in the results.

2.2.3 Simulation Results
The phase transition may more easily be viewed in terms of one of two different
control parameters at a time, the density of particles 𝜌 or the noise level in the
system 𝜂 (fixing the other one in the process). First, we view the order parameter
as a function of 𝜂, relaxing the system until 𝑡 = 2 × 104 for each value of 𝜂 in the
interval [0, 6], in increments of 0.1. The order parameter is computed at each time
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step and then the average over time is taken to provide more stable results. This
experiment is repeated for different values of 𝑁 and results are displayed in Figure
2.3.

Figure 2.3: The order parameter (𝑣𝑎) by noise (𝜂) for a fixed density 𝜌 = 4
and various values of 𝑁 with 𝑣0 = 0.03 (with similar parameters to experi-
ments in [35]). Note that for smaller systems, the value of 𝑣𝑎 does not truly
become zero, but by increasing system sizes, one can see a trend and infer
the asymptotic behaviour of the system as 𝑁 → ∞. The order parameter
goes from a non-zero value to a zero (or close to zero) value as a function of
the control parameter, exhibiting a phase transition in the process.

Another perspective would be to view the transition in terms of density by
fixing the noise level 𝜂 and observing 𝑣𝑎 as a function of 𝜌. This was simulated
by having a constant value for 𝐿 with the number of agents 𝑁 steadily increasing
after every 8000 time steps. The time average of the order parameter for each
specific value of 𝜌 is then taken to allow for more stable results displayed in Figure
2.4.
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Figure 2.4: The order parameter (𝑣𝑎) as a function of density (𝜌) fitted with
a logarithmic curve with 𝐿 = 20 and 𝜂 = 2.0 (with similar parameters to
experiments in [35]). In low-density cases, particles may be very far apart
and have no chance to interact. Due to the lack of opportunities to align
themselves, particles may be travelling in different, random directions. As
density increases, so do the opportunities for interaction. This allows the
information on a uniform direction of motion to be transmitted throughout
the system.
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2.3 Order of the Phase Transition
While the existence of the phase transition in the Vicsek Model is generally agreed
upon, there have been contentions in the past with regard to the order of this
transition. Based on the results from the previous section, the phase transition
appears to be second-order (evidenced by the continuous nature of the curves
in Figure 2.3), which is in agreement with the original study done by Vicsek et
al. [35]. However, a study by Grégoire & Chaté claimed that the transition was
instead first-order in nature, arguing that initial results by the group of Vicsek
were caused by finite size effects as the simulations were not run for large enough
system sizes to capture the asymptotic behaviour of the system [19].

Part of the difficulty surrounding this issue is the number of parameters of
the Vicsek Model and variations in implementations throughout the years. This
section will go through arguments on both sides: that the transition is first-order
(mainly by the group of Chaté, Grégoire, Ginelli, and Raynaud across various
studies) [14, 18, 19] and that the transition is second-order (supported by different
authors throughout the years) [2, 5, 29, 35].

Different studies have introduced variations to the original implementation
of the Vicsek Model from [35]. Some of these changes are simple and will not
affect results. For example, some studies use an alternate definition of the noise 𝜂,
having Δ𝜃 ∈ [−𝜂𝜋, 𝜂𝜋] instead of Δ𝜃 ∈ [−𝜂/2, 𝜂/2] as in the original model [1, 4,
29]. This change can be seen as a simple rescaling of the noise variable and it is
not too difficult to convert between the two definitions.

Some modifications to the model are larger. In their study, Czirók, Stanley, and
Vicsek implement a Vicsek-like Model where instead of particles interacting with
neighbours within an interaction radius 𝑟, the 𝐿 × 𝐿 space is divided into a lattice
of 𝑟×𝑟 tiles and particles interact with those in the 9 neighbouring tiles (including
its own) [16]. Aldana et al. implement a Vicsek-like Model where instead of
particles moving in a 2D space, there are instead 𝑁 nodes, each representing a 2D
vector indicating a velocity that may change through time [1]. Each node then
interacts with 𝐾 other random nodes in the network with the same alignment rules
as in the Vicsek Model. The authors argue here that this networked model is able
to simulate the correlations generated by particle motion and interaction in the
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Vicsek Model since the 𝐾 neighbours of each node are randomly chosen [1].
Since these modifications are not as recurrent in the literature though, we do

not tackle them further or recreate them in the simulations. Instead, the remainder
of this section will focus on some of the more common variations in the Vicsek
Model: namely the noise type, velocity regime, and update rule.

2.3.1 Intrinsic and Extrinsic Noise
Recall that in Equation 2.4, noise is added to the computed mean angle of neigh-
bouring particles within the interaction radius with the equation reiterated below

𝜃𝑖(𝑡 + Δ𝑡) = ⟨𝜃(𝑡)⟩𝑟,𝑖 + Δ𝜃𝑖.

This form of noise would later be called “angular noise” in studies from Chaté et
al. and Baglietto & Albano [5, 14] and at times it has been labelled “intrinsic
noise” since the uncertainty lies with the required for the particle to update its
heading [1, 36].

In their work, Grégoire & Chaté introduced a new form of noise called “vectorial
noise” different from the one found in the original Vicsek Model [19]. They argued
that noise could be found in particle to particle interactions (caused by errors in
perception, for example) rather than in a particle’s ability to reorient itself to a
perfectly measured mean heading. In the vectorial noise scenario, an average of
velocities of neighbours within the interaction radius 𝑟 is first computed, and then
it is perturbed by a random vector scaled according to the noise level 𝜂 ∈ [0, 1]
before the angle of the new heading is computed [14, 36]. The equation for new
directions of motion is then given as

𝜃𝑖(𝑡 + Δ𝑡) = Angle (∑
𝑗∈𝑆𝑖

𝑢𝑗(𝑡) + 𝜂𝒩𝑖𝜉𝑖) (2.6)

where 𝑆𝑖 are the particles within the interaction radius of 𝑖 (including 𝑖 itself),
𝑢𝑗(𝑡) is a unit vector in the direction of 𝜃𝑗(𝑡), 𝒩𝑖 is the number of particles in
𝑆𝑖, 𝜉𝑖 is a random unit vector, and Angle( ⃗𝑣) = arctan( ⃗𝑣𝑦, ⃗𝑣𝑥). Note that this is
quite a large change to the original model since the impact of the perturbation
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introduced by vectorial noise in local areas where there is disorder (thus having a
small average velocity) is greater than in areas with strong local alignment (thus
having a large average velocity) [5, 19, 36].

Vectorial noise has at times been called “extrinsic noise” since extrinsic factors
such as the environment may affect the interaction or communication between the
particles (thus causing the noise) [2, 36]. We introduce here a kind of extrinsic
noise we call simple extrinsic noise (SEN), that is more of a direct translation
of noise in the original Vicsek Model to an extrinsic noise scenario based on the
idea from Grégoire and Chaté on noise being in interactions between particles [19].
Applying SEN, the new direction of motion for particles is given as

𝜃𝑖(𝑡 + Δ𝑡) = ⟨𝜃(𝑡) + Δ𝜃⟩𝑟,𝑖. (2.7)

This means noise is added not to the final computed mean angle, but to every
neighbouring direction of motion used to compute it. This may also be written as

⟨𝜃(𝑡) + Δ𝜃⟩𝑟,𝑖 = arctan (
⟨sin(𝜃(𝑡) + Δ𝜃)⟩𝑟,𝑖
⟨cos(𝜃(𝑡) + Δ𝜃)⟩𝑟,𝑖

) , (2.8)

where Δ𝜃 is some number selected uniformly at random from the interval [−𝜂/2, 𝜂/2]
(just like the angular noise case stated earlier). While the following discussion will
focus mostly on vectorial and angular noise since these have been well studied in
the past, we present the results of this noise type for comparison later on.

