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Abstracts 

This thesis could be divided into three main sections. The theoretical part 

of the algorithm, examples of the method application, and Nordic 

electricity market data analysis. 

The first part describes the derivation of the Hilbert transform and the 

calculation of the instantaneous Amplitude by means of it. The second part 

demonstrates, by means of enumerative examples, how to analyze 

instantaneous amplitude images calculated from complex signals. The 

third section begins with a brief background on the Nordic electricity price 

market and uses R as well as Matlab to process and analyze the data from 

the Nordic electricity price market in extreme values. 
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1.0 Introduction 

Signal processing applications span a vast array of disciplines, including 

entertainment, communications, space exploration, medicine, and more. 

Algorithms and hardware are prevalent in a wide range of systems, from 

highly specialized military systems and industrial applications to consumer 

electronics [1]. In the long history of development in the signal processing 

area, signals also have deep roots in time series analysis, which is related 

to data analysis in economics and statistics [2]. 

Fourier transform was first established by Joseph Fourier in the early 19th. 

Using the Fourier transform, we can transform complex signals into 

simpler forms, or we can also spawn complex signals from simple modes. 

It can be used not only to analyze natural signals in nature but also has a 

very wide range of applications in the industry. It can be said that Fourier's 

theory forms the core of signal processing theory today [3]. 

In the principles of signal processes, the Fourier transform plays a main 

role, and most algorithms are extensions of the Fourier transform. An 

example of this is the Hilbert Transformation based signal analysis.  

The Hilbert transform can be traced back to 1905 when Hilbert worked on 

what became known as the "Riemann Hilbert" problem. The Hilbert 

transform has been applied to signal processing and the creation of analytic 

expressions for signals [4]. The signal analysis covered in this thesis, the 

analysis of data, relies heavily on the Hilbert transform and Euler's formula, 

which is a typical global signal analysis method. And to introduce the 

concept of the Hilbert transform, we need to start with the Fourier 

transform. 

Overall, in the following sections, we will introduce the Hilbert algorithm 

and complex signal theories, with a brief explanation of Fourier 

Transformation at first, which contributes to the theory parts. In numerical 

parts, how to generate the instantaneous Amplitude (also called the 

envelope) of the complex signal will be shown by using data of the Nordic 



electricity market from 1999 to 2007. The main aim is to observe the 

occurrence of extreme values in the Amplitude of signal. Therefore, we 

will make observations and do some simple statistical analysis of the 

envelope in the last section. 

2.0 Fourier Transformation and Analytic signal 

2.1 Fourier Transform 

The significance of the Fourier transform in signal processing can first be 

understood simply as a transformation from the time domain to the 

frequency domain. Its symmetry and convolution characteristics will give 

a great deal of help in our understanding of Hilbert transformation. 

According to the definition of the Fourier transform, its transform 

expression, and inverse transform expression is [5]: 

𝑋(𝜔) = 𝐹(𝑥(𝑡)) =  ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡
∞

−∞

𝑑𝑡  (1) 

𝑥(𝑡) = 𝐹−1(𝑋(𝜔)) =
1

2𝜋
∫ 𝑋(𝜔)𝑒−𝑖𝜔𝑡

∞

−∞

𝑑𝜔  (2) 

Here we construct a real function 𝑥(𝑡) and its Fourier transformation is 

𝑋(𝜔) .  now that 𝑥(𝑡) = 𝑥∗(𝑡) , two sides are simultaneously Fourier 

transformed to give 𝑋(𝜔) = 𝑋∗(−𝜔). 

The Fourier transform of the real signal contains negative frequencies; if 

the negative frequencies are removed, this makes: 

𝑍(𝜔) = 2𝑋(𝜔)𝑢(𝑡) = 𝑋(𝜔) + 𝑠𝑔𝑛(𝜔)𝑋(𝜔)  (3) 

Where 𝑢(𝑡) is a step function, 𝑠𝑔𝑛(𝜔) is a signum function. Then by 

doing inverse Fourier transformation to 𝑍(𝜔): 

 



𝑧(𝑡) =  𝐹−1(𝑍(𝜔)) 

                                          =  𝐹−1(𝑋(𝜔) + 𝑠𝑔𝑛(𝜔)𝑋(𝜔)) 

