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Abstract

The spontaneous synchronisation of large populations of coupled, nonlinear, limit-

cycle oscillators has attracted a great deal of attention in the last few decades. This

phenomenon is observed in a large variety of biological, chemical, physical and social

systems. One successful attempt to attack this problem is the Kuraomoto model,

where each of the oscillators is modelled as a phase oscillator interacting in a variety

of ways with some or all of the oscillators in the population. This work explores

some of the fundamental properties of the Kuramoto model through both theoretical

analysis as well as numerical simulation. We begin by reworking Kuramoto’s original

analysis for a population of globally coupled oscillators, and find that in the infinite

population continuum limit, a phase transition occurs whereby some or all of the

oscillators spontaneously synchronise if the coupling is sufficiently strong. We use

numerical integration to explore the dynamics of a finite population of oscillators

and find good comparison with theoretical predictions. We explore all regions of

the stability diagram to establish the stability or instability of the various branches

of the bifurcation curve and provide numerical evidence of a second-order phase

transition to synchronisation in the system. The model is adapted by introduc-

ing a frustration parameter into the coupling through a constant phase-shift. The

so called Kuramoto-Sakaguchi model is examined on a one-dimension ring network

where the coupling is non-local. For a finite population of identical oscillators sur-

prising dynamics are observed. For certain parameter values the formation of both

synchronised and incoherent states coexisting on the network is observed. These

so called ”Chimera” states are shown to be sensitive to initial conditions and we

briefly explore their stability over long time scales numerically. Although inconclu-

sive, they do not appear to be stable entities over long time scales, at least for the

finite population size simulations performed here.
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Chapter 1

Introduction and motivation

1.1 Historical overview

Collective synchronisation whereby a large system of interacting elements adjust

their rhythm to oscillate at the same frequency, although each oscillator has its own

preferred natural frequency, is ubiquitous in nature (Strogatz and Stewart, 1993;

Strogatz, 2000; Pikovsky et al., 2001; Acebrón et al., 2005).

The first recorded observation of synchronous behaviour was made by Christiaan

Huygens while observation the motion of two pendulum clocks and is recorded in

a letter to his father on 26 February 1665 while sick in bed (Pikovsky et al., 2001;

Huygens, 1967):

”While I was forced to stay in bed for a few days and made observa-

tions on my two clocks of the new workshop, I noticed a wonderful effect

that nobody could have thought of before. The two clocks, while hanging

[on the wall] side by side with a distance of one or two feet between,

kept in pace relative to each other with a precision so high that the two

pendulums always swung together, and never varied. While I admired

this for some time, I finally found that this happened due to a sort of

sympathy: when I made the pendulums swing at differing paces, I found

that half an hour later, they always returned to synchronism and kept it

constantly afterwards, as long as I let them go. Then, I put them fur-

ther away from one another, hanging one on one side of the room and

the other one fifteen feet away. I saw that after one day, there was a

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

difference of five seconds between them and, consequently, their earlier

agreement was only due to some sympathy that, in my opinion, cannot

be caused by anything other than the imperceptible stirring of the air due

to the motion of the pendulums.”

Furthermore, Huygens discovered that this state was stable:

”...further, if this agreement was disturbed by some interference, it es-

tablished itself in a short time.”.

He sought to explain the ”sympathy of the two clocks” and realised that the clocks

were synchronised due to the coupling provided by the movement of the supporting

beam although it was hardly perceptible.

Figure 1.1: Illustration of Huygens experiments with two pendulum clocks with common
support. (Pikovsky et al., 2001)

Synchronisation is observed in a huge variety of natural situations and over a wide

range of time scales. In biological systems the synchronous flashing of fireflies (Buck,

1988) can be observed as well as the synchronised firing of pacemaker cells in the

heart (Winfree, 2001). In social systems we can observe synchronised applause (Néda

et al., 2000) and there is a huge volume of research now on neural synchronisation in

the brain (Gray, 1994; Izhikevich, 2007; MacKay, 1997). There are many engineering

examples, for example synchronisation in power grids (Filatrella et al., 2008; Rohden

et al., 2012), in laser arrays (Blackbeard et al., 2014) and numersous examples in

other fields such as electronics, meteorology, economics and chemistry (Strogatz,

2004).

All of these examples have one thing in common. Each of the individual oscillat-

ing units has its own preferred frequency with which to oscillate. No single oscillator
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is ’in charge’ directing the rest of the population. It is the collective behaviour and

interaction among the population that leads to the emergence of collective oscilla-

tions that synchronise.

The first mathematical study of this phenomenon was carried out by Wiener

(1958, 1961) investigating alpha brain wave oscillations. However the model proved

to be intractable mathematically and was not developed further. Winfree (1967)

was the first to put the problem on a firm mathematical footing by treating the

population as a large system of weakly interacting phase oscillators. He observed,

through simulation, that the oscillations would synchronise spontaneously with suf-

ficiently strong coupling. However the model still proved to be intractable to all

but this simplest of situations. Inspired by Winfree’s work, Kuramoto (1975) made

simplifications and produced a more tractable model that we investigate here.

1.2 Thesis overview

In this work we explore the model suggested by Kuramoto, and modifications to

it. We begin with a mathematical introduction and show that a system of Stuart-

Landau oscillators, under certain assumptions, can be modelled as a population of

phase oscillators. In fact, (Kuramoto, 1975) showed that any system of weakly cou-

pled, identical self sustained oscillators the dynamics can be reduced to interacting

phase equations.

We derive the key properties of a globally coupled infinite population in a contin-

uum formulation and then explore a finite population through numerical simulation.

The effect of the distribution of natural frequencies as well as coupling strength is

explored numerically.

We then consider an interesting modification to the original model and explore

the dynamics on a finite one-dimensional ring network and also introduce non-local

couple between the oscillators.

All numerical integrations are coded in Matlab using the inbuilt ode45 routine.