Aldana et al. argue that there is no reason to expect similar results from the
two different types of noise since uncertainty in intrinsic and extrinsic noise lie in
different places [1]. While studies would maintain the second-order nature of the
phase transition in the angular noise case [1, 4, 29], it was also found that vectorial
noise results in a first-order transition [2, 5].

Work from the group of Chaté, Grégoire, Ginelli, and Raynaud claimed, how-
ever, that the noise type should not actually change the order of the phase tran-
sition and that both cases of vectorial and angular noise result in discontinuous,
first-order transitions [13, 14, 18, 19]. According to Chaté et al., simulations that
showed a continuous transition for angular noise were run on system sizes that
were too small, arguing that there is a minimum system size 𝐿∗, which they called
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the crossover size, beyond which the transition becomes discontinuous [14]. Thus
in order to capture the true asymptotic behaviour of the system the model should
be run for 𝐿 > 𝐿∗ (though this is difficult to compute and is a function of multiple
parameters) [14].

Later results would contest this claim, showing that though vectorial noise
results in a first-order transition, there may be numerical artifacts with the im-
plementation of simulations causing the appearance of a discontinuous transition
when angular noise is applied (to be discussed more later) [5, 29].

We then proceed to present the results of our simulations to compare and
contrast the different forms of noise. One quantity often used to study the order
of a phase transition is the Binder Cumulant, 𝐺 given as

𝐺 = 1 − ⟨𝜑4⟩
3⟨𝜑2⟩2 , (2.9)

where 𝜑 here is the order parameter of the phase transition (making use of 𝑣𝑎

for the Vicsek Model case) [25, 29]. This value is sensitive to fluctuations in
the associated order parameter and a definite minimum as a function of the con-
trol parameter is usually seen as characteristic of a first-order transition [19, 29].
Expressing the order parameter 𝑣𝑎 as a function of noise 𝜂 (for the noise types
tackled here) and computing the corresponding Binder Cumulant yields the re-
sults in Figure 2.5 (vectorial noise), Figure 2.6 (simple extrinsic noise), and Figure
2.7 (angular noise).

Based on our simulations, both kinds of extrinsic noise discussed (vectorial and
simple extrinsic noise) seem to result in a first-order transition, while angular noise
results in a second-order one. These conclusions on the order of the transition in
the vectorial and angular noise scenarios agree with the results found by Nagy,
Daruka, and Vicsek [29], and Baglietto & Albano [5], but runs counter to the
conclusions from Chaté et al [14].

2.3.2 Velocity Regimes
The absolute velocity 𝑣0 may be interpreted as a parameter that controls the
frequency of interactions between particles [6]. In cases where the value of 𝑣0
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Figure 2.5: (a) The order parameter (𝑣𝑎) as a function of noise (𝜂) in the
vectorial noise scenario (𝜌 = 4, 𝑣 = 0.5). (b) The corresponding Binder
Cumulant 𝐺 as a function of noise 𝜂. The transition here appears to be
a clear first-order transition characterised by the definite minimum in the
Binder Cumulant and the order parameter changing discontinuously with 𝜂.

becomes large relative to the value of the interaction radius 𝑟, particles may pass
by each other without actually interacting. Given the default settings of 𝑟 = 1
and Δ𝑡 = 1, the large-velocity regime is generally given as 𝑣0 >= 0.3, with the
small-velocity regime being 𝑣0 < 0.3 [35].

Simulations show that within the small-velocity regime, the actual value of 𝑣0

does not matter much as the results (summarised in Figure 2.8) are very similar
across different input values. This agrees with the original conclusion by Vicsek
et al. [35].

As mentioned previously, Chaté et al. argued that even in cases when angular
noise is applied, there is a first-order phase transition, and this asymptotic be-
haviour of the system is only visible if 𝐿 > 𝐿∗ as finite size effects would affect
the results otherwise [14]. As evidence of a discontinuous transition, they show
the probability density function (PDF) of the order parameter as a two-peaked
distribution. On the other hand, Nagy et al. claim it is instead a second-order
transition, arguing that the PDF of 𝑣𝑎 only has a single peak [29]. Results of
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Figure 2.6: (a) The order parameter (𝑣𝑎) as a function of noise (𝜂) in the
SEN scenario (𝜌 = 4, 𝑣 = 0.03). Note that despite making use of the same
parameters as Figure 2.7, results here look very different due to a discontin-
uous transition. (b) The corresponding Binder Cumulant 𝐺 as a function of
noise 𝜂. There is a clear minimum in the computed Binder Cumulant, which
is usually associated with first-order transitions.
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Figure 2.7: (a) The order parameter (𝑣𝑎) as a function of noise (𝜂) in the
angular noise scenario (𝜌 = 4, 𝑣 = 0.03, the same parameters as the simple
extrinsic noise simulation with results in Figure 2.6). (b) The corresponding
Binder Cumulant 𝐺 as a function of noise 𝜂. Based on the results from these
two plots, the phase transition appears to be second-order, as indicated by
the smooth curve through the critical point in (a) and the lack of a definite
minimum in (b).
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Figure 2.8: The value of the order parameter (𝑣𝑎) as a function of noise (𝜂)
for various values of 𝑣0 in the small-velocity regime (𝐿 = 10, 𝑁 = 400).
Different values of 𝑣0 within this regime seem to make very little difference
in the overall result.

our simulation shown in Figure 2.9 agree with this single-peaked result, showing
evidence that the transition seems to be second-order in nature. It is difficult to
verify, however, if 𝐿 = 256 (the system size used in our simulation) is greater than
the earlier described 𝐿∗ since this quantity is hard to compute given that it is a
function of multiple parameters and seems to diverge for cases of angular noise
(especially in the small-velocity regime) [14].

Work by the group of Chaté et al. then describe the presence of density waves
(high-density bands of particles) in the ordered phase of the Vicsek Model [14,
19]. Nagy et al. argue that these may be due to inherent numerical artifacts in
the high-velocity regime related to the shape of the frame with periodic boundary
conditions [29]. They show that these waves have the tendency to run parallel
or slightly diagonal to the frame of the space. To prove this, they simulated the
Vicsek Model in hexagonal cells and found the waves travelling almost parallel to
the sides of the hexagons. Because of this possibility of artifacts, the Vicsek Model
becomes more difficult to interpret in the large-velocity regime [29].