  =  𝑥(𝑡) + 𝐹−1(𝑠𝑔𝑛(𝜔)) ∗ 𝐹−1(𝑋(𝜔)) 

=  𝑥(𝑡) + 𝑖 (
1

𝜋𝑡
∗ 𝑥(𝑡)) 

=  𝑥(𝑡) + 𝑖 �̃�(𝑡)  (4) 

This leads us to the analytic signal and the Hilbert transformation. �̃�(𝑡) is 

the Hilbert transformation of 𝑥(𝑡), and the Analytic signal of 𝑥(𝑡) is 

𝑧(𝑡). 

2.2 Hilbert Transformation 

Based on the extensive use of Euler's formula (in 1946 by Gabor), we can 

find a prototype to express an analytic signal. A complex signal (also called 

analytic signal) contains two parts: the real parts and the imaginary parts. 

The imaginary part is the real part's Hilbert transformation. The specific 

format is as follows: 

𝑌(𝑡) = 𝑢(𝑡) + 𝑖 𝑣(𝑡)  (5) 

Where 𝑣(𝑡)  is the Hilbert Transformation of 𝑢(𝑡)  , and 𝑢(𝑡)  is 

orthogonal with 𝑣(𝑡). Such an operation actually achieves a change in the 

signal from a bilateral to a unilateral spectrum. 

By the definition of the Hilbert transform, for a function 𝑢(𝑡), its Hilbert 

transform is the convolution of the function itself and 1/𝜋𝑡 [6]. 

�̃�(t) =   𝐻(𝑢(𝑡)) =  ∫
𝑢(𝜏)

𝜋(𝑡 − 𝜋)

+∞

−∞

 𝑑𝜏    (6) 

 nown from the definition of convolution, function (6) can be expressed 



as: 

�̃�(t) = 𝑢(𝑡) ∗ (𝜋𝑡)−1  (7)  

To better understand the mathematical significance of the Hilbert transform, 

the properties of the Fourier transformation and convolution are presented 

below. 

𝐹 (𝐻(𝑢(𝑡))) =  𝐹 (
1

𝜋𝑡
∗ 𝑢(𝑡)) =  ∫

1

𝜋𝑡
𝑒𝑖𝜔𝑡

∞

−∞

𝑑𝑡 ∙ 𝐹(𝑢(𝑡)) (8) 

Derived from function (8), we have the frequency response here: 

𝐻(𝜔) =  ∫
1

𝜋𝑡
𝑒𝑖𝜔𝑡

∞

−∞

𝑑𝑡 = −𝑖 𝑠𝑔𝑛(𝜔) (9) 

Where 𝑠𝑔𝑛(𝑓) is a signum function that: 

𝑠𝑔𝑛(𝑓) =  {
1              𝑓 > 0 
−1           𝑓 < 0 

(10) 

From the above expression, we conclude that the Hilbert transform shifts 

all positive frequency components by -𝜋/2 , and all negative frequency 

components by 𝜋/2, which is equivalent to a quadrature filter, with the 

amplitude keeping unchanged.  

Similarly, from the above properties we can say that the Hilbert 

transformation of a cosine, is minus sine. 

𝐻(cos(𝑥)) = − sin(𝑥)  (11) 

2.3 Instantaneous Amplitude 

In fact, analytic signals can be better understood in the three-dimensional 

space, which is consisted by the complex plane and time, with x-axis 

representing real parts, y-axis representing time and z-axis for imaginary 

parts. 



 

Going to the complex plane alone here, the rotation vector in the figure is 

the envelope of the resolved signal. In other words, instead of studying the 

signal in the frequency domain, one can look at the rotation vector in the 

time domain with instantaneous phase and instantaneous amplitude [7]. 