This is an embedded Runge-Kutta (4,5) routine which has adaptive step size control

and was found to be suitable for all integrations in this work.



Chapter 2

Synchronisation of coupled

oscillators

2.1 Populations of limit cycle oscillators

One of the earliest successful attempts to describe synchronous behaviour in a math-

ematical way was made by Winfree (1967). Winfree considered a large population of

identical weakly interacting limit-cycle oscillators. The dynamics of each oscillator

is described only by its phase on a short timescale. On longer timescales, the key

is to consider each oscillator coupled to an overall mean-field generated by all the

oscillators (Strogatz, 2004, 2000). In Winfree’s model, the evolution of the phase of

each oscillator is governed by

θ̇i = ωi +

(
N∑
j=1

X(θj)

)
Z(θi), i = 1, . . . N, (2.1)

where θi is the phase of each oscillator, ωi its natural frequency. Each oscillator

influences the collective mean-field throughX and responds to it through Z. Winfree

had some success with numerical simulation of (2.1) and discovered synchronisation

could occur with sufficiently large coupling.

Motivated by Winfree’s work, Kuramoto (1975) considered a simpler model for

the dynamics of a single self-sustained oscillator that is governed by the Stuart-

Landau equation

4
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dQ

dt
= iωQ+ (α− β|Q|2)Q (2.2)

with α, β > 0, which describes the dynamics near to a Hopf bifurcation. Writing

the complex variable Q as, Q = ρeiθ and substituting into (2.2) we get

iρeiθ
dθ

dt
+

dρ

dt
eiθ = iωρeiθ + (α− βρ2)ρeiθ (2.3)

Equating real parts we get
dρ

dt
= (α− βρ2) (2.4)

and so ρ has a stable fixed point ρs =
√
α/β. Equating imaginary parts gives

dθ

dt
= ω (2.5)

Assigning ρ to this fixed value ρs we see that we get a self-sustained limit cycle

with amplitude ρs and phase θ varying with time given by (2.5). This is shown in

Fig. 2.1. Kuramoto then considered a population of N interacting Stuart-Landau

Figure 2.1: Limit cycle of the Stuart-Landau oscillator. This represents the motion of a
single self-sustained oscillator in (ρ, θ) space. ρ remains constant and so the limit cycle is
a circle. The limit cycle is stable, so any trajectory that starts away from the limit cycle
approaches it asymptotically.

oscillators where each oscillator has its own frequency and interacts with every other
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oscillator. This can be modelled as

dQi

dt
= iωiQi + (α− β|Q|2)Qi +

N∑
j=1,j 6=i

KijQij (2.6)

In considering the system defined in (2.6) in a similar way to the single oscillator

situation, Kuramoto made some simplifying assumptions:

1. Kij = K/N

2. N →∞

3. α, β →∞, while α/β, ωi, K remain finite

The implication for the scaling of the coupling Kij is that there is constant all-

to-all coupling between each oscillator that is weak. In a similar fashion to the single

oscillator case, we write Qi = ρie
iθi and substitute into (2.6). Owing to assumption

(3) it is easy to see that ρi will reach a constant value ρsi =
√
α/β, ∀i over time as

with the single oscillator case. Consequently equating imaginary parts of (2.6) on

the limit cycles ρi = ρsi leads to

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi) (2.7)

which is the Kuramoto model for a population of N oscillators with global all-to-all

coupling. It is this model that we will begin to explore analytically in the next

chapter as a basic model for synchronisation in a population of coupled limit cycle

oscillators..

2.2 Definition of synchronisation

As outlined in section 1.1, oscillators in the real world can often interact and synchro-

nise with each other. Before we proceed with a in-depth exploration of the dynamics

exhibited by (2.7) it is worthwhile to briefly outline the meaning of synchronisation

in a more rigorous way.

Here we focus on the dynamics of a population ofN oscillators as defined by (2.7).

However the same arguments would apply to different models of synchronisation.
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Each phase variable, θi(t), is 2π-periodic and is defined on the unit circle S1. Since

there are N oscillators, the state space of this systems is the N -torus, TN = S1 ×
. . . × S1. Frequency locking is said to occur when there is a periodic trajectory on

this N -torus.

For example, in the case of two oscillators if θ1 rotates p times around the torus

and θ2 rotates q times, then we have p : q frequency locking if p/q is rational. If p/q

is irrational thenquasi-periodic motion will occur.

If the two oscillators are frequency-locked then they can be said to be phased-

locked if qθ̇1(t) = pθ̇2(t). The oscillators are said to be synchronised if they are 1:1

phased-locked, θ̇1(t) = θ̇2(t).

So for our original population of N oscillators, they are fully synchronised when

all oscillators are 1:1 phase-locked. There may be partial synchronisation where

only a subset of the N oscillators are synchronised. Figure 2.2 shows pictorially the

relationship between these definitions.

Figure 2.2: Various degrees of locking of oscillators. Taken from (Izhikevich, 2007).



Chapter 3

The Kuramoto model with global

coupling

3.1 The mean-field and the order parameter

As outlined in section 2.1 the dynamics of a large number, N , of self sustained limit

cycle oscillators can be described by the Kuramoto model through a system of first

order differential equations (3.1) in RN , governing the evolution of the phase θi(t),

of each oscillator, which resides on a unit circle.

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)) i = 1, . . . N,

θi(0) = θ0i (3.1)

Each oscillator has its own natural oscillating frequency ωi, which is drawn ran-

domly from some specified distribution g(ω) (specifically a probability density) with

normalisation
∫∞
−∞ g(ω)dω = 1. In the case considered here, K ≥ 0 represents a

constant coupling parameter and the appearance of the factor 1/N is to ensure the

model remains well behaved in the limit N →∞. Equation 3.1 describes the glob-

ally coupled or all-to-all coupled Kuramoto model where each oscillator is coupled to

every other oscillator through a constant coupling parameter. Figure 3.1 visualises

the situation for N = 4 oscillators with all-to-all coupling. Each oscillator resides

at the node of a complete network and consequently is connected to every other

8
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oscillator. The distribution of ωi introduces randomness into the model, whereas

the summation term on the r.h.s of (3.1) attempts the bring each oscillator in phase

through attractive coupling.