We run the Vicsek Model 100 times and generate a histogram of the average
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Figure 2.9: PDF of the order parameter 𝑣𝑎 in the small-velocity regime with
𝑣0 = 0.25 (𝐿 = 256, 𝜌 = 1/8). Results displayed here were gathered from
∼ 105 time steps after an initial relaxation period of 104 time steps.

velocity of the particles after 1.5 × 104 time steps (displayed on Figure 2.10).
Note that even for only a relatively small number of simulations, there are

peaks around multiples of 𝜋/2 due to the high-density bands of particles moving
almost parallel to the square shaped frame of the simulation space. Figure 2.11
shows some examples of these waves (computed for larger 𝑣0). This conclusion on
the presence of artifacts related to the boundary conditions is reiterated also in
the work by Baglietto & Albano though with perhaps a different underlying cause
(more on this later) [5].

We then express the order parameter (𝑣𝑎) as a function of the noise (𝜂)
and compute the corresponding Binder Cumulant in the small and large-velocity
regimes in order to observe the phase transition. The results of this are summarised
in Figure 2.12.

Based on all this, our results seem to agree with those from Nagy et al. that
while the transition in the case of angular noise is continuous in the small-velocity
regime, there may be a discontinuous transition in the large-velocity regime [29].
Proving this is a result of numerical artifacts is outside the scope of this study,
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Figure 2.10: Normalised histogram of mean directions of motion of particles
in the large-velocity regime across 100 runs of the SVM (𝜂 = 0.191(2𝜋),
𝐿 = 256, 𝜌 = 1/8, 𝑣0 = 0.5).

Figure 2.11: Examples of high-density waves of particles moving almost par-
allel to boundaries of the frame in the large-velocity regime (𝜂 = 0.191(2𝜋),
𝐿 = 256, 𝜌 = 1/8, 𝑣 = 3.0).



CHAPTER 2. THE STANDARD VICSEK MODEL 27

Figure 2.12: (a) The order parameter (𝑣𝑎) expressed as a function of the
noise (𝜂) for two different values of 𝑣0 (𝐿 = 256, 𝜌 = 1/8). While the curve
appears continuous for 𝑣0 = 0.2, it seems to be discontinuous in the case
of 𝑣0 = 3.0. (b) The corresponding Binder Cumulant (𝐺) as a function
of the noise level (𝜂). There indeed seems to be a definite minimum in
the large-velocity regime, characteristic of a first-order transition. In the
small-velocity regime, the transition appears to be second-order based on
the smoother curve in (a) (though fluctuations in 𝐺 that may be caused by
slow convergence make the Binder Cumulant plot less interpretable in this
regard).
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but evidence presented in the earlier mentioned study from Nagy et al. seem to
indicate this to be the case [29].

Chaté et al. argue, however, that even in the small-velocity regime (where
results should be more interpretable), the phase transition should be first-order
[14]. They show simulations with 𝐿 = 1024, 𝜌 = 1/2, and 𝑣0 ≈ 0.05 resulting in
a discontinuous transition (as 𝐿∗ seems to be much greater in the small-velocity
regime than it is in the large one) [14]. There is still the possibility though that
there may be numerical artifacts in this result, as discussed in the next subsection.

2.3.3 Backward vs. Forward Update
Recall that in the original Vicsek Model [35], the new directions of motion 𝜃(𝑡+Δ𝑡)
are first computed then the positions updated according to Equation 2.1, which
we reiterate below

𝑥𝑖(𝑡 + Δ𝑡) = 𝑥𝑖(𝑡) + v𝑖(𝑡)Δ𝑡.

Note that even if 𝜃(𝑡+Δ𝑡) is computed first the new positions are computed using
v𝑖(𝑡). In the literature, the term backward update (or backward difference) is used
to describe this update rule [5, 19].

Some studies such as those from the group of Chaté, Grégoire, Ginelli, and
Raynaud [14, 18, 19] made use of a slightly modified update rule later called the
forward update (or forward difference), which was also called such and tested in [5].
While the new directions are still computed first, unlike the backward update rule,
they are immediately used to update the particle positions. The new positions are
then computed as

𝑥𝑖(𝑡 + Δ𝑡) = 𝑥𝑖(𝑡) + v𝑖(𝑡 + Δ𝑡)Δ𝑡. (2.10)

It is argued that this update rule should not affect asymptotic results (𝑁 → ∞,
𝑡 → ∞) [14]. However, Baglietto & Albano show that in high-density, large-
velocity cases (𝜌 = 2.0, 𝑣0 ≈ 0.5), the use of the forward update rule results
in a first-order transition, while the phase transition remains second-order when
applying the backward update rule [5]. They claim that this may be the result of a
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numerical artifact related to the boundaries of the space. As mentioned earlier, a
similar kind of numerical artifact was found by Nagy et al. despite making use of
the backward update rule [29]. In this regard though, there is some disagreement
from the studies since Nagy et al. show a first-order transition with the backward
update rule and large-velocity regime (which they claim results from a numerical
artifact), while Baglietto & Albano show it to be second-order, only finding a first-
order transition when applying the forward update rule [5, 29]. This could be a
result of the interaction of the other SVM parameters though as Nagy et al. ran
the Vicsek Model for a much larger absolute velocity (𝑣0 = 10 vs. 𝑣0 = 0.5 in the
study by Baglietto & Albano) and for different particle densities [5, 29].

More importantly though, Baglietto & Albano demonstrated that this was
an artifact related to the periodic boundary conditions (claimed to be associated
with the forward update rule) [5]. As mentioned earlier, their experiments with the
forward update rule in high-density, large-velocity cases initially resulted in a first-
order transition, but by randomly rotating the angle of the frame of the simulation
space at each time step, the transition became second-order once again. This is an
important result since it shows that the appearance of a discontinuous transition
may have stemmed from a numerical artifact [5]. Whether this artifact also exists
in the small-velocity regime was not clearly demonstrated, however.

In the small-velocity regime where results are easier to interpret, Baglietto &
Albano claim the forward and backward update rules generally do not change the
order of the phase transition [5]. Our simulation results (shown in Figure 2.13)
agree with this claim since for the more interpretable small-velocity regime, the
update rule does not appear to be changing the order of the transition. Instead,
a change in update rule shifts the critical point of the transition (in this case, a
leftward shift).

It is important to note though that our results here are with smaller system
sizes (𝐿 = 16). It is likely that given the parameters used here (being in the small-
velocity regime) that the value of 𝐿∗ is much larger and exceeds the capabilities
of the hardware being used. While Baglietto & Albano run the SVM for the low-
density, small-velocity regime (𝑣 = 0.1, 𝜌 = 0.75, 𝑁 = 32768, 𝐿 ≈ 209), showing it
to have a second-order transition, they do not do so for the very large system size
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Figure 2.13: (a) The order parameter (𝑣𝑎) as a function of noise (𝜂) for both
the forward (FU) and backward (BU) update rules (𝜌 = 4, 𝑣0 = 0.25). (b)
The corresponding Binder Cumulant (𝐺) as a function of noise (𝜂). Based
on these results, both the forward and backward update rules lead to second-
order phase transitions as there is no definite minimum in 𝐺 for either case.

(𝑣 = 0.05, 𝜌 = 1/2, 𝑁 = 524288, 𝐿 = 1024) that Chaté et al. use to demonstrate
a first-order transition in the small-velocity regime using the forward update rule
[5, 14].

Whether the results in the small-velocity regime from the group of Chaté are
affected by some form of artifact due to the update rule is not very clear yet.
Overall, it is still difficult to definitively state the order of the phase transition
in the SVM without further experiments with large system sizes and tests for
numerical artifacts similar to the earlier mentioned experiments by Baglietto &
Albano [5].



