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Abstract  
The objective of this thesis is to investigate whether the daily electricity spot price 
exhibits on-off intermittency characteristic. The preliminary indication of on-off 
intermittency behavior in a time series is the appearance of two distinctive patterns: 
“off” state presents a stable quantity within a long duration. On the other hand, the 
"on" state presents a random and temporary burst and returns to the constant. 
Furthermore, a previous study found that on-off intermittency holds a universal 
property: the time differences of inactive periods between bursts follow a power-law 
distribution with the scaling parameter	𝛼 equals 3/2. 

In this thesis, we analyzed the time series of the logarithmic returns of the Nord Pool 
power market's daily spot price across eight years. First, we set and vary threshold 
values for extreme values and use the method of least squared to fit the corresponding 
straight line on the double logarithmic histogram of the frequency distribution of time 
difference between extreme events – as power-law presents as a straight line in the 
double logarithmic plot. So, the gradient for the fitted linear regression line for our 
data should be approximately -3/2. Then we will check the statistical significance of 
the fitted linear regression line. We finally conclude that spot price appears a 
substantial similarity with on-off intermittency when a suitable threshold value for 
extreme events with an appropriate bin width is chosen. 
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1 Introduction  

The price dynamics of the electricity market are specific and unique, for electricity is 
seen as a unique commodity for its non-storable nature and requires a constant 
balance between supply and demand [1]. Factors heavily influencing the production 
and consumption of electricity are both volatile and unforeseen. As a result, the time 
series of the electricity spot price exists unlooked-for short-lived price spikes (Weron, 
2014). 

Our main objective is to explore whether our electricity spot price data comply with 
on-off intermittency. We can observe on-off intermittency behavior in many chaotic 
dynamical systems. The feature of on-off intermittency is that there is aperiodic 
switching from two typical states: static mean level state，known as “off” (laminar) 
state; unanticipated deviating away and reverting to the “off” state, known as “on” 
state. In 1994, on-off intermittency was found to obey a rule: "For a large class of 
random driving cases, the distribution of laminar phases can be obtained from a price 
expression: it is proven to follow a power-law distribution with universal asymptotic -
3/2 [2](Heagy et al., 1994).” 

The structure of this thesis is as follows. Section 2 introduces the Nordic power 
market and the characteristics of electricity prices. We illustrate the dataset used for 
the thesis: the daily spot price in the Nord Pool over eight years starting from 1999. 
Section 3 will apply the review of knowledge about returns, power-law, and on-off 
intermittency. We will then provide an in-depth statistical analysis of the time 
intervals between extreme events by setting different threshold values and varying bin 
widths in Section 4. Finally, in Section 5, we conclude all our findings. 
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2 The Nord Pool 

2.1 The Nord Pool Market 

The Nordic electricity market, known as the Nord pool, is the lead power market in 
Europe [3]. It was established in 1993. Until 2005, the power market of Sweden, 
Finland, the eastern part of Denmark, and some German's region subsequently merged 
in the Nord Pool. The physical electricity market, Elspot, which our thesis will mainly 
focus on, was separated from the derivatives market and renamed Nord Pool Spot in 
2002 [7]. Nearly 80% of the Nord Pool system is operated on this day-ahead market.  
 
In the Elspot market, all participants trade power contracts for one day-ahead physical 
delivery. There is an auction for all buyers and sellers to submit their bids for purchasing 
or selling the hourly power contracts covering 24 hours of the next day [3]. Every day 
at 12:00 CET, the deadline for final submissions, the (aggregate) supply and (aggregate) 
demand curves for all buy and sell orders in each time zone are generated, and the 
system price, also regarded as equilibrium hourly spot price, is determined by the 
intersection point of the two curves [4]. 
 
