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Abstract

In this paper, we study on-off intermittency behaviour in the case of electricity spot
market prices observed in the Nord Pool. For this purpose, we analysed the returns of
spot market prices. High and low peaks reveal the existence of extreme events — our
main ambition in this thesis is to investigate in what way extreme events influence
the cost of electricity. The task is to determine if the spot prices comply with on-off
intermittency behaviour. On-off intermittency in dynamical systems requires the
exhibition of two distinctive states during the course of the time series; the “on” and
“off” states. The “off” state being where the quantity stays nearly constant compared
to the “on” state, where the quantity has a fleeting burst away from the constant
value. Work has been previously presented to reveal a universal scaling behaviour for
such on-off intermittent systems; the length of time intervals between bursts should
follow a —3/2 power law distribution. Within our spot price data, we discover
price spikes and volatility, investigate the differences in hours of extreme prices and
attempt to fit a power law. The standard way to probe power law behaviour is to
create a double logarithmic histogram of the frequency distribution. If while doing
so we notice a straight line form, this is an indication of the distribution following a
power law and the gradient of this line is our scaling parameter; which in the case of
on-off intermittency is —3/2. We present statistical checks to analyse the strength

of our findings after fitting a least squares linear regression line to conclude finally.
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Chapter 1: Introduction

This thesis concentrates on the extreme events within the electricity market, specif-
ically the Nord Pool. The price of electricity is the core index of the market; it
possesses a ‘spiky’ nature; within a few hours, prices can upsurge tenfold. In this
thesis, a price spike is formally defined as a state such that the spot price surpasses
a set threshold fairly outlying from the standard range of fluctuations. These spikes
are usually unanticipated creating extreme volatility; a pronounced characteristic
within this market. A particular feature of the Nord Pool is short-lived price spikes
that drop back to a mean level within a short period. Prices consequently cluster
around the mean level, while those that do not give rise to our study of extreme

values.

We aim to identify or reject the hypothesis of our spot price data behaving in
terms of on-off intermittency. On-off intermittency is ultimately characterised by
two states, on, representing the burst and off, representative of the mean level state.
It was observed initially in the system of coupled identical chaotic maps, and further
studies saw the power-law distributions of the nearly level state adhere to a rule.
“At the onset of intermittent behaviour, the distribution of laminar phases for a
large class of random driving cases exhibits a universal asymptotic -3/2 power law.”
(Heagy, Platt and Hammel, 1994).

In this work, we consider the events of extreme price variations in electricity
prices from the Nord Pool market over eight years from 1999. In chapter 2, we
provide an overview of the Nord Pool market and the data we will analyse, along
with some characteristics we find from this data set. We will also learn about power
laws, intermittency and returns. Chapter 3 analyses the properties we draw from

the time intervals between extreme events. To capture these extreme events, we set
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a threshold value. To carry out this study, we use the program R to produce our

figures and findings. We finally reach a methodical conclusion in chapter 4.



Chapter 2: Background

2.1 Nord Pool

Nord Pool operates efficient, simple and secure power markets in the Nordics, Baltics,
Germany and the UK, (Nord Pool). The Nordic power market was established in
1993, and in 2002 the spot market was fully recognised as a self-governing licensed

physical power exchange.

Nord Pool runs as a single market with each region equipped with generators to
fulfil that areas demand cost-efficiently. However, if for any reason a region’s demand
is higher than the supply available, electricity is transported via nearby regions. The
majority of the Nord Pool system is operated on the day-ahead market, acquiring
great stability between the supply and demand. Nonetheless, incidents can arise be-
tween the closing from the previous day and delivery on the following day. Intraday
trading has been introduced to stabilise, in real-time, the supply and demand and

offset sudden unpredicted fluctuations.

The day-ahead market is an auction where each day is split into 24 hourly spot
contracts. All participants submit their bids to Nord Pool the day prior, and aggre-
gated supply and demand curves are established, the system price is the equilibrium
price for each hour. Bids are made according to how much each buyer and seller
will need and be able to deliver respectively, only after the system price is released
does the participant identify the cost of their trade. The participant will obtain an
exchange quantity parallel to their bid, and power is exchanged in trade for supply

each hour of the next day.
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Figure 2.1: The supply and demand levels with the marginal cost for an average
year in the Nordic power system. Source: SOU 2004:129, 2004.