Figure 3.1: Visualisation of the globally coupled Kuramoto model for a network of N =
4 oscillators. Each oscillator is coupled to every other oscillator through an all-to-all
coupling.

With all coupling removed K = 0 it is easy to see that each oscillator’s phase

evolves independently of all the others, at its intrinsic frequency ωi as in (3.2).

θ̇i(t) = ωi, i = 1, . . . N. (3.2)

In effect then, each oscillator tries to run independently of all the others but is drawn

through the sinusoidal couple term to synchronise to all others.

Kuramoto’s original analysis (Kuramoto, 1983; Acebrón et al., 2005; Strogatz,

2000), assumed that the distribution of intrinsic frequencies g(ω) is unimodal and

is also symmetric about the mean frequency 〈ω〉 = Ω. That is,

g(Ω + ω) = g(Ω− ω), (3.3)
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where Ω is given by

Ω =

∫ ∞
−∞

ωg(ω)dω (3.4)

By making the transformation θi(t) → θi(t) + Ωt, (3.1) remains invariant but

with intrinsic frequencies ωi − Ω. So without loss of generality we can set Ω = 0

which physically means moving into a frame rotating with the mean frequency Ω.

This shifts the mean of g(ω) to zero and consequently the symmetry,

g(ω) = g(−ω) (3.5)

Next we follow Kuramoto’s original self-consistent analysis (Kuramoto, 1983;

Acebrón et al., 2005; Gupta et al., 2014) to attempt to establish some analytical

results concerning the emergence of synchronous behaviour in the system (3.1).

To start with, a complex order parameter

r(t)eiψ(t) =
1

N

N∑
j=1

eiθj(t), (3.6)

is defined. This can be thought of as macroscopic average that describes the overall

dynamics of the entire population of oscillators. If the phase of each oscillator is

visualised as a collection of points moving around a unit circle each with a corre-

sponding unit vector pointing to each, then ψ(t) describes the average phase and

r(t) describes the coherence of the phases. The complex order parameter, (3.6) can

be thought of as describing the ’centre of mass’ of the phases as they move around

the circle.

Kuramoto uses r(t) as a measure of the degree of synchrony of the systems of

oscillators. If r(t) = 0 then the phases are scattered uniformly around the circle and

there is no coherence or complete incoherence. In the extreme case where all phases

have the same value, r(t) = 1 and their is complete synchronisation. If r(t) > 0

there is clustering of the phases. Some oscillators whose natural frequencies are

close to the average frequency become phase locked at the average phase ψ(t) and

will rotate around the circle with frequency Ω, the remaining oscillators form a set

of drifting oscillators moving of their own accord around the circle. This is a state

of partial synchronisation.

Figure (3.2) provides a visualisation of the order parameter for a network of
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N = 8 oscillators. In introducing the order parameter (3.6), we can think of it as

(a) r = 0.0 (b) r = 0.4

(c) r = 0.8 (d) r = 1.0

Figure 3.2: Visualising the order parameter for N = 8 oscillators. Points on the unit
circle represent the phase, θj , of each oscillator. The ’center of mass’ of the phases is
represented by the complex number reiψ and is visualised by the vector of length r and
angular displacement ψ. For r = 0 the points are distributed uniformly around the unit
circle. As r increases they cluster more, until when r = 1 all oscillators have identical
phases.

describing the mean field of the system (3.1).

It will be useful to now redefine the original system (3.1) in terms of the mean

field parameters r and ψ. To this end we first multiply (3.6) through by e−iθ

rei(ψ−θi) =
1

N

N∑
j=1

ei(θj−θi), i = 1, . . . N, (3.7)

Equating the imaginary parts of (3.7) we get

Im
(
rei(ψ−θi)

)
= Im

(
1

N

N∑
j=1

ei(θj−θi)

)
, i = 1, . . . N, (3.8)
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and so

r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi), i = 1, . . . N, (3.9)

Noticing the form of the r.h.s. of (3.9) we can substitute directly into the original

equations of motion (3.1) to obtain

θ̇ = ωi +Kr sin(ψ − θi), i = 1, . . . N, (3.10)

Equation 3.10 describes the system as a mean field model. The oscillators appear

uncoupled, however each oscillator is coupled to every other oscillator through the

mean field quantities r and ψ. Each oscillator is attracted to the average phase of

the combined population through ψ. The strength of this attraction is proportional

to Kr.

This mean field description of the coupling can explain the basic mechanism

behind synchronisation. As the phases become more clustered r increases, leading

to increased coherence and clustering, subsequently increasing r further, and so on.

If K is too small however it is possible that that oscillators will not synchronise

their phases as the second term on the r.h.s of (3.10) could become negligible and

the evolution of θi would be dominated by the ωi term. Alternatively for strong

coupling K � 0, it is possible that all phases have a dominant attraction to the

collective mean phase and synchronise to it. As we will show, there a critical value

of the coupling constant Kc that depends on the initial distribution of frequencies

g(ω) below which this synchronisation will not occur.

We will investigate the form his critical coupling takes analytically in the follow-

ing sections and explore this further numerically in Chapter 4.

In order to obtain more concrete mathematical description of the behaviour of

r(t) and to obtain a measure for the critical coupling parameter, we follow Ku-

ramomto’s original development and introduce a continuum description of the prob-

lem in the limit N →∞.