Chapter 3

The Modified Vicsek Model

The Vicsek Model serves as a good foundation for different modifications that
allow us to better study the collective motion of SPPs. In the previous chapter,
some variants in the implementation of the SVM were tackled. In all these cases,
however, the key interaction between particles remains to be the alignment of
headings to neighbours within a circular area of radius 𝑟.

Some more impactful modifications to the Vicsek Model involve changes to
these interaction rules. One possibility is the introduction of completely new rules
such as repulsion (particles pushing neighbours away) and attraction (particles
drawing neighbours closer) [22].

There are, however, variants of the Vicsek Model that maintain alignment as
the only interaction rule, but implement it differently from the SVM. One such
model is proposed by Costanzo & Hemelrijk, which we will refer to as the Modified
Vicsek Model (MVM) [15]. Despite the simple nature of the changes made in this
model, only introducing two new parameters while maintaining alignment as the
sole interaction rule, it can lead to interesting patterns of motion, namely bands,
lines, mills, fronts, and flocks [15]. For this thesis, we tackle only the first three of
these patterns (bands, lines, and mills) as their occurrence is quite visibly distinct.

In this chapter, we first introduce the modified model, discuss some of the
nuances of the implementation, and then study the behaviour of the model as a
function of different parameters, giving particular importance to the conditions

31
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that result in mill formation.

3.1 Model Definition
The MVM from Costanzo & Hemelrijk largely retains the definition of the SVM
stated in Section 2.1 except for two main changes [15].

1. Field-of-view (𝜙)

In the SVM, particles align their directions of motion with other particles
within a circular area of radius 𝑟. In the MVM, a parameter 𝜙 ∈ [0, 2𝜋]
controls how much of the circular area around each particle is part of its
perception. This means that if 𝜙 < 2𝜋, a particle is blind to a certain
area behind it. Particles in this blind area are not included in alignment
computations, even if they are within the interaction radius 𝑟. Figure 3.1
shows some examples of the resulting interaction areas for various values of
𝜙.

2. Maximum Angular Velocity (𝜔)

Recall that in the SVM, 𝜃𝑖(𝑡 + Δ𝑡) is computed as the mean direction of
motion of particles within the interaction radius of some particle 𝑖. Given
this, particles can instantaneously change headings as there is no limit on
the difference between 𝜃𝑖(𝑡) and 𝜃𝑖(𝑡 + Δ𝑡). The only role that 𝜃𝑖(𝑡) plays is
that it is part of the computation for the mean as all particles are deemed
to be within their own interaction areas.

The MVM introduces a maximum angular velocity 𝜔 ∈ [0 rad/Δ𝑡, 𝜋 rad/Δ𝑡].
This limits how much the directions of motion of particles can change within
a single time step.

Putting these two changes together, the equation for 𝜃𝑖(𝑡 + Δ𝑡) (Equation 2.4
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Figure 3.1: All cases in the figure show a particle (in red) with a heading of
𝜋/2 (as shown by the direction of the arrow). The blue filled circles denote
the interaction area or perception of the given particle with (a) 𝜙 = 𝜋/2,
(b) 𝜙 = 3𝜋/2, (c) 𝜙 = 2𝜋. Note that if 𝜙 = 2𝜋, then the interaction area
becomes the same as that in the SVM.

in the SVM) is replaced by

𝜃𝑖(𝑡 + Δ𝑡) =

⎧{{
⎨{{⎩

⟨𝜃𝑗(𝑡)⟩𝑟,𝜙 + Δ𝜃𝑖 for |ΔΘ𝑖| < 𝜔Δ𝑡

𝜃𝑖(𝑡) + 𝜔Δ𝑡 + Δ𝜃𝑖 for ΔΘ𝑖 ≥ 𝜔Δ𝑡

𝜃𝑖(𝑡) − 𝜔Δ𝑡 + Δ𝜃𝑖 for ΔΘ𝑖 ≤ −𝜔Δ𝑡

(3.1)

where ⟨𝜃𝑗(𝑡)⟩𝑟,𝜙 is the average direction of motion of agents within the interac-
tion range 𝑟 and within the field-of-view 𝜙 [15]. The variable ΔΘ𝑖 is the angular
difference or signed minimum magnitude rotation (whether clockwise or counter-
clockwise) from 𝜃𝑖(𝑡) to ⟨𝜃𝑗(𝑡)⟩𝑟,𝜙. For example, if 𝜃𝑖(𝑡) = 𝜋/2 and ⟨𝜃𝑗(𝑡)⟩𝑟,𝜙 = 𝜋/4
then ΔΘ𝑖 = −𝜋/4 since a 𝜋/4 rotation clockwise (as opposed to a 7𝜋/4 rotation
counterclockwise) is the smallest magnitude rotation to get from 𝜃𝑖(𝑡) to ⟨𝜃𝑗(𝑡)⟩𝑟,𝜙.
The definition of the noise value remains the same as the original SVM from [35]
with Δ𝜃𝑖 as a number selected uniformly at random from the interval [−𝜂/2, 𝜂/2].

The main parameters of the model are then re-expressed as ratios between
these quantities and the original parameters in the SVM (with additional factors to
make the values dimensionless), namely the absolute velocity to maximum angular
velocity ratio (𝑣0/(𝜔𝑟)) and the noise to maximum angular velocity ratio (𝜂Δ𝑡/𝜔)
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[15]. With these modifications to the model, new patterns of motion may be
observed such as bands, lines, and mills (displayed in Figure 3.2).

Figure 3.2: Some of the patterns of motion displayed by the MVM using
similar parameter values to those in [15] (though with different values for 𝐿
and 𝑁). In all these examples, 𝜔 = 10∘/Δ𝑡 ≈ 0.1745 rad/Δ𝑡. In order to
vary the ratios then, the other parameter involved is varied (𝜂 in 𝜂Δ𝑡/𝜔 and
𝑣0 in 𝑣0/(𝜔𝑟)). (a) Example of bands, high-density collections of particles
moving next to each other in about the same direction, usually spanning
the length of one of the sides of the simulation space (𝐿 = 20, 𝑁 = 2000,
𝜙 = 𝜋, 𝜂Δ𝑡/𝜔 = 4.5, 𝑣0/(𝜔𝑟) = 2.0) [15]. Occasionally more than one
band forms and between the bands are scattered particles moving in random
directions. (b) Example of particles forming lines, where particles travel
one in front of the other (𝐿 = 25, 𝑁 = 2000, 𝜙 ≈ 0.1745, 𝜂Δ𝑡/𝜔 = 0,
𝑣0/(𝜔𝑟) = 1.03). (c) Particles forming mills: groups of particles moving in
a circular pattern around a common centre (𝐿 = 20, 𝑁 = 1800, 𝜙 = 𝜋,
𝜂Δ𝑡/𝜔 = 0, 𝑣0/(𝜔𝑟) = 0.86) [15].