Figure 2.1 shows how the Nordic power system uses different production units
and marginal costs; hydropower has a low cost of production, along with wind power.
Marginal prices rise gradually throughout low demand periods, and renewable energy
in the form of hydropower is used; however, it is relatively unpredictable compared to
other sources. Consequently, Nord Pool also uses more expensive production units,
such as nuclear and thermal production when necessary. Coal and oil condensing are
the most costly and resource approximately 10% of the market, typically for peak
periods only — condensing is reliable since it generates power rapidly from startup.
This increase in demand during peak periods will reflect in the spot prices, causing

a rise.

The supply chain is dominated by hydropower - it constitutes for around 60% of
power production. Despite the fact that electricity cannot be stored, the hydropower
reservoirs hold water, and reservoir levels are an important figure when analysing
spot prices. Hydropower electricity production is hugely reliant on the weather;
when reservoir levels drop, prices will rise, and accordingly, when reservoir levels are
high, prices will decrease. However, the reservoir levels infrequently change a great
deal each hour; hence costs of hydropower production is predictably similar to the

day before.
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2.2 Power Law and Intermittency

Mathematically, a random variable that illustrates a power law distribution is a

probability distribution function, for continuous values, defined as
p(x) ~ Ca™® (2.1)

where « is a constant parameter called the exponent of the power law and C' is the
normalisation constant. Substantial attention has been drawn towards the power law
due to its appearance in numerous natural and manmade phenomena and thus has
significant consequences for appropriately modelling and understanding the systems.
In practice, it is unusual a studied phenomenon obeys power laws wholly for all values
of x, rather the power law applies only for values greater than some minimum, ,,;,,
(Clauset, 2007), namely the tail of the distribution follows a power law. Equation
2.1 can be identified as

log p(z) ~ logC' — alog x (2.2)

on a double logarithmic plot; that is to say, a power law distribution follows a straight
line on log-log axes. Commonly a least squares linear regression is performed to ap-

propriate the slope of the logarithmic histogram.

The concept of intermittency describes the random transition of two different phases;
from laminar, moderately stable, to turbulent, relatively irregular, in a time series,
despite the control parameters remaining constant and no presence of considerable
external noise. By way of explanation, the chaotic interchanges between phases with
large and small volatilities. Intermittency characterises many complex dynamical
systems and this phenomenon can be seen in numerous fields; for example, earth-
quake occurrences [5], the calm of the cyclic solar activity disturbed by short bursts

[10] and fluid dynamics [11].

In 1993, Platt, Spiegel and Tresser, first discovered the aperiodic switching known
as “on-off intermittency”, where one or more dynamical variables possess a distinct
pattern of two states amidst the time series. In the “off” (laminar) state the system
stays in the vicinity of some nearly constant value for a long period of time and

in the “on” (turbulent) state it chaotically bursts out away from this approximately
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constant value and returning swiftly. Heagy, Platt and Hammel in 1994 characterised
the universal statistical properties of on-off intermittency in systems; they confirmed
that, unlike other forms of intermittency, on-off intermittency is parameter bounded
and the probability density function of the duration of the laminar phases follows a

power law with an exponent equal to —3/2.

In 2007 Bottiglieri and Godano reported the time series of earthquake occurrences
exhibited on-off intermittency. There were stages of clustered occurrences of earth-
quakes followed by inactive phases. They concluded that the ‘behaviour depends on
the value of the threshold’, chaotic behaviour was seen for a low threshold value but
with a threshold too high the data became too poor to conclude any trend patterns.
Reviewing the results they obtained (Figure 2.2) suggests the slopes are fitting with

on-off intermittency.
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Figure 2.2: Distributions of laminar phases duration of earthquake occurances.
Source: M. Bottiglieri and C. Godano. On-off intermittency in earthquake
occurrence. Physical Review E 75, 026101 2007.

2.3 Spot Price Analysis

Our spot price analysis concentrates on hourly spot prices in the Nord Pool power
market, prices are given in Eur/MWh, and our data set comprises of hourly observa-
tions over the period of January 1st 1999 to January 26th 2007, amounting to 70752
data points. Figure 2.3 presents a plot of the raw data points and displays price
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fluctuations over each hour. At first glance periods of tremendous irregular volatility
are observed, and price spikes span the whole length of our data set but generally
are shorted lived and display behaviour of returning to an equilibrium price level -
mean reversion. The most significant price spike was 238.01 Eur/MWh, compared
to the lowest price of 2.3 Eur/MWh, and it is easy to see the immense difference

between the greatest and lowest prices.
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Figure 2.3: Hourly spot prices in Nord Pool power market from 1999 to 2007