Though the day-ahead market secures the baseline for planning the balances in the next 
24-hour period, unpredictable events may happen when the auction is closed for 
bidding, causing considerable fluctuations in spot prices. In this case, the Nord Pool 
also operates an intraday trading system-Elsa. All participants can trade on Elbas 
around one hour before delivery, enabling them to act on changes and opportunities 
later in the day. Thus, in real-time, the unforeseen price fluctuations caused by changes 
in supply and demand can be stabilized by intraday power trading.  
 
A temporary imbalance of the production and the consumption would reflect in the 
corresponding spot prices.  
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Left: Figure 2.1 Power production price curve in the Nordic Pool ( Source: 
http://www.nordpoolspot.com) Right: Nordic consumption – price data Source:[5] 

Figure 2.1 and 2.2 demonstrates different production units and prices in the Nord pool 
system. Hydroelectric production, the dominant production unit, is highly reliable on 
weather conditions. Nearly 75% of electric power production relied on hydropower 
(57%) and nuclear generators (18%), which have lower marginal costs of production. 
These two traditional production units are used during normal conditions. Gas-turbine 
and thermo production display are only used for the peak period, for their and high 
efficiency in generating power and, most importantly, relatively high marginal costs. 
Therefore, if the increase in demand exceeds a certain amount that traditional 
production units cannot fulfill, the spot price will rise due to the demand curve shifting 
to the right [6]. 
 

2.2 Data set  

In this thesis, we use the data set from the Nord Pool power market. This data set is 
formed of daily average spot prices calculated from hourly-recorded electricity prices 
in Eur per Megawatt Hour (Eur / MWh) across eight years, starting from 1st January 
1999 to 26th January 2007, comprising 2948 data points.  
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Figure 2.3 Nord Pool Daily Spot Price Time Series Data from 1999 to 2007 

 

From Figure 2.3, irregular volatility and several short-lived price spikes can be 
observed. This time series is non-stationary and overall shows an increasing trend. The 
highest price spike was 114.61 Eur/MWh, while the lowest price spike was 3.89 
Eur/MWh. Using R command we have, the median price was 26.23 Eur/MWh, and the 
average price was 27.48 Eur/MWh. Therefore, it is easy to see that prices can upsurge 
and shrink within a very short period. 
 

2.3 Characteristics of electricity prices 

Unlike other tangible and storable commodities like metal or oil, electricity owns non-
storable characteristics. In this case, electricity can only be used in its generating region, 
so transmitting to the demand-exceeding region is constrained. Each region in the Nord 
Pool is equipped with generators to satisfy that area’s demand for electricity. Though 
under normal conditions, each region’s aggregate capacity of generation is able to meet 
the aggregate demand, the unpredictable weather conditions, non-storable properties, 
transmitting constraints would trigger inadequacy of supply, then leading to extremely 
high spot price value (the demand for electricity is very inelastic) until supply problems 
are settled [6]. From Huisman, we know that Price spikes " occur due to frictions in 
demand and/or supply to which electricity producers cannot respond flexible enough.” 
[8]. In Figure 2.3, the price spikes are shown as an upsurge following a sudden fall and 
then reverting to the mean price level within a very short time. 
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3 Background of Methodology Used   

3.1 Returns (First order differencing) 

As we mentioned earlier, Figure 2.2.3 presents that the time series for daily spot price 
is non-stationary and shows an increasing trend. To make our dataset statistically 
meaningful, we plot the daily logarithmic returns. 

A return describes the relative change in a variable compared to its one previous 
value. The return is a widely used measure in economics and financial time series 
analysis for detecting price fluctuations, as we can compare all variables since they 
are time-independent. Here get a stationary time series by doing trend differencing, 
using the method of return. So that all observed values are independent of time 
changes and have well-defined means and stable variances. 

The concept behind return is the first-order differencing; differencing acts like a high-
pass filter, removing low-frequency components and letting high-frequency signals 
pass by [9]. 

In this thesis, the equation of simple return is 

𝑅! =
"!#"!"#
"!"#

= "!
"!"#

− 1 (3.1) 

where 𝑋! is the daily-average spot price at time 𝑡.  