3.2 Implementation Details
These changes to the SVM introduce a few additional complexities to the im-
plementation of the model. We tackle two specific details in this section: (a)
computing agents in the field-of-view given periodic boundary conditions, and (b)
computing the centre of mass of clusters of particles (required to study the model
in certain ways discussed later on).
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3.2.1 Computing the Field-of-View
The introduction of a limited field-of-view makes the MVM more computationally
involved than the SVM. Two main things have to be dealt with in this regard:
(i) how particles within the field-of-view are included (or those in the blind area
excluded), and (ii) how this computation can be done taking into account the
periodic boundary conditions.

We first tackle the computation of which particles are within the field-of-view
given some value of the parameter 𝜙. Suppose we are interested in computing if
some particle 𝑗 is within the perception of a particle 𝑖 given that 𝑥𝑖 = (𝑎𝑖, 𝑏𝑖) and
𝑥𝑗 = (𝑎𝑗, 𝑏𝑗). Let 𝛼 be the angle formed by 𝑥𝑗, 𝑥𝑖 and a horizontal line passing
through 𝑥𝑖, parallel or equal (in the case that 𝑏𝑖 = 0) to the x-axis. The size of
this angle is given by

𝛼 = arctan (
𝑏𝑗 − 𝑏𝑖
𝑎𝑗 − 𝑎𝑖

) . (3.2)

Note that we apply here the two-argument arctan function, sometimes referred to
as atan2 in some programming languages.

Let ΔΘ𝑖,𝛼 be the angular difference from 𝜃𝑖 to 𝛼 (as described previously in
Section 3.1). Assuming 𝑗 is within the interaction radius 𝑟 around 𝑖, (as there is
no need to check the field-of-view otherwise), then 𝑗 is within the perception of 𝑖 if
∣ΔΘ𝑖,𝛼∣ ≤ 𝜙/2. An example of these computations is shown in Figure 3.3 below.

An issue arises though when applying this process in cases such as the MVM
where there are periodic boundary conditions since the computed value of 𝛼 does
not take this into account. One way of getting around this is to tile a 3 × 3 space
using the 𝐿 × 𝐿 square that the model is simulated on. Doing this then allows
for the proper computation of neighbouring particles within the given field-of-view
(computing neighbours only for particles in the central tile). An example of such
a tiling is shown in Figure 3.4.

Making use of this tiling and the earlier mentioned computational process,
Figure 3.5 shows a specific particle and the resulting neighbours within its field-
of-view.
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Figure 3.3: Illustration of the process of checking if some particle is within
the field-of-view of another particle created using the GeoGebra software [23].
Suppose there are two particles 𝑖 and 𝑗 with 𝑥𝑖 = (0, 0), 𝜃𝑖 = 𝜋/2 (as shown
by the red, upward facing arrowhead), and 𝑥𝑗 = (−0.5, 0.5) (represented by
a blue point). We then have 𝛼 = arctan ( 0.5−0

−0.5−0) = 3𝜋/4. Suppose then that
𝜙 = 𝜋/2. In this case, ∣ΔΘ𝑖,𝛼∣ = 𝜋/4 ≤ 𝜙/2. Because of this, 𝑗 is within the
perception of 𝑖 and assuming 𝑗 is also within the interaction radius 𝑟 around
𝑖, then it would be included in the computation of 𝜃𝑖(𝑡 + Δ𝑡).

3.2.2 Centre of Mass
In order to study the behaviour of the MVM across numerous runs, the average
absolute value of normalised angular momentum (𝑚𝑎) has to be computed. We
tackle this specific quantity in the next section, but part of the process of comput-
ing it requires computing the centre of mass or centroid of clusters of particles.

Since all the particles are physically identical, a centre of mass may naively be
computed as the mean of the particle coordinate positions. However, because we
are dealing with periodic boundary conditions, computing the centre of mass for
each cluster becomes more complicated as particles on opposite edges of the frame
are actually close to each other. Bai & Breen detail a method for computing this
centre of mass in [7], which we go through briefly here.

This method entails first projecting the given 2D points (particle coordinate
positions) onto two different 3D “tubes” the first created by wrapping the space to
allow the two horizontal axes to meet and the second by wrapping the space the
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Figure 3.4: On the left is an example of some particles on a 20 × 20 space.
The plot on the right shows a 3 × 3 tiling using such a space. With this, the
correct value of 𝜃𝑖(𝑡 + Δ𝑡) which takes into account the periodic boundary
conditions may then be computed for the particles in the central tile.

Figure 3.5: On the left, a particle 𝑖 (red arrow) is surrounded by numerous
other particles (the mass of white circles). The figure on the right shows only
those particles within the field-of-view of 𝑖, assuming 𝜙 = 𝜋/2.
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other way to allow the two vertical axes to meet [7]. After projecting the particles
onto each 3D surface, the 3D centre of mass for each projection is computed. These
3D centres of mass are then projected back to the surface of their respective tubes,
which are then used to compute the true 2D centre of mass that accounts for the
periodic boundary conditions.

The proceeding equations in this subsection are from the work of Bai & Breen
with some slight changes to fit the context of the Vicsek Model [7]. Given that the
Vicsek Model is run on an 𝐿 × 𝐿 square space and each particle has position (𝑖, 𝑗),
the first projection onto tube 𝑇𝑖 made by connecting the vertical axes together
(𝑖 = 0 and 𝑖 = 𝐿) is given by

𝑥 = 𝑟𝑖𝑐𝑜𝑠(𝜃𝑖), 𝑦 = 𝑗, 𝑧 = 𝑟𝑖𝑠𝑖𝑛(𝜃𝑖),

𝑟𝑖 = 𝐿
2𝜋

, 𝜃𝑖 = 𝑖
𝐿

2𝜋.
(3.3)

The second projection on the tube 𝑇𝑗 found by connecting the horizontal axes
(𝑗 = 0 and 𝑗 = 𝐿) is given by a similar set of equations.

𝑥 = 𝑖, 𝑦 = 𝑟𝑗𝑐𝑜𝑠(𝜃𝑗), 𝑧 = 𝑟𝑗𝑠𝑖𝑛(𝜃𝑗),

𝑟𝑗 = 𝐿
2𝜋

, 𝜃𝑗 = 𝑗
𝐿

2𝜋.
(3.4)

Once the projections for each agent position denoted 𝑋𝑇𝑖
and 𝑋𝑇𝑗

have been
found, computing the two 3D centres of mass becomes straightforward and is given
by

�̄� = 1
𝑁

𝑁
∑
𝑘=1

𝑋𝑘, (3.5)

where �̄�𝑇𝑖
is the centre of mass in the 𝑇𝑖 projection (setting 𝑋 = 𝑋𝑇𝑖

) and �̄�𝑇𝑗

is the centre of mass in the 𝑇𝑗 projection (setting 𝑋 = 𝑋𝑇𝑗
). Suppose 𝑋𝑇𝑖

=
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑋𝑇𝑗

= (𝑥𝑗, 𝑦𝑗, 𝑧𝑗), then the true 2D centre of mass ( ̄𝑖, ̄𝑗) is then
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given by

𝜃𝑖 = arctan(−𝑧𝑖, −𝑥𝑖) + 𝜋, ̄𝑖 = 𝐿
2𝜋

𝜃𝑖,

𝜃𝑗 = arctan(−𝑧𝑗, −𝑦𝑗) + 𝜋, ̄𝑗 = 𝐿
2𝜋

𝜃𝑗.
(3.6)

An example of the result of this computation may be seen in Figure 3.6 alongside
the incorrect result if the naive method were used instead.