 



It is easy to obtain the function of 𝐴(𝑡) and 𝜑(𝑡) from Figure 2. To do 

this, we treat 𝐴(𝑡), 𝑥(𝑡) and �̃�(𝑡) as three segments: 𝜑(𝑡) is an angle 

of the closed right triangle, in which 𝑥(𝑡) and �̃�(𝑡) are two right-angled 

sides. By a simple calculation of Trigonometric operations, we can obtain 

the hypotenuse 𝐴(𝑡)  and angle 𝜑(𝑡)  of this right triangle. Hence, we 

have: 

𝐴(𝑡) =  ±|𝑋(𝑡)| =  ±√𝑥2(𝑡) + �̃�2(𝑡)   (12) 

𝜑(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
�̃�(𝑡)

𝑥(𝑡)
    (13) 

We could then interpret these more mathematically by using a simple 

harmonic example: 

𝑥(𝑡) = 𝑎  cos(𝜔𝑡) (14) 

Where 𝑎 = 𝐴(𝑡) , represents the amplitude; 𝜑(𝑡) = 𝜔𝑡  represents the 

phase. 

At first, we do HT to (14), and we have created an analytic signal defined 

before (we only consider positive frequency there): 

𝑋(𝑡) = 𝑥(𝑡) + 𝑖 �̃�(𝑡) = A(t) cos(𝜔𝑡) + 𝑖 A(t)sin(𝜔𝑡)  (15) 

Using Euler's Formula, we have: 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) (16) 

𝑋(𝑡) = 𝐴(𝑡)𝑒𝑖𝜔𝑡  (17) 

Combining equation 15 with equation 17, it is easy to obtain the 

instantaneous amplitude (also called the envelope): 

𝐴(𝑡) =  ±|𝑋(𝑡)| =  ±√𝑥2(𝑡) + �̃�2(𝑡)  (18) 

Same as the results we interpreted from the complex plane. 



3.0 Example of Analytic Signal 

3.1 Numerical Example 1 

In practice, the Hilbert command works by taking the Fourier transform of 

the original signal. Then we take the positive frequency part, and finally 

perform the inverse Fourier transformation again to construct an analytic 

signal (as mentioned in section 2.2). 

As a testbed, to see how the algorithm goes on in an ideal case, given an 

artificial time series than before: 

𝑥(𝑡) = 𝑎 cos(𝜔1𝑡) + 𝑏 cos(𝜔2𝑡)  (20) 

Say with, 𝑎 = 1, 𝑏 = 1.1, 𝜔1 = 1, 𝜔2 = 1.1, and we set the range of t as 
[0,100]. 

To analysis the real signal more intuitively, we transformed it into a 

complex signal using Hilbert's algorithm by Matlab and extracted its 

components. 

 



As shown on Figure 3, the result given by the algorithm is consistent with 

the one we derived in Equation 18. A slight disturbance can be observed at 

the ends of the curve, which is triggered by end effect. We would not 

discuss the specific theory in this thesis, but we will analyze its impact in 

the following sections. In addition, we can conclude that from this two-

cosine model, the instantaneous amplitude is a smooth curve that fits the 

original signal well. 

 

To facilitate the analysis, we construct histogram plots of the instantaneous 

amplitude, and it can be seen from the plots that the peaks are partially 

located around 2.2, 0.1 for the lowest points, similar to what we observe in 

the envelope plots (also ignore the end effect here). Thus, the range of 

envelope values from about 0.2 to 2 encompasses most values, which are 

the daily fluctuations of this artificial signal. 

3.2 Numerical Example 2 

The next step is to build a new model based on the formula in Example 1 

(the two-cosine example) with a slight variation and see what happens. 

𝑥(𝑡) = 3.3 + 1.3(1.4𝑡 + 1.2) + 1.2 sin(1.8𝑡 + 2.2) + cos(0.8𝑡 − 1.6) (21) 



This time, we begin with plotting the diagram of complex signal itself: 

 

From two results in Figure 5, it can be observed: the regularity of the 

complex signals remains relatively strong, and the changes in the curves of 

the real and imaginary parts are to some extent correlated. 



 

We could say that the way the envelope curve fits the original signal in 

Figure 6 differs from Figure 3. This difference is that the newly constructed 

signal, although still highly periodic, is closer to the natural fluctuations of 

the signal, rather than the simpler signal in example 1. In reality, signals 

are often far more complex than artificial signals, due to internal and 

external factors. 