3.2 The continuum limit

To explore the dynamics of (3.1) or (3.10), for example to establish the behaviour

of r(t) as t→∞ or to analyse the stability of the stationary solutions in the finite
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N formulation, is difficult, if not impossible. In order to gain any traction on the

analysis of (3.1) it is useful to use a statistical physics approach and to re-cast the

entire problem in the continuum limit as N → ∞, as would be done in the kinetic

theory of gases for example. The system is then cast into a continuous form in terms

of densities (Strogatz, 2000; Gupta et al., 2018).

In this case we assume an infinite continuum of oscillators spread over the unit

circle. We introduce the density function ρ(θ, ω, t), where ρ(θ, ω, t)dθ gives the

fraction of oscillators with natural frequency ω whose phase lies between θ and

θ + dθ at time t. We note that ρ is non-negative and periodic such that

ρ(θ + 2π, ω, t) = ρ(θ, ω, t) (3.11)

as is normalised such that ∫ 2π

0

ρ(θ, ω, t)dθ = 1 (3.12)

Oscillators are neither created nor destroyed and so the number of oscillators

with the same natural frequency has to be conserved in time. The conservation of

oscillators is then expressed as

∂ρ

∂t
= − ∂

∂t
(ρv) (3.13)

which describes the evolution of ρ over time. Equation (3.13) expresses the fact that

if ρ, the density of oscillators of frequency ω, changes at a particular location (a

certain phase) on the unit circle, then this is compensated for by a flux of oscillators

from elsewhere on the circle. Here v is the velocity of an oscillator at position θ and

natural frequency ω. From (3.10) we see that

v(θ, ω, t) = θ̇ = ω +Kr(t) sin(ψ − θ), (3.14)

Where the order parameter, given by (3.6), is now expressed as

r(t)eiψ(t) =

∫ 2π

0

∫ ∞
−∞

eiθρ(θ, ω, t)g(ω)dωdθ, (3.15)

in the continuum limit. Substituting (3.14) into (3.13) leads to
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∂ρ

∂t
= − ∂

∂θ
[ρ (ω +Kr(t) sin(ψ − θ))] (3.16)

Further substituting (3.15) into (3.16) leads, after some simple algebra (Strogatz,

2000; Gupta et al., 2018), to

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞
−∞

sin(θ′ − θ)ρ(θ′, ω′, t)g(ω′)dω′dθ′
)]

(3.17)

Equation (3.17) represents the Kuramoto model (3.1) in the continuum limit

N →∞.

3.3 Fixed points and Kuramoto’s solution

Note that (3.11)-(3.17) has a trivial stationary (∂t = 0) solution

ρ(θ, ω) =
1

2π
, r = 0 (3.18)

which corresponds to the completely incoherent state. In this state, for each ω, all

oscillator phases are even distributed around the unit circle. Strogatz and Mirollo

(1991) performed a linear stability analysis of this state. They found that it is

unstable when K is above some critical value Kc and neutrally stable when K < Kc.

This confirmed an original hypothesis of Kuramoto (1983), that the incoherent state

becomes unstable when K > Kc.

In his original analysis, Kuramoto (1983) argued that over long time periods,

after the decay of transients, both r and ψ would remain constant. In fact, ψ would

rotate at the constant frequency Ω. Returning to (3.10) and making ṙ = 0 and

moving to a frame rotating with frequency Ω, we can make ψ = 0 without loss of

generality to get,

θ̇ = ωi −Kr sin(θi), i = 1, . . . N, (3.19)

We need to look at solutions to this, which will be dependent on r. The resulting

solutions will in turn modify r and ψ which then need to be consistent with the

original definition of the order parameter (3.6). This is the self-consistent analysis
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Kuramoto undertook. Note that a stable fixed point exists if |ωi| ≤ Kr and is given

by solutions to

ωi = Kr sin θi (3.20)

These represent oscillators that are phased locked in this rotating frame. If |ωi| > Kr

then (3.19) does not posses a fixed point. Kuramoto demanded that these drifting

oscillators formed a stationary state on the circle in order for both r and ψ to remain

constant. The effect of this is that the ’center of mass’ of the phases of the drifting

oscillators, given by the order parameter, remains fixed. Under this assumption we

have ∂ρ/∂t = 0 and (3.13) becomes

ρ(θ, ω)v(θ, ω) = C(ω) (3.21)

where C(ω) is an ω-dependent constant. This leads to an expression for ρ

ρ(θ, ω) =
C(ω)

|θ̇|
=

C(ω)

|ω −Kr sin θ|
(3.22)

Normalisation requires that:∫ π

−π
ρ(θ, ω)dθ = C(ω)

∫ π

−π

dθ

|ω −Kr sin θ|
= 1 (3.23)

leading to (Acebrón et al., 2005; Strogatz, 2000)

C(ω) =
1

2π

√
ω2 − (Kr)2 (3.24)

Hence we obtain the full solution describing partial synchronisation:

ρ(θ, ω) =


δ(θ − arcsin(

ω

Kr
)), |ω| ≤ Kr, locked√

ω2 − (Kr)2

2π|ω −Kr sin θ|
, |ω| > Kr, drifting

(3.25)

We would now like to evaluate the order parameter for this state of partial

synchronisation. Returning to the order parameter defined in the limit N → ∞ in

(3.15)

r(t)eiψ(t) =

∫ 2π

0

∫ ∞
−∞

eiθρ(θ, ω, t)g(ω)dωdθ,
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We note that this is just an average of eiθ over both phase and frequency. Hence

r(t)eiψ(t) = 〈eiθ〉 = 〈eiθ〉locked + 〈eiθ〉drifting (3.26)

However

〈eiθ〉 = reψ = r (3.27)

as ψ = 0, and so

r = 〈eiθ〉locked + 〈eiθ〉drifting (3.28)

We now follow and expand on the development given by Strogatz (2000); Acebrón

et al. (2005); Gupta et al. (2014), to establish contributions to r from both the

drifting and the locked oscillators.