Figure 3.6: The true centre of mass of the given particles computed using the
described method from [7] marked with a green circle. A red cross marks an
incorrect centre of mass computed using the naive method not taking into
account periodic boundary conditions.

3.3 Model Results
This section will go through results of simulations of the MVM with various param-
eters and the different patterns of motion that may emerge. Just like the original
study by Costanzo & Hemelrijk, particular attention is given to the phenomenon
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of milling and the conditions that allow for it [15].
While the patterns of motion shown in Figure 3.2 (bands, lines, and mills) can

be easily verified through visual inspection of the agent positions and directions
of motion, in order to properly study results from the MVM, these patterns have
to first be quantified [15]. Two values can be used to achieve this. The first value
is the average normalised velocity (𝑣𝑎), which is the order parameter discussed
for the phase transitions in the SVM and may be computed with Equation 2.5
(reiterated below) [15, 35].

𝑣𝑎 = 1
𝑁𝑣0

∥
𝑁

∑
𝑖=0

v𝑖∥

The second value used is the average absolute value of the normalised angular
momentum (𝑚𝑎), but to compute this value, particles must first be assigned clus-
ters where the maximum distance between any two particles in a cluster is 𝑑𝑐 = 0.5
(the value of which was chosen to keep mills in the same cluster) [15]. This clus-
tering can be done by first forming a graph 𝐺 = (𝑉 , 𝐸) where 𝑉 = {1, ..., 𝑁}
(each particle is a node) and there is then an edge between any two nodes within
𝑑𝑐 distance of each other (taking into account periodic boundary conditions). A
simple graph traversal may then be used to find connected components in 𝐺, each
of which may be interpreted as a cluster.

Once the particles have been clustered, 𝑚𝑎 may be computed with the equation

𝑚𝑎 = 1
𝑁

𝑁
∑
𝑖=1

|𝑟𝑐𝑚,𝑖 × 𝑢𝑖|
|𝑟𝑐𝑚,𝑖|

, (3.7)

where |𝑟𝑐𝑚,𝑖| = |𝑟𝑖 − 𝑟𝑐𝑚| is the distance between some particle 𝑖 and the centre of
mass of its cluster (not taking into account the periodic boundary conditions), and
the product in the numerator is defined with the operation |𝑎 × 𝑏| = |𝑎1𝑏2 − 𝑎2𝑏1|
[15]. Once both 𝑣𝑎 and 𝑚𝑎 are computed, the different patterns of motion may
then be viewed in the context of these two quantities. The following Figures 3.7,
3.8, and 3.9 show the results of this.

Zooming into milling then, one can see from Figure 3.9 that there is generally
a small value for 𝑣𝑎 and a large value for 𝑚𝑎. From this, a heuristic may be formed
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Figure 3.7: On the right is a plot of the particles at time 𝑡 = 4000 forming
high-density bands, while the figure on the left shows the values of 𝑣𝑎 and
𝑚𝑎 over time. One might infer from this that banding is characterised by a
large mean 𝑣𝑎 and moderately large mean 𝑚𝑎.

Figure 3.8: On the right is a plot of the particles at time 𝑡 = 2000 forming
lines, while the plot on the left shows the values of 𝑣𝑎 and 𝑚𝑎 over time. One
can infer from this that when particles form lines, the value of 𝑣𝑎 is typically
large, but the value of 𝑚𝑎 is smaller than that found in the banding cases.
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Figure 3.9: The plot on the right shows particles at time 𝑡 = 2000 forming
circular mills. On the left, are the value of 𝑣𝑎 and 𝑚𝑎 over time. One
can infer that similar to bands, mills also have a large mean value for 𝑚𝑎,
however, the value for 𝑣𝑎 is generally much smaller (as particles in a mill
may cancel out the velocities of each other).

on when this pattern of motion occurs based on the values of 𝑣𝑎 and 𝑚𝑎. Costanzo
& Hemelrijk set the thresholds 𝑚𝑎 > 0.75 and 𝑣𝑎 < 0.5 as the conditions for milling
[15]. We apply the same thresholds, making make use of the mean values over time
of 𝑚𝑎 and 𝑣𝑎.

We then run similar experiments to those from Costanzo & Hemelrijk to verify
their results on the proportion of runs that result in mills as a function of different
parameters [15]. For each of these experiments, the simulation was run 40 times
(unless otherwise specified) for each value of the independent variable. The de-
pendent variable, 𝑝𝑚𝑖𝑙𝑙 (the proportion of the runs that resulted in milling) was
then computed for the different values of the independent variable. To get more
stable results, the first 1500 time steps were not included for the computation of
the time averages of 𝑚𝑎 and 𝑣𝑎 as the first few time steps usually involve large
fluctuations.

First, we run this experiment with noise to maximum angular velocity ratio
(𝜂Δ𝑡/𝜔) as the independent variable. Based on the results from Figure 3.10, the
value of 𝑝𝑚𝑖𝑙𝑙 is generally large (close to one) for smaller values of 𝜂Δ𝑡/𝜔, but
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there is a sudden drop to a zero value where milling becomes very unlikely (in this
case for 𝜂Δ𝑡/𝜔 ≈ 4).

Figure 3.10: The proportion of 40 cases that resulted in milling as a function
of the noise to maximum angular velocity ratio 𝜂Δ𝑡/𝜔 for parameter values
similar to [15] (𝐿 = 20, 𝜌 = 2.5, 𝜙 = 𝜋, 𝑣0/(𝜔𝑟) = 1.03). Note that for all
runs, the maximum angular velocity was fixed with 𝜔 = 10∘ ≈ 0.1745 rad
and only the value of 𝜂 was varied.

We then run an experiment this time with 𝑝𝑚𝑖𝑙𝑙 as a function of the density of
particles 𝜌. The results from Figure 3.11 show that just like the order parameter
of the SVM, the proportion of milling cases increases quite rapidly as the density
of particles increases. At 𝜌 ≈ 4, the value of 𝑝𝑚𝑖𝑙𝑙 gets close to one, meaning there
is almost always milling past a certain density (for the given values of the other
parameters).

Being a new parameter introduced by the MVM, it is also of interest to view
𝑝𝑚𝑖𝑙𝑙 as a function of the field-of-view parameter 𝜙. The result of this simulation
is displayed in Figure 3.12. Based on this, one can infer that mills only form
for moderate values of 𝜙 within the approximate range 𝜋/2 < 𝜙 < 3𝜋/2. Values
outside this rough estimate cause a sudden drop in 𝑝𝑚𝑖𝑙𝑙 to an approximately zero
value.

Lastly, we view the mill proportion as a function of the speed of each particle
(𝑣0) by fixing the ratio 𝑣0/(𝜔𝑟) = 0.9 and varying both 𝑣0 and 𝜔 (similar to the
experiment in [15]). Results in Figure 3.13 show that for the fixed ratio 𝑣0/(𝜔𝑟),
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Figure 3.11: The proportion of milling cases over 40 runs (𝑝𝑚𝑖𝑙𝑙) as a function
of particle density 𝜌 for parameter values similar to [15] (𝐿 = 20, 𝜙 = 𝜋,
𝜂Δ/𝜔 = 0.5, 𝑣0/(𝜔𝑟) = 1.03, 𝜔 = 10∘ ≈ 0.1745 rad).