4.0 Nord Pool Data Analysis 

4.1 Background of Nord Pool Market 

The Norwegian electricity market was initially established in 2003, when 

the leaders realized the uneconomical and low price of electricity caused 

by overcapacity. In order to ensure the coordination of regional electricity 

and the efficient use of electricity, the position of the transmission operator 

becomes very important. Hence harmonization of regional differences 

became a key to the success of the Nordic market. Over the years, it has 



grown from a Norwegian electricity market to the Nordic market in 2000. 

After this, it not only became a service provider for other European markets, 

but also expanded its operations to other countries [8]. 

The Nordic Electricity Market has two main functional modules. The 

physical market, also called Elspot, organizes the physical delivery of 

electricity, where the market price and amount are determined by the 

previous day's supply/demand equilibrium. Therefore, although Elspot 

actually acts as a spot market, its deal processing could be seen as a one-

day futures contract. As the opposite of Elspot, Elpotion and Eltermin are 

financial markets. They offer real financial contracts like futures and 

forwards to consumers aiming for managing risks [9]. Due to the fact that 

over 80% of the system was operated by ELspot, in this thesis, our data set 

was abstracted from the spot market.  

As we mentioned before, the price of electricity can occasionally take on 

extreme values due to uncertainty in demand, accidents at transmission 

facilities, and one of the underlying triggers are the properties of non-

storability of electricity. Extremes and disturbances can occur for a variety 

of reasons, and there are many possible reasons from a supply and demand 

perspective—for example, seasonal variations in electricity demand, with 

higher demand in winter. There could also be price fluctuations on the 

supply side, such as the cost of emissions from coal generation [10]. 

Unfortunately, this article will not discuss the reasons why extreme price 

fluctuations occur. Analyzing these 'accidents' or 'oscillations' will be the 

main melody of this project. 

4.2 Analysis of data 

4.2.1 Dealing with dataset: Logarithmic return 

At first, we need to attach our dataset, which will be used in the project. 

The data set contains the electricity price (in EUR/MWh) from Jan 1st 1999 

to Jan 26th 2007 at a sampling rate per hour. This process was done in R, 

with an output figure. 



 

Data plot was shown in Figure 7. The original data can be observed as a 

time series with an upward trend by time and shows non-stationary 

characteristics. Therefore, statistical approaches will fail with ill-defined 

mean values. Aiming to make this time series statistically meaningful for 

further analysis, we apply Logarithm return here to deal with the original 

time series. To compute daily logarithm returns, use the daily average price 

as original data. 

The log return is deduced from the equation of simple return. See simple 

return's function as below: 

𝑅𝑠 =
𝑃𝑡

𝑃𝑡−1
− 1 (22) 

And if logarithm is applied here, we could get the definition of log return: 

𝑅𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
)  (23) 

Where 𝑃𝑡 refers to the value of price at a specific time spot 't'. 



 

Results applied with logarithm return are shown in Figure 8 and 9. 

Obviously, data looks more stationary here. We see a kind of daily 

oscillation in Figure 9, and these are going to be analyzed in the following 

part of this project. Then we compute the mean value and subtract the mean 

value from the time series (so that the result has a mean zero). 

 



This way, the periodicity of the metadata has been adjusted, and the mean 

and variance are more sensible. As a result, we made raw data more suitable 

for use with statistical algorithms and analysis methods. The adjusted 

dataset (Figure 10, computed by R) will be the original signal for our 

subsequent analysis process. 

4.2.2 Amplitude analysis 

 

By using Matlab command, Figure 11 was generated through combining 

the original signal and computed instantaneous amplitude curve. As can be 

seen by looking at some of the intervals, the envelope overlaps perfectly 

with the original signal and is able to match the trend of the original signal 

very well (Here, we only focus on the positive envelope). To observe 

changes in the envelope more precisely, we need to abstract a miner scale 

interval from the whole timeline.  



 

From Figure 12, we can observe the fluctuations around the value on Nov 

9th 2000. It is easy to conclude that the peak of the envelope seems to occur 

earlier than the original signal. And the curve in the chart up to December 

confirms our suspicions, with the peaks in October and November showing 

a similar nature. And this pattern is sometimes broken, for example, when 

the first extremes appear in early February when the envelope reaches its 

peak at almost the same time as the original signal. To test our guesses and 

find more patterns, more extreme values need to be observed. 