Contribution of the drifting oscillators to the order parame-

ter

In the drifting state |w| > Kr, so we integrate over the unit circle for these frequen-

cies:

〈eiθ〉drifting =

∫ 2π

0

∫
|ω|>Kr

ρ(θ, ω)g(ω)eiθdωdθ (3.29)

〈eiθ〉drifting =

∫ 2π

0

∫ −Kr
−∞

ρ(θ, ω)g(ω)eiθdωdθ +

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ (3.30)

Making a change of variable (ω → −ω) to the first term of of (3.30) gives

〈eiθ〉drifting = −
∫ 2π

0

∫ Kr

∞
ρ(θ,−ω)g(−ω)eiθdωdθ +

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ

(3.31)

Making a further change of variable θ = θ′ + π to the first integral gives

〈eiθ〉drifting = −
∫ π

−π

∫ Kr

∞
ρ(θ′+π,−ω)g(−ω)ei(θ

′+π)dωdθ′+

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ

(3.32)
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Changing the order of the ω integration and noting that eiπ = −1 we get

〈eiθ〉drifting = −
∫ π

−π

∫ ∞
Kr

ρ(θ′ + π,−ω)g(−ω)eiθ
′
dωdθ′ +

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ

(3.33)

Noting the symmetry, g(ω) = g(−ω) from our initial assumption on the distribution,

and als, ρ(θ + π,−ω) = ρ(θ, ω) from the solution (3.25) we obtain

〈eiθ〉drifting = −
∫ π

−π

∫ ∞
Kr

ρ(θ′, ω)g(ω)eiθ
′
dωdθ′ +

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ (3.34)

Noting the periodicity of the first term we can write:

〈eiθ〉drifting = −
∫ 2π

0

∫ ∞
Kr

ρ(θ′, ω)g(ω)eiθ
′
dωdθ′+

∫ 2π

0

∫ ∞
Kr

ρ(θ, ω)g(ω)eiθdωdθ (3.35)

which finally leads to

〈eiθ〉drifting = 0 (3.36)

This means that the drifting oscillators do not contribute to the order parameter.

Contribution of the locked oscillators to the order parameter

Now we consider the contribution of the locked oscillators. In the locked or syn-

chronous state |w| ≤ Kr, so we average over the unit circle for these frequencies

〈eiθ〉locked =

∫ 2π

0

∫
|ω|≤Kr

ρ(θ, ω)g(ω)eiθdωdθ (3.37)

From (3.20) we know that ω = Kr sin(θ), so that for each oscillator θ is fixed and

depends on ω. That is:

〈eiθ〉locked =

∫
|ω|≤Kr

g(ω)eiθ(ω)dω (3.38)

=

∫ Kr

−Kr
g(ω) cos(θ(ω) + i sin(θ(ω)))dω (3.39)
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By assumption, g(ω) is symmetric around 0, and is an even function g(−ω) = −g(ω),

and consequently the imaginary part of (3.39) vanishes. Hence,

〈eiθ〉locked =

∫ Kr

−Kr
g(ω) cos(θ(ω))dω (3.40)

We can use (3.20) to change the variable of integration from ω to θ

〈eiθ〉locked =

∫ π/2

−π/2
g(Kr sin(θ)) cos2(θ)dθ (3.41)

So finally, using (3.36) and (3.41), (3.28) can be written as:

r = 〈eiθ〉locked + 〈eiθ〉drifting (3.42)

= Kr

∫ π/2

−π/2
g(Kr sin(θ)) cos2(θ)dθ (3.43)

This is a self-consistent relation for r. Equation (3.43) always has a trivial solution,

r = 0, for any value of the coupling constant K. This solution corresponds to the

incoherent state (Fig. 3.2). Note also from (3.25), ρ(θ, ω) = 1/2π for all values of

θ and ω, meaning that there is an equal probability of finding an oscillator’s phase

anywhere on the circle.

For 0 < r ≤ 1 there corresponds another solution to (3.43) describing the par-

tially synchronised state and is given by the solution of

1 = K

∫ π/2

−π/2
g(Kr sin(θ)) cos2(θ)dθ (3.44)

This solution only exists for certain values of K and bifurcates from the r = 0

branch at some critical value Kc. To find this critical value, we let r → 0+ in (3.44)

giving

1 = Kc

∫ π/2

−π/2
g(0) cos2(θ)dθ (3.45)

=
Kcg(0)π

2
(3.46)
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and hence

Kc =
2

πg(0)
(3.47)

This is the critical value that Kuramoto (1983) found for the onset of synchronisa-

tion.

It is interesting at this stage to see how the growth of r, at the critical point,

scales with increasing K. To this end we can Taylor expand (3.44) around r = 0.

We have for small r,

1 = K

∫ π/2

−π/2

[
g(0) + g′(0)Kr sin(θ) +

1

2
g′′(0)K2r2 sin2(θ)

]
cos2(θ) dθ +O(r3)

(3.48)

Assuming that g(ω) is and even function with a maximum value at ω = 0, we have

g′(0) = 0, and so integrating (3.48) we have

1 = K

[
g(0)

π

2
+

1

16
πK2r2g′′(0)

]
+O(r3) (3.49)

=
K

Kc

+
1

16
πK3r2g′′(0) +O(r3) (3.50)

Noting K ≈ Kc near the critical point, we obtain

r ≈ 4

K2
c

√
−K −Kc

πg′′(0)
(3.51)

Therefore, near the critical point, the bifurcating branch scales as (K −Kc)
1/2. For

the distributions of frequencies g(ω) we are interested in (Lorentzian and Gaussian

for example), g′′(0) < 0. However this may not be the case when we consider a

uniform distribution of frequencies later on.

In order to obtain an explicit value for r, Kuramoto (1975, 1983) used a Lorentzian

(or Cauchy) density for g(ω). The advantage with this choice of density is that it is

possible to integrate (3.44) exactly.

The Lorentzian density is given by

g(ω) =
γ

π(γ2 + ω2)
(3.52)
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where γ is the distribution width. This is plotted and compared to the Gaussian

density in Fig. 3.3.