2.4 Characteristics

As of currently, there is no efficient way to store vast amounts of electricity; conse-
quently, it has to be utilised as soon as it is produced — the supply and demand have
to be steady at all times. Since we cannot store electricity sufficiently, there is little
flexibility in running the electricity market without failing the whole network, there-
fore, operating with a certain capacity is most cost-efficient for the majority of plants.
The absence of storability along with the unpredictable demand due to unforeseen
events, such as severe unscheduled weather conditions, transmission failures or power
plant collapses enhances the instability, unsettling the delicate equilibrium between
supply and demand and triggering temporary price spikes. Price spikes “occur due

to frictions in demand and/or supply to which electricity producers cannot respond
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flexible enough” (Huisman, 2007), and a direct consequence, significant price spikes
are seen in the spot market. Price spikes are sudden price rises directly shadowed
by an abrupt decline and reversion to the mean price. The spiky behaviour can be
seen in the graph of the spot price data in Figure 2.3, displaying high volatility and

unpredicted short-lived price changes.

Figure 2.3 reveals some preliminary indications of volatility clustering, “large
changes tend to be followed by large changes, of either sign, and small changes tend
to be followed by small changes” (Mandelbrot, 1963). As the electricity market
reacts to new sudden events and responds with a price increase, these high volatility
circumstances last for an extended period following the jolt; a relatively stable period

with considerably lower volatility will follow - volatility typically clusters.

2.5 Returns

Now to improve the interpretability of our graph, we will transform our dataset and

plot the logarithmic hourly returns to identify the extreme events visually.

As explained earlier, in a short period electricity spot prices can vary remarkably.
The return is a widely adopted measure of price fluctuations in various financial
markets. A return is a relative change in a variable expressed as a percentage, which
lets us compare the variable over altered time periods. We will now solely study the
return data as opposed to the price data since the returns reveal more motivating
statistical properties. They are not based upon the time scale of data, rather, re-
lational to the prices immediately preceding them, yielding a more stable means to

study behaviour over a length of time.

Simple return is defined as

P —-P_ P,
Rt: t t1: t _1
P4 P

where P, is the spot price at time t. Simple return is the relative variation in net

asset value from time ¢ — 1 to t.
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The log return is defined as

P,
re = log(5—) = log(P,) — log(Pr-)
t—1
where log(P,) is the logarithmic price at time ¢ and note that a log return uses the

log function with the natural base.

Log returns are far superior to simple returns since they have the immediate ad-
vantage of being time additive. For example, using the case of returns from ¢ to t+n
the log return 7,41, would simply be the sum of individual log returns within these

times,

n
Tt t+n = E Titit4i—1
i=1

Conversely, simple multi-period returns are the product of individual log returns
from t to t +n, which mathematically is not as convenient as using logs. Log returns
are assumed to follow a normal distribution, and again, the sum of continual samples
from a normal distribution is also normally distributed, making the use of log returns

more advantageous.

Natural Logarithmic Returns
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Figure 2.4: Hourly natural logarithmic returns in Nord Pool power market from
1999 to 2007
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Figure 2.4 presents hourly natural logarithmic returns based on the Nord Pool
data versus time; we see that the method presents slightly fewer variance fluctuations
throughout time and so is more stable, however, is still very volatile. The volatility
is most extensive at the beginning of 2000, with greatest hourly log return being
1.954708 and the smallest value -1.263635, with a massive difference of 3.218343.
The time series indicates on-off intermittency - large stretches of almost regular

prices disrupted by large outbursts.



Chapter 3: Analysis

In Figure 3.1 we have a more detailed look at the hourly returns across a one-week
duration containing the occurrences of the highest and lowest values of hourly log
returns. Figure 3.1a plots the week beginning January 22nd 2000 and Figure 3.1b
plots the week beginning May 5th 2006.

Hourly Natural Log-returns (Week Jan 22nd 2000) Hourly Natural Log-returns (Week May 5th 2006)
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Figure 3.1: Hourly log returns across a one-week duration

Electricity demand is generally incredibly inelastic; however, price sensitivity is
a consequence of supply elasticity. The occurrence of extreme events means the
baseload generation from nuclear and hydropower, produced at a low cost, is insuffi-
cient. Other rare unforeseen circumstances may occur, having a substantial impact
on the demand and supply balance. The leading cause of price increases is the tem-
perature in the Nordic countries; extreme cold temperatures require power demand

for heating.

15



CHAPTER 3. ANALYSIS 16

3.1 Time Series Plots

In this section, we will concentrate on the extreme points following a power law
and aiming to identify on-off intermittency. Detecting the behaviour of a power-
law in both man-made and natural systems may be a complex task. The standard
approach asserts that a histogram concerning a quantity following a power-law dis-
tribution when plotted on logarithmic scales has the appearance of a straight line.
We must first adjust our data and acquire from it the data points we will use in our

histograms as follows.