Take log on both sides of the equation, we obtain the log return equation as 

𝑟! = log(𝑅!) = log / "!
"!"#

0 = log(𝑋!) − log	(𝑋!#$) (3.2) 

where log	(𝑋!) is the price taking natural logarithmic at time 𝑡. 

Logarithmic return is more widely used in analyzing prices because of its three 
overwhelming advantages: time additive, variance stabilization（shown in Figure 
2.5）and "log-normalization." 

For time additive, for example, if we want to get the returns form 𝑡	to 𝑡 + 𝑛，from 
Equation 3.3 we have the log returns of one time span can be calculated directly by 
adding each individual log returns.  

𝑟!%&,! = 𝐼𝑛 4
𝑋!%&
𝑋!

5 = 𝐼𝑛[	
𝑋!%$
𝑋!

	× 	
𝑋!%(
𝑋!%$

× …×
𝑋!%&
𝑋!%&#$

] 
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= 𝐼𝑛 :"!$#
"!
; + 𝐼𝑛 :"!$%

"!$#
; + ⋯+ 𝐼𝑛 : "!$&

"!$&"#
; (3.3) 

Moreover, log returns can be more easily understood because log-returns follow the 
normal distribution. We will use this property for fitting models later in Section 4. 

Figure 3.1 Time series of daily logarithmic returns of spot price in Nord Pool from 1999 to 2007	

Figure 3.1 is the graph of daily natural logarithmic returns of data observed in the 
Nord Pool. After transforming, our time series becomes stationary, with fewer 
variance fluctuations. Both the mean value and the median value approaches 0. Three 
significant volatilities are observed in 2000, 2001 and 2006 respectively in 
descending order. The highest value was 1.188913026, and the lowest value was -
0.773170223, with a remarkable difference of 1.962083. The most significant price 
spike in Figure 2.3 normally performs while using daily logarithm returns.  
 

3.2 Power Law 

"A Power-law describes a functional relationship between two quantities: one 
quantity varies as a power of another [10].” 

These years, the power-law becomes appealing in extensive scientific research for its 
and appearance in various natural and man-made phenomena. Its mathematical 
properties sometimes lead to significant physical consequences, like the well-known 
Zipf’s Law and Pareto’s Principal. However, while doing empirical research, instead 
of being fully interpreted by the power laws at every value of x, usually a studied 
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phenomenon obeys power law for values larger than some minimum only 
[11](Clauset.A, 2007). 

Since the time difference between extreme events in Section 4 is recorded as discrete 
integer values, we adopt the discrete power-law distribution. The discrete probability 
distribution function 𝑝(𝑥), for a discrete quantity 𝑥 of integer values, is defined as 

𝑝(𝑥) = Pr(𝑋 = 𝑥) = 𝐶𝑥#)	 (3.4) 

where 𝛼 is a constant parameter called exponent parameter, and C is the 
normalization constant [11]. 

Take logarithm on both sides of Equation 2.1, we obtain 

𝑙𝑜𝑔	𝑝(𝑥) = 	𝑙𝑜𝑔	𝐶	 − 	𝛼	𝑙𝑜𝑔	𝑥	 (3.5) 

Equation 2.2 can be used to perform power-law distribution on the double logarithmic 
plot, which means that the power-law distribution will act as a straight line of 
negative slope on log-log axes. So, we can use the method of maximum likelihood 
and least squares to find the most-fit regression model. We will have a more detailed 
discussion about this later in Section 4. 

 

3.3 Intermittency  

Intermittency is a phenomenon that is widely observed in a dynamic system. Phases 
altered irregularly from a quiescent(laminar) state into an active(burst) state. In a time 
series, intermittency can be detected from observations of interchanges between phases 
with small and large volatilities aperiodically and chaotically.[12] 

The term “on-off intermittency" was first raised in 1993; the name of this particular 
behavior of some chaotic systems derives from the characteristic two-state nature of 
intermittent signal[13]. The "off" (laminar) state is nearly constant, and it owns the 
property of long duration. On the other hand, in the "on" (burst) state, the system 
randomly departs from and returns to the "off" state very quickly[13]. This feature 
seems to reveal in Figure 3.1, where there is a clear pattern of two states in the time 
series.  