Figure 3.3: The Lorentzian distribution with γ = 1 and Gaussian distribution N (0, 1),
compared. The Lorentzian distribution has broader tails.

Substituting Eq.(3.52) into Eq.(3.44), we have

1 = K

∫ π/2

−π/2
g(Kr sin(θ)) cos2(θ)dθ

=
Kγ

π

∫ π/2

−π/2

1

γ2 +K2r2 sin2(θ)
cos2(θ)dθ (3.53)

Equation (3.53) can be integrated directly (using Maple) to give

1 =
γ −

√
K2r2 + γ2

Kr2
(3.54)

Recognising that for the Lorentzian density, Kc = 2/πg(0) = 2γ, (3.54) can be

solved for r leading to

r =

√
1− Kc

K
(3.55)

Figure 3.4 shows the nature of this dependence.
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Figure 3.4: Order parameter r as a function of K given by (3.55) in the limit N → ∞.
Here Kc = 1. Partial synchronisation (r > 0) occurs when K > 1. When K < 1 there is
no synchronisation and r = 0

3.4 Evolution of r(t) and the Ott-Antonsen solu-

tion

Typical evolution of r(t) is shown in Fig. 3.5 for K > Kc (a) and K < Kc (b), for a

finite population. Various attempts have been made to derive an evolution equation

for r(t) for an infinite population. The first attempt was made by Kuramoto and

(a) (b)

Figure 3.5: Typical evolution of r(t) from initially ordered (a) and disordered (b) states
for a finite (N = 200) systems of oscillators.

Nishikawa (1987) who derived a fist order ordinary differential equation equation

for r(t) but made a series of invalid assumptions (Strogatz, 2000), one of which was

to assume the drifting oscillators did not contribute to the evolution of r. Realising

that drifting oscillators play a significant role in the evolution of r in the early



CHAPTER 3. KURAMOTO MODEL WITH GLOBAL COUPLING 22

transient stages they went on to derive, using intuitive and heuristic arguments, an

integral equation for r (Kuramoto and Nishikawa, 1988). Watanabe and Strogatz

(1993) derived a set of three couple differential equations and showed that r(t) rises

(or decays) exponentially as K ≥ Kc (or K < Kc) but only for oscillators with

identical frequencies.

For a Lorentzian density of natural frequencies, Ott and Antonsen (2008, 2009)

were able to determine an equation for the evolution of r(t). The essence of the

derivation is briefly outlined here. As ρ(θ, ω, t) is 2π-periodic in t it may be expanded

as a Fourier series

ρ(θ, ω, t) =
1

2π

∞∑
n=−∞

ρ̃n(ω, t)einθ (3.56)

Ott and Antonsen introduce the ansatz

ρ̃n = αn(ω, t), n ≥ 0 (3.57)

which replaces in infinite set of functions ρn by a single function, α. Further algebraic

development (Gupta et al., 2014; Ott and Antonsen, 2008) leads to an expression

for ρ,

ρ(θ, ω, t) =
1

2π

1− |α|2

(1− |α|)2 + 4|α| sin2(θ − φ)
, (3.58)

where α(ω, t) = |α|eiψ. Equation (3.58) can be directly compared to (3.25). In

particular for α = 0 the uniform distribution ρ = 1/2π is obtained. As α → 1 a

δ-distribution is obtained corresponding to locked oscillators.

Continued development using complex integration and the theory or residues

(Gupta et al., 2014) leads finally to a first-order non-linear Ordinary differential

equation for r

ṙ(t) +

(
γ − K

2

)
r(t) +

K

2
r3(t) = 0 (3.59)

equation (3.59) is easily integrated to give

r(t) =

r(0)

∣∣∣∣ (K − 2γ)

(K − 2γ −Kr2(0))e(2γ−K)t +Kr2(0)

∣∣∣∣1/2 , K 6= 2γ,

r(0)
∣∣1 + 2γr2(0)t

∣∣−1/2 , K = 2γ

(3.60)

Some example solutions to (3.60) are shown in Fig 3.6 for various values of r(0).
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(a) K = 0.3 < Kc (b) K = 1.5 > Kc

Figure 3.6: Solutions to the Ott-Antonsen equation for r(t) with various starting condi-
tions. A Lorentzian density with γ = 1/2 is used with critical coupling constant, Kc = 1.
In the sub-critical region, the order parameter decays to zero for all starting values (a).
In the super-critical region, the order parameter reaches a stable fixed point (r = 0.577 in
this case) (b).

3.5 Linear stability analysis of the order parame-

ter

At this stage is it worth exploring the linear stability of the fixed points of (3.59).

Equation (3.59) can be written as

ṙ(t) = f(r) (3.61)

where

f(r) = −
(
γ − K

2

)
r − K

2
r3 = 0 (3.62)

From Eq. (3.62) we obtain the following fixed points:

r∗1 = 0 (3.63)

r∗2 =

√
1− Kc

K
(3.64)

In order to investigate the linear stability of the fixed points r∗1,2 we compute f ′(r):

f ′(r) = −
(
γ − K

2

)
− 3K

2
r2 (3.65)
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and so, reaclling that Kc = 2γ

f ′(r∗1) =
1

2
(K −Kc) (3.66)

f ′(r∗2) = −(K −Kc) (3.67)

Hence the incoherent branch, is stable for K < Kc and unstable for K ≥ Kc.

The second branch, or partially synchronised state, is stable as it exists only when

K > Kc. The stability diagram is shown is in Fig.(3.7) and coincides with the

behaviour seen in Fig.(3.6). It is clear that r undergoes a supercritical pitchfork

bifurcation at K = Kc. This may be expected from (3.59), as with suitable rescaling

it corresponds to the normal form for a supercritical pitchfork bifurcation.