As illustrated in Figure 2.4, the average of the natural log return is almost zero,
however it is still extremely volatile. We produce a plot of the deviations from the
mean by calculating the mean of the return and discounting for that value so that
the resulting time series has mean zero, (Figure 3.2). A deviation is a measure of the
difference between the observed value and the mean value, displaying the dispersion
of the data. Visually our plot looks indistinguishable to the original series, as the

mean is so small.

Adjusted Natural Logarithmic Returns
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Figure 3.2: Hourly natural logarithmic returns with the mean discounted

Now there are “positive” and “negative” extreme events and one could distinguish

between both, but to make our problem simpler we will treat both on the same level.
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The absolute value plot of our adjusted natural logarithmic returns time series takes

all the negative values and produces their respective positive values, (Figure 3.3).

Absolute value of Discounted Natural Logarithmic Returns
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Figure 3.3: Absolute discounted hourly natural logarithmic returns

As outlined previously, we now need to identify extreme events, i.e. discounted
returns which exceed a certain threshold. We have to select a suitable threshold value,
such that if absolute discounted return points exceed this value, we define them to
be an extreme event. That is, an event is called extreme if the return deviates from
the mean by a certain amount, the threshold value. If our threshold were too small,
it would be likely all our events become extreme; which would be nonsense, and if
it were too large, there would be almost no extreme events. Essentially there is a

whole range of threshold values, but to get started we chose the value 0.5.
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New data set of Extreme events
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Figure 3.4: Data points from our discounted hourly natural logarithmic returns
which exceed the 0.5 threshold

The introduction of the threshold value allows us to ignore all events with time

indices less than 0.5, leaving us with a new data set, graphed in Figure 3.4.

3.2 Histogram of Time Differences

We want to investigate the distribution of time spans between extreme events,
namely, between massive increases or decreases of the market prices. Now to do
so, we compute the difference between subsequent entries and then construct a his-
togram of these times between extreme events. Bins with zero observations are
excluded because log(0) is undefined, and later on we will need to use the logarith-
mic scale. Also, we do not need to worry about small differences, for example, a
difference of one or two may not indicate the difference between two different ex-
treme events as the data points could belong to the same event. As for evaluating

the distribution, we can then look past the small values, say one and two.

From studying our histogram in Figure 3.5 we identify that most differences are
in the first bin and in all the other bins there are a lot less; our histogram is extremely
right skewed. In Figure 3.6 we plot the time difference of all log returns above our

threshold but now on a log-log scale. Since we are aiming to identifying a power



CHAPTER 3. ANALYSIS 19

law, p(T) ~ CT~%, a double logarithmic plot, log p(T") ~ —alogT +log C, will yield
results which are easier to visualise, i.e. the histogram should look like a line when

log(P) is plotted versus log(T).

Histogram of time intervals between extreme events
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Figure 3.5: Histogram of the time difference of logarithmic returns above the
threshold of 0.5

Time difference on logarithmic scales
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Figure 3.6: Histogram of the time difference of logarithmic returns above the
threshold of 0.5 on logarithmic scales
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3.2.1 Linear Regression

As already discussed, a straight line on the double logarithmic plot suggests the data
follows a power law. Our next task is to fit such a straight line and estimate the
exponent parameter «.. In fact, we are aiming to identify on-off intermittency charac-
terised by the —3/2 law. Using the function 2.1 the probability distribution function
will be p(z) ~ Cz~3/2, and since we have the logarithmic plot, taking the logarithm of
both sides we learn that the power law obeys the relation log p(z) ~ log C'—3/2log z,

the equation of a straight line.

If we can spot that our points on the histogram lie on a straight line we can draw
this line in and continue it to the log(y) axis to find the point at which it crosses; this
value will correspond to log(C'), where C' is our normalisation constant. Likewise,
the gradient of the line is interpreted as the estimate of a, in our power law function.
To fit this straight line, we will use the algorithm 1m () in R, which fits the function

to the linear form by the least squares linear regression.

A linear regression is a model that explores the relationship between two variables
and establishes if it is statistically meaningful. The two variables play very different
roles; the dependent variable is the one whose value we want to explain, and the
independent variable helps explain the variance in the dependent variable. In our
data, the counts is the dependent variable, and the time difference is the independent

variable.
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Time difference on logarithmic scales
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Figure 3.7: Histogram with a fitted regression line

Least Squares Estimation

Essentially, we have a set of observations and we need to estimate the values of
the coefficients a and 3, using the data. The least squares principle yields these
coefficients by minimizing the sum of the squared residuals. Each residual is given

by é; =y — a — Bz, for all parameter values o and . In other words, minimise

n

> = Yol o
i=1 i=1
The estimation takes the difference between the data and the predicted line of best
fit, calculates the squared error, and the line continually shifts until it is the least

possible distance from each point of the data.