Specific attention is drawn to the distribution of the "off" (laminar) phase. In 1994, 
Heagy, Platt, and Hammel proved that on-off intermittency holds universal statistical 
characteristics: parameter-driven. Moreover, the duration of the laminar phases 
between the bursts exhibits a power-law distribution with the exponent parameter 𝛼 
asymptotes to −3/2. 
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One of the recent experimental studies of on-off intermittency is in semiology, 
especially on earthquake occurrences. In 2007, Bottiglieri and Godano found that 
earthquake occurrence exhibited on-off intermittency. The distribution of inactive 
periods' duration between the class of events follows a power-law distribution with 𝛼 
equals to -3/2[14]. In the conclusion part, they stated that “on-off intermittency 
behavior is influenced by two variables: the value of the threshold and the length of 
the bin width ∆𝑡” (Bottiglieri & Godano, 2007). Higher threshold values and the bin 
width ∆𝑡 will lead to statistical meaningless for detecting patterns, while choosing 
low values of the threshold value may lead to the observation of chaotic transitions. 
Figure 3.2 visually presents the findings. 

 

Figure 3.3 Distributions of laminar phases duration of earthquake occurrences for ∆𝑡 = 1 day at 
difference thresholds (Pyragas, 1998) [14] 
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4 Analysis  

This section aims to test whether the points of extreme values follow a discrete 
power-law distribution with the value of exponent parameter 𝛼	 near to -3/2 and to 
evaluate the significance of our fitted regression line. First, we plot the neighborhood 
of the three most significant spikes in season 1 to see how the time series look like in 
a given period.

 

Figure 4.1 Daily log-returns for Season1 in 2000, 2001, and 2006 respectively 

Three figures in Figure 3.1 show some possible indications of on-off intermittency in 
more critical details, especially in 2000 and 2001, turbulent bursts happened and 
reversed to inactive phases very quickly. 

4.1 Time Series Plots  

In this thesis, we define the extreme events as the absolute values of adjusted daily 
log returns which exceed a certain threshold.  

To see the extent to which the observed value deviated from the mean value, we 
adjust our dataset by subtracting the mean of daily log returns from the original data 
plotted in Figure 3.4. 
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Figure 4.2 Daily natural logarithmic returns with the mean subtracted (deviations) 

Figure 4.2 presents the dispersion of the data, which looks very similar to the original 
time series plot (Figure3.4) since the mean is almost zero. 

To make Figure 4.2 more interpretable in visualizing all extreme events, we transfer 
all negative daily log returns by taking their absolute values and producing the 
positive plot (Figure 4.3). 

 

Figure 4.3: Absolute value of adjusted daily natural logarithmic returns 

We can choose the threshold value then. It is noteworthy that failure to set an 
appropriate threshold value would cause problems in the model fitting of statistically 
insignificant datasets in the following sections. In this case, we choose values above 
the 75th Quantile. First, we choose 0.15, and the data points for extreme events are 
presented in Figure 4.4. 
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Figure 4.4: Data points that exceed the 0.15 threshold from discounted hourly natural logarithmic 
returns 

4.2 Time Differences analysis 

4.2.1 Histogram of Distribution of Time Spans 

We aim to determine whether the frequency distribution of the time difference 
between two subsequent extreme events (upsurge or shrink in daily log-returns) 
follows a power-law distribution with the exponent parameter 𝛼	equals or close to -
3/2. Thus, the first step is to calculate the time differences between two subsequent 
bursts. Then we generate a histogram to summarize the frequency of these times 
spans that occurred. It is noteworthy that while setting the bin widths, some slight 
differences can be ignored, as they may belong to the same extreme event. In other 
words, doing so will not trigger the failure to identify what type of distribution our 
frequency of time differences belongs to. 
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Figure 4.5 Histogram of the time difference of daily log returns above threshold 0.15 

In Figure 4.5, we observed that the histogram is heavily positively- skewed: most time 
differences fall to the first bin, with a few time differences shown in the rest bins. 