Figure 3.7: Supercritical pitchfork bifurcation of r. In this example the critical coupling
Kc = 1. For K < Kc the only solution is r = 0. For K > Kc there are two branches; r = 0
and r =

√
1−Kc/K. Numerical simulation (see Chapter (4)) suggests that the r = 0

branch becomes unstable for K > Kc whereas the r =
√

1−Kc/K branch is stable.

Returning to the solution given in (3.60) it is interesting to examine the asymp-

totic behaviour as t→∞. If K < 2γ = Kc, it is straightforward to see from (3.60)

that limt→∞ r(t) = 0. If K > 2γ = Kc then limt→∞ r(t) =
√

1− K
Kc

if r(0) > 0, and

limt→∞ r(t) = 0, if r(0) = 0.

All of the above analysis take place in the continuum (or thermodynamic) limit,

N →∞.
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3.6 Gradient system and Lyapounov function

Here we show that the globally coupled Kuramoto model (3.1) forms a gradient

system where the function

V (θ) = −
N∑
j=1

ωjθj −
K

N

N∑
i

N∑
j>i

cos(θj − θi) (3.68)

is a potential function (Ha et al., 2013; van Hemmen and Wreszinski, 1993). It is

easy to see this is so by differentiating V

∂V

∂θi
= −ωi −

K

N

N∑
j=1

sin(θj − θi), i = 1, . . . N, (3.69)

Hence

θ̇i = −∂V
∂θi

, i = 1, . . . N, (3.70)

and so (3.1) is a gradient system

θ̇ = −∇(V ) (3.71)

It is possible for the globally coupled Kuramoto model to use the normalised scalar

potential V as a measure of synchrony. In this case V = 1 corresponds to complete

disorder and V = 0 to complete synchronisation. Differentiating V (θ) w.r.t. time

V̇ =
N∑
i=1

∂V

∂θi

dθ

dt
(3.72)

= −
N∑
i=1

(
∂V

∂θi

)2

(3.73)

= −‖∇(V )‖2 ≤ 0 (3.74)

where ‖ · ‖ is the usual vector norm.

So V is also a Lyapounov function. This means all trajectories of (3.1) flow

’downhill’ on the potential surface of V to its minima (if one exists) and reaches the

fixed points asymptotically. It is not possible for other outcomes such as such as

limit cycles or strange attractors.



Chapter 4

Numerical simulation of the

globally coupled Kuramoto model

4.1 Distribution of identical oscillator frequencies

The analysis of previous chapters has been within the framework of an infinite num-

ber of oscillators. Only by moving to the N → ∞ limit was it possible to obtain

any analytical results concerning the transition to synchronisation of a population

of couple oscillators. Now we return to the finite-N formulation and explore the

behaviour of the globally coupled Kuramoto model (3.1) through numerical simula-

tion.

First we consider the evolution of population of 100 oscillators with a distribution

of identical natural frequencies, g(ω) = δ(ω). Here the phases of each oscillator are

initially placed randomly on the unit circle, so starting in a disordered state. The

system of ordinary differential equations (3.1) is integrated for 100 time units. Figure

4.1(a) show the initial distribution of phases for a typical simulation run. The initial

magnitude of r, is very small in this state as indicated by the blue arrow. After a

very short length of time (approximately t = 10) the phases of all oscillators have

converged onto a common value of just greater than 1 where they remain indefinitely

as shown if Fig.4.1(c). All oscillators now have the same phase and they are fully

synchronised. Figure 4.1(b) shows the end state of for the phases. Figure 4.1(c)

shows that that the synchronisation of phases occurs as soon as the simulation

starts and reaches perfect synchronisation very quickly. The magnitude of the order

26
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parameter r rises very quickly from a disordered value to perfect synchronisation

r = 1. This spontaneous synchronisation occurs for any value of the coupling

constant K. The critical coupling constant in this case is Kc = 0 (Gherardini et al.,

2018).

(a) (b)

(c) (d)

Figure 4.1: Spontaneous synchronisation of N = 100 oscillators with identical natural
frequencies. Here the coupling constant K = 0.8. Starting from an initially incoherent
state with oscillator phases distributed randomly on the circle (a), phases rapidly converge
onto a single value (c) finally reaching complete synchronisation after a short time (b).
The evolution of r shows this rapid transition to complete synchronisation (d)
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4.2 Unimodal distribution of oscillator frequency

(Lorentzian density).

4.2.1 Subcritical coupling

For identical oscillators we have seen that complete synchronisation occurs for any

initial condition as the critical coupling (Kc)is effectively zero. We now turn our

attention to exploring the dynamics when the distribution of intrinsic oscillator

frequencies are drawn from a unimodal density such as a Gaussian or Lorentzian

density. The aim here is to explore each region of the stability diagram Fig. 3.7 for

finite N . We consider a population of 250 oscillators with natural frequencies drawn

from a Lorentzian distribution with γ = 1/2.

We start in the subcritical region (K < Kc) with an initially fully synchronised

state (r = 1) indicated by the red point in Fig.4.2 (a). Every oscillator is started

with the same phase (completely synchronised). Fig.4.2 (b) shows the evolution

of r(t) and is compared to the theoretical value obtained from the Ott-Antonsen

equation (3.59). It is clear the initial coherent state is unstable in this region and

quickly converges onto a stable incoherent state (r = 0). Oscillations in r are due to

the finite size of the population and are of order N−1/2. Fig. 4.2(c) shows the phase

of each oscillator at the end of the integration period where oscillators are ordered by

natural frequency (index-n). Fig.4.2(d) shows the angular velocity Ω = θ̇ averaged

over a short interval near the end of the integration time. No synchronisation is

visible and the oscillator phases are scattered with variation in angular speeds. The

angular speeds Ωi are symmetrical around the mean angular speed (Ω = 〈ω〉 = 0).

Fast and slow oscillators can be seen at low and high values of natural frequency

(index-n).