A scatter plot of time differences against density is shown in Figure 3.7, together
with the computed regression line g, = 2.1237 — 0.6001z;, (y indicates that the value
of y is a prediction). The fitted line posses a negative gradient, illustrating further
the negative relationship between time differences and the counts. The slope of the
line is —0.6001, which is not close at all to —3/2; however, we will not disregard the
on-off intermittency hypothesis, we will use different thresholds and study further

the ways to test the significance of our coefficient value.
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3.2.2 Analysis with Different Thresholds

Initially, we used a high threshold of 0.5, and it is noteworthy that the data did
not correspond closely to the behaviour of on-off intermittency. Using such a high
threshold to define an extreme event lead us to discarding a considerable number
of points from our data set of returns (Figure 3.3), motivating us to test a lower
threshold. If the threshold is too low, the period of the laminar phases turn out
to be too brief, and the occurrence is inadequate to be classified as intermittency.
Although as we have just seen if, the threshold is too high, there is a loss of scaling
invariance, which is needed since we need our results to be somewhat independent
of the threshold value. We followed the same steps as previously, but now using the
threshold 0.2 and arrived at the histogram graphed in Figure 3.8, with a gradient
—1.470, very close to —1.5, illustrated in red, the PDF for on-off intermittency. This
closeness may imply that our data follows on-off intermittency behaviour; however,
we will now look at the linear regression and decide whether it is a good enough fit

to claim the hypothesis.

Time difference with 0.2 threshold on logarithmic scales
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Figure 3.8: Histogram of time differences above 0.2 threshold with a fitted
regression line, plotted on logarithmic scales. The red line corresponds to the power
law p(z) ~ Cz=3/2
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3.2.3 Linear Regression Analysis

In R, the command summary () provides a superb report of our regression model.
We will now look at the linear model fit and explain the components of the model

output.

= summary(reg2)

Call:
Im(formula = logcounts =~ loglO(hi$mids))

Residuals:
Min 1Q Median Q Max
-0.40615 -0.18843 -0.05087 0.19791 0.45206

Coefficients:

Estimate Std. Error t value Pri>|t|)
{Intercept) 4.9051 0.4071 12.05 9.44e-10 ***
loglO(hi$mids) -1.4699 0.1387 -10.60 6.5%9e-09 ***

Signif. codes: 0 '***' 0,001 **' 0.01 **'0.05.'0.1"'"1

Residual standard error: 0.2674 on 17 degrees of freedom
(31 observations deleted due to missingness)

Multiple R-squared: 0.8685 Adjusted R-squared: 0.8607

F-statistic: 112.3 on 1 and 17 DF, p-value: 6.594e-09

Figure 3.9: A screenshot of the the command summary () output in R
corresponding to our linear regression model

Residuals

A reasonable method to test the degree of suitability of the model is to analyse the
residuals; the differences between the values the model predicted and the observed
values. Essentially, a residual quantifies how far a data point is from the regression
line. The main idea behind our analysis is we want a symmetrical distribution
across the residuals and for the sum to be as low as possible, ideally near zero. In
our model, the dispersal of residuals is remarkably symmetrical around the mean
value zero. Taking this idea slightly further, we will plot the residuals on a normal
probability plot - a means toward comparing our linear regression model differences
against the normal distribution. From studying Figure 3.10, our normal probability
plot of the residuals, it appears the relationship is approximately linear since the
residuals fall very close to the straight line. We can conclude that the differences are

normally distributed.
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Normal plot of residuals
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Figure 3.10: The normal probability plot of the residuals

The statistic R-squared determines to what extent the model fits with the ac-
tual data. It is understood as a ratio of variation in the response variable (counts)
described via variation in the predictor variable (time differences). The R-squared
statistic stands within the range 0 and 1; a result close to 1 indicates the model
closely tracks the data under consideration, whilst a score close to 0 signifies low cor-
relation. The R-squared we have is 0.8685, meaning the time differences can justify
approximately 87% of the variance seen in the counts — this is a relatively strong
R-squared. However, the task of defining an appropriate level of R-squared to assert
that the data fits appropriately is difficult. Since we are looking at bivariate data,

we do not need to worry about the adjusted R-squared.

Coeflicients

The following section in the model output analyses any variables in the model and are
listed under the coefficients, in our case, we only have one, along with the intercept.