 

Figure 4.6 Histogram of the time difference of daily log returns above threshold 0.15 on logarithmic 
scales. 

Figure 4.6 presents all the time differences between extreme events on the log-log 
axes. The frequency decreases as time increases. Figure 4.6 is more visually 
interpretable than Figure 4.5 because when plotting 𝑙𝑜𝑔	𝑝(𝑥)	against	𝑙𝑜𝑔	𝑥, we will 
get the result as a straight line with slope e equal to the value of 𝛼. 

(Note that bins with zero observations are excluded in two figures as 𝑙𝑜𝑔(0) is 
undefined.) 

 

4.2.2 Simple Linear Regression 

In Section 3.2, we mentioned that data follows a power-law distribution if it presents 
a straight line with a slope equal to 𝛼 in the double logarithmic plot. Learning from 
Section 3.3, we know that the on-off intermittency behavior is identified by a power 
law with	𝛼 = -3/2. So, to find out whether our spot price data exists an apparent 
similarity with on-off intermittency, we aim to fit a straight line on the histogram in 
Figure 4.5 and estimate the scaling parameter 𝛼 using the gradient of that line. 

Learning from equation 3.6, we have the power-law distributions presented as 
𝑙𝑜𝑔	𝑝(𝑥) = 	𝑙𝑜𝑔	𝐶	 − 	𝛼	𝑙𝑜𝑔	𝑥. In practice, we can fit a linear regression line for the 
data spots on the histogram in Figure 4.7, and the intersection point of this line (if we 
extend it) on the	log(𝑦) axis is log	(𝐶), where C is the normalization constant. 
Moreover, the slope of this line is seen as the estimate of parameter 𝛼. Here we only 
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have one explanatory variable, so we use a single linear regression model 𝑦 = 	𝛽* +
𝛽$𝑥. The natural log value of time difference is the in independent variable x, and the 
counts being the dependent variable y. 

In constructing a straight line of which each value y on the straight line is as close as 
possible to the corresponding actual observed data 𝑦+ for each 𝑥+, we apply the 
least-squared method. This method chooses the line where the sum of the squared 
residuals is minimized. The residual is defined as 𝜀+ 	= 𝑦+ − 𝛽* − 𝛽$𝑥+, so we are 
aiming to minimize 

P𝜀+̂(
&

+,$

=P(𝑦+ − 𝛽* − 𝛽$𝑥+)(
&

+,$

 

Here we are using the R command lm( ) to create the simple regression line, also 

called least-squared line 𝑦 = 𝛽*R + 𝛽$R𝑥，for 𝛽*R	𝑎𝑛𝑑	𝛽$R represents are estimated 

parameter. 

 

Figure 4.7 Histogram with a fitted regression line  

Using R command, we produce the scatter plot of time differences on log-logs scales 
with the dotted line illustrates the prediction of counts in each time difference (Figure 
3.7). The prediction model gives 𝑦U = 2.304 − 1.134𝑥!. The slope of the line is -1.134, 
not very close to -3/2, but we can use R command summary () to decide whether the 
data owns on-off intermittency characteristics. 
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4.2.3 Evaluating the model fitting 

This section will analyze the fitted model's linearity, normality, and independence from 
the thorough report produced by the R command summary( ). 