Figure 3.12: The proportion of milling cases over 40 runs (𝑝𝑚𝑖𝑙𝑙) as a function
of the field-of-view 𝜙 for parameter values similar to those from [15] (𝐿 = 20,
𝜌 = 2.5, 𝜂Δ/𝜔 = 0.5, 𝑣0/(𝜔𝑟) = 1.03, 𝜔 = 10∘ ≈ 0.1745 rad).



CHAPTER 3. THE MODIFIED VICSEK MODEL 45

𝑝𝑚𝑖𝑙𝑙 has value close to one until it starts decreasing with 𝑣0 > 0.3. At around
𝑣0 ≈ 0.5, the mill proportion is already 0. This means that even for a given value of
𝑣0/(𝜔𝑟), moderate values of 𝑣0 and 𝜔 are still more favourable for mill formation.

Figure 3.13: The proportion of milling cases over 100 runs (𝑝𝑚𝑖𝑙𝑙) as a func-
tion of 𝑣0 with fixed ratio 𝑣0/(𝜔𝑟) = 0.9 for parameter values from [15]
(𝐿 = 20, 𝜌 = 2.5, 𝜙 = 𝜋, 𝜂Δ𝑡/𝜔 = 0).

From these experiments, one can infer the conditions favourable to the forma-
tion of mills. Similar to an ordered state in the SVM, milling is most prevalent in a
low-noise, high-density environment (assuming some fixed value for 𝜔). However,
this only occurs for moderate values of 𝜙, as based on trials, too small or too large
a value of 𝜙 reduces the proportion of cases that result in milling rather steeply.
Given some fixed value of the ratio 𝑣0/(𝜔𝑟), milling occurs only for smaller to
moderate values of 𝑣0 and 𝜔, as allowing particles to move or rotate too quickly
is not conducive for mill formation. Results of the experiments carried out here
and the resulting inferences on the conditions for milling agree quite closely with
those from Costanzo & Hemelrijk [15].
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Conclusions

In this work, we first explored the Standard Vicsek Model as originally proposed
by Vicsek et al. in [35], and then demonstrated some of its behaviours, most
notably a phase transition from a disordered phase to an ordered phase as a result
of changing the level of noise or density of particles in the system.

There has been some debate in the literature regarding the order of the phase
transition in the context of different variations in the implementation of the model.
Here we ran simulations testing some of these variations: namely changes in the
noise type, the velocity regime, and the position update rule. First, we ran the
SVM with intrinsic noise (angular noise) and extrinsic noise (vectorial noise and
simple extrinsic noise). Simulations showed that while angular noise results in a
second-order phase transition, the two kinds of extrinsic noise tested here (SEN
and vectorial noise) appear to result in first-order transitions. Simulation results
show that the phase transition in the large-velocity regime appears to be first-order
as opposed to the second-order one in the small-velocity regime. Aside from this,
runs of the Vicsek Model in the large-velocity regime exhibit high-density waves of
particles in the ordered phase that seem to be influenced by the shape of the frame
of the simulation space, which Nagy, et al. argue stems from numerical artifacts
[29]. Based on our results, the update rule does not seem to have too significant
an effect on the results of the model, but it does cause a shift in the critical point.
However, work from Baglietto & Albano claim that the use of the forward update

46



CHAPTER 4. CONCLUSIONS 47

rule introduces numerical artifacts into the simulation [5].
Our results here agree with studies from Baglietto & Albano [5], Nagy et al.

[29], and Aldana et al. [2], but run contrary to those from the group of Chaté
et al. [13, 14, 19]. However, simulations performed here were for relatively small
system sizes. Overall, there is still some contention with regard to the order of
the phase transition in the SVM as the value of 𝐿∗, beyond which the system
supposedly shows its asymptotic behaviour with a discontinuous transition can
grow prohibitively large [14]. Further experiments would be required to see if
factors such as the update rule introduce numerical artifacts in this regard.

Afterward, we then tackled a Modified Vicsek Model as proposed by Costanzo
& Hemelrijk in [15], which introduced two new parameters, the maximum angular
velocity 𝜔 and the particle field-of-view 𝜙. These additions allow for the emer-
gence of new patterns of motion of which bands, lines, and mills were tackled.
These patterns were then quantified and the conditions for milling were fleshed
out through experiments. Results showed mills were more likely to form in sys-
tems with smaller values for the noise to maximum angular velocity ratio (𝜂Δ𝑡/𝜔),
higher particle densities (𝜌), moderate values for the field-of-view (𝜙), and given
some fixed value for 𝑣0/(𝜔𝑟), moderate values for absolute and maximum angular
velocities. Overall, these results reaffirm conclusions from the original study [15].



Appendix A

Core Model Implementation

Included here are the core functions necessary to run the SVM (with its variants)
and the MVM. For the sake of brevity, not all of the functions are included (some
have been excluded such as some of the utility functions to compute the order pa-
rameter, compute the centre of mass, or normalise angles to a certain range, etc.).
Though what is essential (and less straightforward such as particle clustering) has,
for the most part, been included here.

using Distances, NearestNeighbors, Distributions, LinearAlgebra, DataStructures

"""

Agents are then moved `v` units in this direction taking into account periodic

boundary conditions with size `L`.

# Arguments

- `agent_pos`: Positions of agents

- `agent_dirs`: Direction of motion of each agent in radians

- `v`: Distance travelled by each agent per unit of time

- `L`: Size of the plane the agents are moving on

# Return

- `agent_pos`: Positions of agents after one step of motion

- `moves`: Vector of motion (velocity) of each agent

"""

48
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function move_agents(agent_pos, agent_dirs, v, L)

agent_pos = copy(agent_pos)

moves = [cos.(agent_dirs) sin.(agent_dirs)].*v

#Add velocities to the position of each agent

agent_pos += moves

#Periodic boundary conditions: add L to negative values and get the modulo

#of all positions by L

agent_pos[agent_pos.<0].+=L

agent_pos.%=L

return agent_pos,moves

end;

"""

The next three functions are similar in that they all compute θ(t+Δt), but apply

different forms of noise. They all share the same parameters (listed here). The

function "normalise_angle" that these functions call is a utility function (not

included here) that simply normalises an angle to the range (-π,π].