Taking the interval from May to August 2000, a period of frequent 

oscillations on the timeline, the same conclusion can be drawn as before: 

most of the time, the envelope gives information ahead of the original curve. 

However, the two extreme values in December 1999 and late January 2000 

confirm the failure of the envelope to predict this information in advance 

when extreme values (deviate significantly from the daily data) occur. Next, 

we can apply the histogram used in section 3 to try to find more regulations.  



The frequency histogram shows that for nearly half of the days of the year, 

the value of amplitude is below 0.1, proving that values below this are the 

market's daily. In contrast, values around 0.15 to 0.35 occur much less 

frequently and represent more minor fluctuations in the market. We can 

find lots of corresponding data from April to August 2000 in Figure 11. In 

addition, the 'shortest' squares in the histogram, which are the values that 

occur least frequently, such as those with horizontal coordinate values 

around 1.2 and 0.7, represent extreme values. They can also correspond to 

the two times of late January and early May 2000 respectively. Again, we 

need to make observations of the later data, choosing 2005-2006 for the 

envelope analysis. 



 

It can be intuitively perceived that the data for the year 2005 to 2006 is 

more stable and less volatile than the earlier data. This can also be seen 

from the raw data curves in Figure 7. As we mentioned in 4.1, there could 

be a number of reasons for this. And we can find that the extreme data 

appearing at the end of April 2006, although the envelope curve rises 

somewhat earlier, its peak still appears simultaneously with that of the 

original data, which is the same phenomenon as before.  

But this year, taking smaller time periods, one can find curves that do not 

fit the pattern of instantaneous amplitudes predicting fluctuations in 

advance.  



 

This is reflected in the section labeled in Fig. 16. This may indicate that 

when the signal is very smooth, relative fluctuations can still invalidate the 

envelope's prediction mechanism, even though the absolute magnitude of 

some fluctuations is not significant. 

Then we continue to plot the histogram to see how Amplitude in Figure 15 

performs. 

 



The histogram shows us very clearly that values greater than 0.12 do not 

even sum to more than 0.1. Compared with Figure 14, this indicates that 

prices were much flatter in 2005-2006 compared to 2000. Extreme values 

around 0.8 can be found corresponding to the time point of May 8th 2006. 

Next, we take two edges of the image to see if the breakpoint effect of the 

Hilbert transform affects our judgement of the extreme values. 

 

It is not difficult to find that the end effects on both sides are not significant, 

and the envelope still reflects the trend of the original signal. This makes a 

direct global analysis possible. Therefore, we could go back from the miner 

scale to see the whole signal. Notice that data points which instantaneous 

amplitude values at 0.4 and above are the extreme points that we will be 

looking at. The parts marked by red circles are not easily distinguishable 

on the overall map, so we use a smaller scale. 

 



It can be observed that the histogram in Figure 19 has a similar distribution 

to histograms plotted before (Figure 14 and Figure 17). And it also well 

indicates where extreme values are. 

5.0 Conclusion 

This thesis is intended to explore whether signal processing is a suitable 

method for predicting and observing the occurrence of extreme values. So 

we introduced two artificial signals in section 3 as examples to see how the 

instantaneous amplitudes behave. The envelopes were found to fit the 

original signals relatively well, and for the first time, a histogram was 

applied.  

Using the principles described in section 1, we applied the algorithm to 

data from the Nord Pool market using r and Matlab. First, we use log return 

to deal with original increasing data, in order to construct a stationary 

signal. Then the analytic signal was derived by Hilbert transform, and the 

image of instantaneous amplitude was calculated comparing with the 

original signal, supplemented by histogram analysis.  

In the process, some patterns were discovered. Most of the time, the 

envelope is an excellent 'omen', since the envelope curve usually produces 

a change in trend earlier than the original signal. However, this mechanism 

can sometimes fail. For example, as we mentioned in the explanation (of 

Figures 13 and 16), when very extreme values appear, or when the curve is 

very smooth and regular, and fluctuations arise suddenly, its reaction may 

not be timely enough. 

In addition, the ends effect we found in the artificial signal example did not 

have a serious impact on the overall data analysis. Still, it could potentially 

bring inaccurate predictions when the amount of data is relatively small. 
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