 

Figure 4.8 summary( ) output in R corresponding to the linear regression model 

 

Residuals 

Recall that in a simple linear regression model, the residual, 𝜀+, is the difference 
between the observed values 𝑦+ and fitted values 𝑦-X , presented as 𝜀+ = 𝑦+ − 𝑦-X . We 
would like our residuals to perform a symmetrical distribution so that the sum of all 
residuals is near zero, suggesting the least squared line yields where the differences 
between predicted and observed values are small enough. Looking at the "Residuals: 
"part in roughly Figure 4.9, the median is greater than 0, and the absolute value of the 
minimum residual is greater than that of the maximum residual. We may derive the 
result that our residual distribution is slightly negatively skewed, not strictly 
symmetrical. For precision, we visualize this with a normal probability plot. 
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Figure 4.9 The normal Q-Q plot of the residuals (Threshold=0.15) 

Nearly all the residuals fall very close to the straight line in the normal probability 
plot of the residuals (Figure 4.9), except for the five residuals on the left. Therefore, 
we can say that most residuals follow a normal distribution. 

Coefficients 

Recall that our estimated model is:  

Log density = intercept + slope × log time difference, 

where intercept and slope will be filling in with the estimated coefficients of the linear 
regression model. By filling in the estimated coefficients, we have: Log density = 
2.3039 – 1.1337 × log time difference. The standard error of each coefficient is an 
estimate of the coefficient’s standard deviation. We can use it to calculate the 
confidence interval to show the variability in actual slope and intercept.  

The t-statistic is calculated by the coefficient divided by the standard value. A large t-
value is sought since it indicates a small standard error in comparison to the coefficient. 
The t-value is used to find the p-value because the p-value is calculated using the t-
statistic from the T distribution. P-value tells us how statistically significant our 
coefficient is to the model. Typically, a p-value equals to or below 0.05 is regarded as 
significant in practice. In figure 4.9, the p-value for both intercept and the slope is less 
than 0.001(three asterisks), supporting the extreme significance of this model. 

Multiple R-squared 

Multiple R-squared (𝑅() tells the percentage of variation within the dependent 
variable (counts) that the predictor variable (log time difference) is explaining. The 
value of 𝑅( ranges from 0 to 1; the higher the value, the better the estimated model 
fits the actual data. For our data, in Figure 4.9, log-time differences illustrate 85.92% 
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of the variation within the counts, which strongly indicates that our model fits the data 
very well. Note that as our data are bivariate (we only have one predictor in our 
model), not multivariate, we do not have to look at the adjusted R-squared. 

F-statistic 

A hypothesis test is being run on the whole model to test the existence of a correlation 
between the independent variable and the dependent variable. Mathematically, we set 
a hypothesis: 𝐻* = 	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠	𝑎𝑟𝑒	𝑧𝑒𝑟𝑜; 𝐻$= there is one of 
them, not zero. A large F-statistic associated with a p-value less than 0.05 generally 
indicates that we should reject the null hypothesis. In Figure 4.9, the F-statistic is 
122.1 with a p-value less than 0.001, which suggests overwhelming evidence against 
the null hypothesis. In other words, there is no relationship between the counts and 
the log time difference. 

From the results above, we can conclude that the fitted model is significant for a 
threshold value of 0.15. However, since the estimated slope -1.134 is not close 
enough to -3/2, and dispersions from the normal probability line are seen in Figure 
4.9, we continue to find a more convincing threshold value. 

4.3 Remodeling by using Different Threshold Value 

The first goal of this task is to find the best possible threshold value for identifying on-
off intermittency behavior. Then we choose 0.6 as a higher threshold value to see what 
would happen while fitting the corresponding linear regression models. 

We apply the same methods as previous but changing the threshold value to 0.08 and 
plot the histogram with the least squared line in Figure 4.11. The gradient is now -1.529, 
extremely close to -1.5. Compared to Figure 4.7, the straight line in Figure 4.11 seems 
to perform better in fitting the observed data. So, to test our hypothesis, we apply the R 
command summary() and then compared it to the fitted model using the threshold of 
0.15. 
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Figure 4.10 Histogram with a fitted regression line (Threshold 0.08) 

 

Figure 4.11 summary( ) output in R corresponding to the linear regression model (Threshold 0.08)) 

 

Figure 4.12 The normal Q-Q plot of the residuals  (Threshold 0.08) 

From the "residuals:" part in Figure 4.12, we can assume that all residuals are 
symmetrically distributed. Looking at Figure 4.13, the distribution of log values of the 
residuals is more linear than that of threshold 0.15 since all residuals are located very 
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close to the straight line. Both our p-values for the coefficients are below 0.001 as well, 
but with a much lower value. Moreover, the value of Multiple R-squared is 87.49%, 
slightly larger than 85.92%. Then F-statistics is 146.8, larger than 122.1, together with 
the p-value less than 0.001. Hence, we conclude that the on-off intermittency behavior 
is more significant when choosing Threshold 0.08. 