# Arguments

- `agent_pos`: Positions of agents

- `agent_dirs`: Direction of motion of each agent in radians

- `L`: Size of the plane the agents are moving on

- `r`: Range of interaction

- `η`: Noise level (interpretation varying based on noise type as discussed in

the thesis body)

# Return

Returns an array containing the new direction of motion for each agent

"""

function compute_directions(agent_pos, agent_dirs, L, r, η)

new_dirs=[]

#Make use of a BallTree (from NearestNeighbors.jl)

btree = BallTree(transpose(agent_pos), PeriodicEuclidean([L,L]))
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for i=1:(size(agent_pos,1))

row = agent_pos[i,:]

#Get neighbours and compute average velocity

neighbours = inrange(btree, row, r, true)

neighbour_dirs = agent_dirs[neighbours,:];

new_dir = atan(mean(sin.(neighbour_dirs)),mean(cos.(neighbour_dirs)))

push!(new_dirs,new_dir)

end

#Add angular noise and return resulting angle normalised to range (-π,π]

if η!=0

return normalise_angle.(new_dirs + rand(Uniform((-η/2), (η/2)),

size(new_dirs)))

else

return normalise_angle.(new_dirs)

end

end;

#Computes θ(t+Δt) applying simple extrinsic noise as defined in the thesis.

function compute_directions_simple_extrinsic(agent_pos, agent_dirs, L, r, η)

new_dirs=[]

#Make use of a BallTree (from NearestNeighbors.jl)

btree = BallTree(transpose(agent_pos), PeriodicEuclidean([L,L]))

for i=1:(size(agent_pos,1))

row = agent_pos[i,:]

neighbours = inrange(btree, row, r, true)

neighbour_dirs = agent_dirs[neighbours,:];

#Add a simple extrinsic noise if the noise level is non-zero

if η != 0

neighbour_dirs += rand(Uniform((-η/2), (η/2)), size(neighbour_dirs))

end

new_dir = atan(mean(sin.(neighbour_dirs)),mean(cos.(neighbour_dirs)))

push!(new_dirs,new_dir)
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end

#Return new directions (with noise already applied) in range (-π, π]

return normalise_angle.(new_dirs)

end;

#Computes θ(t+Δt) applying vectorial noise as discussed in the thesis.

function compute_directions_vectorial(agent_pos, agent_dirs, L, r, η)

new_dirs=[]

#Make use of a BallTree (from NearestNeighbors.jl)

btree = BallTree(transpose(agent_pos), PeriodicEuclidean([L,L]))

for i=1:(size(agent_pos,1))

row = agent_pos[i,:]

#Get neighbours as other agents within r units away

neighbours = inrange(btree, row, r, true)

neighbour_dirs = agent_dirs[neighbours];

#Generate unit vector in the direction of neighbour directions of motion

unit_vecs = hcat([cos.(neighbour_dirs), sin.(neighbour_dirs)]...);

new_vec = sum(unit_vecs, dims=1)[1,:]

#If the noise level is not 0, then add the perturbation

if η != 0

#Generate and apply noise vector

noise_dir = rand(Uniform(-π, π))

noise_vec = [cos.(noise_dir), sin.(noise_dir)] .*

(η * size(neighbour_dirs)[1]);

new_vec += noise_vec

end

#Compute the angle of the resulting vector as the new direction

new_dir = atan(new_vec[2], new_vec[1])

push!(new_dirs,new_dir)

end

#Return new directions (with noise already applied) in range (-π, π]

return normalise_angle.(new_dirs)
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end;

"""

Computes which neighbours are within the field-of-view (in terms only of angle

and not distance, as it assumes that input has already been filtered).

# Arguments

- `neighbour_pos`: Matrix containing positions of neighbours

- `curr_facing`: Direction of motion in radians of the selected agent

- `curr_pos`: Position of the selected agent

- `fov`: Angle (in radians) for the field-of-view of the selected agent

# Return

Returns an array of indices of the neighbour_pos input that are within the

selected agent's field-of-view

"""

function in_fov(neighbour_pos, curr_facing, curr_pos, fov)

#Get the angle between the current agent and neighbours

angles_between = [atan(reverse(row)...) for row in

eachrow(neighbour_pos .- transpose(curr_pos))]

#Minimum rotation from current facing to the angle of neighbours

diff = min_rotation.(fill(curr_facing, length(angles_between)),

angles_between)

#Include self as within the interaction radius

in_eps = (x,y) -> all(abs.(x-y) .< (10^-7))

find_self = in_eps.(Ref(curr_pos), eachrow(neighbour_pos))

#Get neighbours within the field-of-view (including self)

in_fov_ind = (abs.(diff) .<= fov/2) .| find_self

return in_fov_ind

end;

"""

Function below computes new directions of motion (similar to the previous
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functions above), but taking into account two new parameters below (as

discussed in the thesis). This is used in runs of the MVM.

- `fov`: Field-of-view of agents

- `ω`: Maximum angular velocity

"""

function compute_directions_fov(agent_pos, agent_dirs, L, r, η, fov, ω)

new_dirs=[]

agent_pos = copy(agent_pos)

agent_dirs = copy(agent_dirs)

#Create a 3 x 3 tiled space by shifting around the original L x L square

pos_builder = []

dir_builder = []

offset = [-L 0 L]

for i in offset

for j in offset

curr_pos = [agent_pos[:,1].+i agent_pos[:,2].+j]

push!(pos_builder, curr_pos)

push!(dir_builder, copy(agent_dirs))

end

end

pos_builder = vcat(pos_builder...)

dir_builder = vcat(dir_builder...)

#Create a BallTree (from NearestNeighbors.jl) to compute neighbours quickly

btree = BallTree(transpose(pos_builder))

for i=1:(size(agent_pos,1))

row = agent_pos[i,:]

old_dir = agent_dirs[i]

neighbours = inrange(btree, row, r, true)

#Compute for neighbours and get only those in the fov

neighbour_pos = pos_builder[neighbours,:];

if length(neighbours)>1

in_fov_ind = in_fov(neighbour_pos, old_dir, row, fov)
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neighbours = neighbours[in_fov_ind]

end

neighbour_dirs = dir_builder[neighbours,:];

#Compute the new direction and apply the limit defined by ω

new_dir = atan(mean(sin.(neighbour_dirs)),mean(cos.(neighbour_dirs)))

min_rot = min_rotation(old_dir, new_dir)

if min_rot >= ω

new_dir = old_dir + ω

elseif min_rot <= -ω

new_dir = old_dir - ω

end

push!(new_dirs,new_dir)

end

#Add noise and return computed angle in the range (-π, π]

if η!=0

return normalise_angle.(new_dirs + rand(Uniform((-η/2), (η/2)),

size(agent_dirs)))

else

return normalise_angle.(new_dirs)

end

end

"""

Clusters agents using a graph traversal as discussed in the thesis (necessary

to compute the value of mₐ).

# Arguments

`agent_pos`: Positions of agents

`L`: Size of the plane the agents are moving on

`dc`: Distance between agents in the cluster (maximum edge length in graph)

# Return
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Returns an array containing the assigned cluster ID for each corresponding agent

"""

function cluster_agents(agent_pos, L, dc)

N = size(agent_pos)[1]

clusters = collect(1:N);

vis = fill(false, N);

btree = BallTree(transpose(agent_pos), PeriodicEuclidean([L,L]))

#Start a BFS from each agent that hasn't been visited

for i=1:N

#If Node i is not visited, start a BFS from it

if !vis[i]

queue = Queue{Int}();

enqueue!(queue, i)

vis[i] = true

#While there are nodes in the queue

while !isempty(queue)

curr = dequeue!(queue)

row = agent_pos[curr,:]

#Get unvisited neighbours and set them to the same cluster

neighbours = inrange(btree, row, dc, true)

neighbours = neighbours[.!vis[neighbours]]

clusters[neighbours] .= i

vis[neighbours] .= true

#Put neighbours in the queue to continue the graph traversal

for ind in neighbours

enqueue!(queue,ind)

end

end

end

end

return clusters

end;
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