The coefficients correspond to the following model
log density = intercept + log time difference * slope

The two coefficients are the unknown constants that characterise the intercept and

slope terms in the linear regression model — fitting the line such that the data points
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are as close to it as possible. The estimated coefficients, gives rise to log density =
4.9051 + log time difference * —1.4699. The intercept measure is made exclusive of
any variable; it is the intercept value when the other variable is 0. The estimates
have some standard errors attached to them; the standard errors are the variability
we would expect if we did repeated sampling; this captures sampling variability and

also shows practical significance.

The t-value is simply a ratio of the estimate divided by their standard error,
enumerating how big the estimate is relative to its standard error. Associated to
the t-value is a p-value, found in the model since the t-value falls on a distribution.
The p-value reports the probability of observing a value of t or larger, telling us
how statistically significant the estimates are. A low p-value implies it is unlikely
a relationship between the log density and log time difference is due to chance —
normally a p-value of 0.05 or less is an appropriate conclusion point. Both of our
p-values are well below 0.05; thus, the estimates are both statistically significant.
The significance, symbolised by three asterisks, as a quick interpretation, suggest

highly significant p-values for this model.

3.2.4 Bin Width Analysis

At the outset, we started with a threshold of 0.5, and this produced a histogram
such that we decided it did not follow on-off intermittency behaviour, and then we
used a 0.2 threshold and concluded since the linear regression was a good fit, this
did. Looking back to Figures 3.7 and 3.8 we used a bin width of 100 to produce
the histograms. Using the argument breaks in the command hist in R, to adjust
the bin width, we will check how changing of the bin width affects the outcomes.
When we lowered the threshold of the extreme event to 0.2 we were left with 908
data points in comparison to only 145 when the threshold was 0.5 — recall a data
point is counted to be in the “off” state when its value is lower than the threshold.
We found that changing the bin width has a significant effect on how the histogram
will look, as the data gets grouped differently. We obsereved that for the histogram
with threshold 0.5 we can get a slope somewhat close to -1.5; using the bin width
600 lead us to a slope with gradient -1.516. However, a bin width of 600 for only 145
data points is relatively large in comparison; we produce poor statistics. Evaluating

the distributions while increasing the bin width reduces the information about the
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variability of the distribution since the data is grouped into fewer bins. When we
have a look at a third threshold of 0.3, grouping using bin width 100 produces a
slope with gradient -1.108; however, we acquire its linearity with slope -1.54, again
similar to -1.5, if we increase the bin width to 225 — indicating on-off intermittency
holds once again for this new threshold and bin width. When the bin width assumes
higher values, we can observe on-off intermittency for higher thresholds, though lower

thresholds require lower values for the bin width.



Chapter 4: Conclusions

This project shows that extreme values of electricity spot prices can be characterised
using on-off intermittency. We used hourly electricity spot prices from the Nord Pool
market, from 1999 to 2007 - over 70,000 spot prices. This data exhibited volatility
leading to short-lived price spikes which returned to a somewhat constant state, a
very significant trait of on-off intermittency. We investigated the distribution of pe-
riods between extreme events, i.e., between massive increases and decreases of the
market prices. We studied the histograms of the data on double logarithmic plots,
and these plots seemed to be linear with a gradient near to -1.5, the consistency of

the data with on-off intermittency behaviour was concluded.

To identify on-off intermittency, the scaling should be, to a great extent, in-
dependent of the threshold (i.e. it should appear for a range of values, and the
slope should only differ a little). Changing the threshold level altered the results
quantifiably; nonetheless, we accordingly adjusted the bin width. For low values of
the threshold, intermittency was seen using a reasonable bin width; however, for a
greater threshold value, the statistics became too poor. Since we observed a gradient
value close to -1.5 for multiple thresholds after adjustment, this indicates that on-off
intermittency prevails — the scaling became reasonably stable. The need for changing
bin widths emphasises the complexity of characterising genuine on-off intermittency
power-law behaviour. We also analysed our linear regression and very quickly saw
our regression was a good fit. Ultimately, our results suggest that extreme values of

electricity spot prices can be deemed a model of on-off intermittency.
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Chapter 5: Appendix: R Code

Here are screenshots of the commands in R used to generate each graph included in
this thesis.
Figure 2.3: Hourly spot prices in Nord Pool power market from 1999 to 2007.