This time we use a higher threshold of 0.6 to see what would happen when fitting a 
least-square line for the corresponding histogram.  

 

Figure 4.13 Histogram with a fitted regression line (Threshold 0.08) 

From Figure 4.11, we can see that only five obverse data exist, as we exclude a large 
number of returns (Figure 4.4). The number of log time differences is not enough to 
establish one statistically meaningful regression model if we set a high threshold value. 

 

4.4 Bin Width analysis 

In Section 3.3, we mention that apart from the threshold value, the length of bin widths 
is another variable influencing on-off intermittency behavior on earthquake 
occurrences. Now, we want to testify whether the electricity price experiences the same 
characteristics. 
 
In the previous analysis, we fixed the bin widths of 5 to generate histograms shown in 
Figure 4.7 and Figure 4.10. We want to see how changing the bin widths influences 
the outcomes quantifiably using argument breaks( ) in Command hist( ). Changing the 
bin width will affect the grouping of the data, leading to the reshaping of the 
histogram. Hence the corresponding least-squared line is changed. For example, for 
threshold 0.15, if we alter the bin width to approximately 20, we will get the slope 
equals -1.673, which is closer to -1.5 compared to the original slope of -1.134. The 
new model (Log density = 3.726 – 1.673 × log time difference) is also statistically 
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significant. However, the performance of residual's normality is more unsatisfactory, 
indicating that increasing the bin width might, to some extent, decrease the variability 
of the distribution since the same number of data (211 data points) are now packed 
into a fewer number of bins.  
 
Now we apply a lower threshold value of 0.06. If we set bin width at 5, we get the 
straight line with gradient -1.803; if we decrease the bin width to 1, then the slope 
increases to -1.762, bringing closer to -3/2 (Note that 1 is already the minimum bin 
width). Hence, we can conclude that on-off intermittency can be observed if we 
choose higher thresholds along with higher values for the bin width or lower 
thresholds together with lower values of bin width. 
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5 Conclusions  

This project concludes by arguing that the extreme values of electricity daily spot prices 
in the Nord Pool comply with on-off intermittency characteristics. To derive this 
conclusion, we used the dataset comprising daily spot price in Nord Pool over eight 
years, containing 2948 data points. After taking natural logarithmic returns of the 
dataset, our stationary time series reveals several short-lived spikes alongside a stable 
state with nearly constant variance, indicates the possible existence of on-off 
intermittency behavior. 
 
On-off intermittency holds a universal property that the duration of laminar phases 
between two subsequent bursts follows -3/2 power-law distribution. In this case, we 
analyzed the time difference between extreme events by varying different values of 
threshold and lengths of bin width, then plotting the corresponding histogram about the 
frequency distribution of time differences with fitted regression line on log-log axes. 
We found that our daily spot price exhibits on-off intermittency behavior most 
statistically significant when choosing threshold value 0.08 with bin width 5. Those 
analyses lead to the following conclusion: on-off intermittency behavior can be seen in 
the daily electricity spot price when proper values of threshold and bin with are chosen. 
  
Ideally, our findings can be replicated in future studies, where identifying and 
forecasting intermittency in spot price market data are sought, even though our 
statistical model's simplicity may trigger some limitations. 
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Appendix  

This section presents the R code used to produce output for analysis and generate each 
graph. 
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Note that the rest of the analyses are done by simply repeating the R command starting 
from Figure 4.4. 
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