= setwd(/users/Elliz/Documents’)

= data <- read.table("BEUR.txt")

= datatimeseries <- ts(data)

= vs<-datal,1]

> StartTime <- as.POSIXIt("1999-01-01 00:00:007)

> EndTime <- as.POSIXIt{"2007-01-27 00:00:00")

> Time <-difftime(EndTime, StartTime, units= "hours”)

> ¥ <- strptime("1999-01-01 00:00:007, "%¥Y-%m-%d %H:%M:5%5")+3600"1:time

> plot(x, data[,1], type= "0", pch=20, xlab="Time", ylab="Electriciy", main ="Hourly Electricity
Spot Market Price”, col=" cornflowerblue")

Figure 2.4: Hourly natural logarithmic returns in Nord Pool power market from
1999 to 2007.

> rs<-diff{log(vs), lag=1)
= plot(x[2:70752), rs, type="0", pch=20, xlab="Time", ylab="Hourly Log-returns”,
coll=“cornﬂowerblue“, main="Matural Logarithmic Returns")

Figure 3.1(a): Hourly log returns across a one-week duration for the week begin-
ning Jan 22nd 2000.

» datel<- as.Date"2000-01-22","%Y-%m-%d")

= datel<- as.Date"2000-01-29","%Y-%m-%d")

> subdf<- difftime(date2, datel, units="hours")

> print{subdf)

Time difference of 168 hours

>

= StartTime<- as.POSIXIt(datel)

> Plotx<- StartTime+3600*2:168

> plot(Plotx, rs[9264:9430], type="0", pch=20, xlab="Time", ylab="Log-return”, main="Hourly
Natural Log-returns (Week Jan 22nd 2000)", col=" cornflowerblue")

Figure 3.1(b): Hourly log returns across a one-week duration for the week begin-
ning May 5th 2006.
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> dated<- as.Date("2006-05-06","%Y -%m-%d")

> dated<- as.Date("2006-05-13","%Y-%m-%d")

> subdf<- difftime(dated, date3, units="hours"}

= print{subdf}

Time difference of 168 hours

>

> startTime<- as.POSIXIt{date3)

> Plotx<- startTime+3600%2:168

> plotiPlotx, rs[64344.64510], type="0", pch=20, xlab="Time", ylab="Log-return”, main="Hourly
Matural Log-returns (Week May 5th 2008)", col=" cornflowerblue")

Figure 3.2: Hourly natural logarithmic returns with the mean discounted.

> mean(rs)
[1] 6.692666e-06
>

> Dis <- rs-mean(rs)

>

> plot(x[2:70752]), Dis, type="0", pch=20, xlab="Time", ylab="Hourly Log-returns”,
col="cornflowerblue", main="Adjusted Natural Logarithmic Returns")

Figure 3.3: Absolute discounted hourly natural logarithmic returns.

> Abs <- abs(Dis)
> plot(x[2:70752], Abs, type= "0", pch=20, xlab="Time", ylab="Hourly Log-returns”,
col="cornflowerblue”, main="Absolute value of Discounted Natural Logarithmic Returns”)

Figure 3.4: Data points from our discounted hourly natural logarithmic returns
which exceed the 0.5 threshold.

> length{An[An>0.5])

[1] 145

= Bn <- An

> Bn[An < 0.5] <- NA

> plot(x[2:70752], Bn, type= "o", pch=20, xlab="Time", ylab="Hourly Log-returns”, col="
cornflowerblue™, main="New data set of Extreme events"}

Figure 3.5: Histogram of the time difference of logarithmic returns above the
threshold of 0.5.
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> Cn<- na.amit(data.frame(Bn))

> Dn <- cbind(DIFF1 = rownames{Cn), Cn)

= rownames{Cn) <- 1:nrow(Cn)

>

> index<- as.numeric{as.character(Dn[, 1])}

> tail(index, -1} - head(index, -1)

[1] 11036 1 2 5 4 60 1 2
10833 1 2 1 6 1 1 13 9

[19] 1 11524 49 1 95 23 24 24
[28] 73 2254 2588 11263 494 144 23 24
[37] 24 336 1 3 7 1 59 1 1

[46] 4 4 4 11 1 3 7 1 468

[55] 1 23 24 1 1 9 2 35 1

[64] 3 7566 12129 1 4 21 3

[73] 644 4 26 21 24 2401626 1 4
[B2] 429 11597 3 12837 & 974194
[91] 12462 22842 92 5 285 43043
[100] 14658 49 2 11124 383 2 163
[109] 7 1 b6 21627 5 1 214 598
[118] 12606 2 205 72 1 47 23 3
[127] 3092 113451338 1 3Bl 51574 12
[136] 2562 7 19 24173 11034 1083 10
> Data? <- tail(index, -1) - head(index, -1}

>

= hist{Data2, xlim=c{0,5000), ylim=c(0,100), breaks=seq(from=0, to=5000, by=20), xlab= "Time
Difference”, main="Histogram of time intervals between extreme events”, col="carnflowerblue)

Figure 3.6: Histogram of the time difference of logarithmic returns above the

threshold of 0.5 on logarithmic scales.

> h <- hist{Data2, plot=F, breaks=100}

> plotthSmids, h$counts, log="xy", pch=20, col="cornflowerblue",

+ main="Time difference on logarithmic scales",

+ xlab="Time difference”, ylab="Frequency", type="h", lwd=5, lend=2)

Figure 3.7: Histogram with a fitted regression line.

> hi<- histiData2, xlim=c(0,5000), ylim=c(0,100), breaks=seq(from=0, to=5000, by=100), xlab=
"Time Difference”, main="Histogram of time intervals between extreme events”,
col="cornflowerblue")

logl0.axis <- function(side, at, ...)
{at.minor <- logl0{outer{1:9, 10A(min(at):max{at})))
lab <- sapply(at, function(i) as.expression(bquote{104 (i)
axis(side=side, at=at.minor, labels=NA, tcl=par("tcl”)*0.5, ...}
axis(side=side, at=at, labels=lab, ...}}

VY Y+ Y

plot(log 10(hi$mids),logl0(hiScounts), xaxt="n", yaxt="n", main="Time difference on
logarithmic scales”, xlab="Time difference”, ylab="Counts", col=" cornflowerblue)

> logl0.axis(1, at=seq(0, 4, 1))

logl0.axis(2, at=seq(0, 4, 1))

yy<- logl0(hifcounts)
yylmapply(is.infinite, yy)] <- NA
reg<- Imiyy ~ log1l0(hi$mids))
abline(reg)

reg

VWMV VWYY

Call:
Im(farmula = yy ~ log10{hi$mids))

Coefficients:
(Intercept) loglQ(hismids)
2.1237 -0.6001
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Figure 3.8: Histogram of time differences above 0.2 threshold with a fitted re-
gression line, plotted on logarithmic scales.
> Bn2 <- An
> Bn2[An < 0.2] <- NA
Cn2 <- na.omit{data.frame(Bn2))
Dn2 <- chind(DIFF1 = rownames(Cn2), Cn2}
rownames(Cn2) <- Linrow(Cn2)

index<- as.numeric(as.character(Dn2[, 110

Data2b<- tail(index, -1) - head{index, -1)

WM WOV W W W YW

> hi<- histiDatazb, xlim=c{0,5000), ylim=c(0,100), breaks=seq(from=0, to=5000, by=100),
xlab= "Time Difference”, main="Histogram of time intervals between extreme events”,
col="cornflowerblue")

logl0.axis <- function(side, at, ...)
{at.minor <- logl0{outer(1:9, 10A(min(at):max(at))))
lab <- sapply(at, function(i) as.expression{bguote(104 (D))}
axis(side=side, at=at.minor, labels=NA, tcl=par{"tcl”*0.5, ...}
axis(side=side, at=at, labels=lab, ...)}

WoW o+ WY

> plotllogl0hi$mids),loglOthi$counts), xaxt="n", yaxt="n", main="Time difference with 0.2
threshold on logarithmic scales”, xlab="Time difference", ylab="Counts", col=" cornflowerblue")
logl0.axis(1, at=seq(D, 4, 1))

logl0.axis(2, at=seq(D, 4, 1))

logcounts<- loglOthiScounts)
logcounts[mapply(is.infinite, logcounts)] <- NA
reg2 <- Im{logcounts ~ log 10(hi$mids))
abline(reg2)

abline( 4.905 ,-3/2, col="red")

WM WM WOV W W WY

reg2

Call:
Im(formula = logcounts ~ loglOthiSmids))

Coefficients:
(Intercept) loglO(hi$mids)
4.905 -1.470

Figure 3.10: The normal probability plot of the residuals.

> resid{reg2) #List of residuals

1 2 3 4

0.49206105 -0.17495672 -0.23421060 0.17687865
5 6 7 8

-0.05086932 -0.09885793 -0.16830646 -0.20189357
9 11 12 13

-0.12199286 0.13783978 -0.40614634 -0.35291782
14 15 21 22

-0.30378801 0.21895068 0.26391263 0.29431706
24 25 26

0.05006869 0.37770139 0.10220970

> plot(density(resid{reg2)))

= ggnormiresid(reg2), xlab="Residuals", ylab="Normal scores", main="Mormal plot of residuals”,
col="cornflowerblue")

> gqline(resid{reg2))

> summary(reg2)¥r.squared

[1] 0.B68475

> text(-1, 0.2, expression{Rr2 ~ "= 0.B6B475"))
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