In Fig. 4.3 the initial condition is the completely disordered or splay state

(r = 0). Oscillator phases are initially distributed evenly around the unit circle, as

far as is possible within the confines of computer roundoff error. Aside from finite N

fluctuations, the oscillators maintain their incoherence in phase, and after numerous

similar integrations in this part of the stability diagram we can conclude that this

branch is stable.
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(a) (b)

(c) (d)

Figure 4.2: Dynamics of N = 500 oscillators with subcritical coupling (K = 0.5, with
Kc = 1) with natural frequencies drawn from a Lorenztian distribution (3.52) with γ =
1/2. Oscillators are initially in a completely coherent state r = 1 (red point). Evolution
evolves rapidly towards the incoherent state with the r decaying to zero and following the
Ott-Antonsen solution (3.60) closely apart from fluctuations (b). The oscillator phases,
ordered by natural frequency (index-n), are randomly distributed (c) and the angular
speeds Ωi all vary around the mean Ω = 0 with fast and slow oscillators in the tails.
There is some structure appearing in the distribution of phases (c) and in this instance is
due to the non zero value of r during the final stages of integration.



CHAPTER 4. NUMERICAL SIMULATION - GLOBAL COUPLING 30

(a) (b)

(c) (d)

Figure 4.3: Dynamics of N = 500 oscillators with subcritical coupling (K = 0.5, with
Kc = 1) with natural frequencies drawn from a Lorenztian distribution (3.52) with γ =
1/2. Oscillators are initially in a completely incoherent state r = 0 (red point). The
oscillators remain in the incoherent state with the r remaining around zero and following
the Ott-Antonsen solution (3.60) closely apart from fluctuations (b). The oscillator phases,
ordered by natural frequency (index-n), are randomly distributed (c) and the angular
speeds Ωi all vary around the mean Ω = 0 with fast and slow oscillators in the tails.

4.2.2 Supercritical coupling

Next we consider the case where the coupling is supercritical (K > Kc). Three

regions of the stability diagram are explored.

Firstly we consider starting in an initial completely synchronised state with K =

2.0 > Kc. Figure 4.4 shows the results from a typical integration in this regime. The
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initial perfect coherence (r = 1) reduces rapidly to the theoretically predicted value

of
√

1−Kc/K ≈ 0.71 as shown in Fig.4.4 (b) and the evolution of r follows the

Ott-Antonsen solution closely. This is a state of partial synchronisation and is seen

clearly in Fig.4.4 (c) where oscillators near to the central frequency are synchronised

with non-synchronised or drifting oscillators visible in the tails. The angular speed

Ωi of these synchronised oscillators are identical (and equal to zero in the rotating

frame) as shown in Fig.4.4 (d). So we have a synchronised group around the central

frequency together with fast and slow drifters at either end of the natural frequency

distribution.

Next we start in an incoherent state where r & 0 as shown in Fig. 4.5(a). As

before r converges rapidly to the theoretical value (0.71) but this time from below

resulting in a partially synchronised state.

In order to explore the stability of the branch (r = 0, K > Kc) we start as close

as possible to r = 0 (Fig. 4.6). In this state initial phases are distributed evenly

around the circle giving an initial r = 0. Again r rises rapidly to its predicted

value leading to a partially synchronised state. The initial distribution of phases

leads to a value of r that is very close to zero but not exactly so due to computer

roundoff error. This acts as a very small perturbation about the fixed point r = 0

and suggests that this branch is unstable.

Numerous integrations were carried out with similar parameters leading to sim-

ilar results.

In summary we have explored all regions of the stability diagram (Fig. 3.7) and

have confirmed numerically the stability properties of each branch. We have also

shown that r undergoes a supercritical pitchfork bifurcation at K = Kc.

Finally we investigate the form of a potential phase transition from incoherent to

coherent states asK is varied. To this end we perform fifty separate integrations with

N = 500 oscillators with natural frequencies drawn from a Lorentzian distribution

with γ = 1/2. The final value of r for each value of K is obtained by averaging the

fluctuating value of r over the final 10% of time so that transients have disappeared.

Figure 4.7 shows the results of these integrations showing clearly a second-order, or

continuous, phase transition at the critical coupling.
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(a) (b)

(c) (d)

Figure 4.4: Dynamics of N = 500 oscillators with supercritical coupling (K = 0.5, with
Kc = 1) with natural frequencies drawn from a Lorenztian distribution (3.52) with γ =
1/2. Oscillators are initially in a completely coherent state r = 1 (red point). r reduces
rapidly to the theoretically predicted value of

√
1−Kc/K ≈ 0.71 and follows the Ott-

Antonsen solution (3.60) (in red) closely apart from fluctuations (b). The oscillator phases,
ordered by natural frequency (index-n), show partial synchronisation where oscillators
near to the central frequency are synchronised (c) and the angular speeds Ωi of these
synchronised oscillators are identical (and equal to zero in the rotating frame) with fast
and slow drifting oscillators in the tails.
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(a) (b)

(c) (d)

Figure 4.5: Dynamics of N = 500 oscillators with supercritical coupling (K = 0.5, with
Kc = 1) with natural frequencies drawn from a Lorenztian distribution (3.52) with γ =
1/2. Oscillators are initially in a incoherent state r & 0 (red point). r increases rapidly
to the theoretically predicted value of

√
1−Kc/K ≈ 0.71 and follows the Ott-Antonsen

solution (3.60) (in red) closely apart from fluctuations (b). The oscillator phases, ordered
by natural frequency (index-n), show partial synchronisation where oscillators near to the
central frequency are synchronised (c) and the angular speeds Ωi of these synchronised
oscillators are identical (and equal to zero in the rotating frame) with fast and slow drifting
oscillators in the tails.
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(a) (b)

(c) (d)

Figure 4.6: Dynamics of N = 500 oscillators with supercritical coupling (K = 0.5, with
Kc = 1) with natural frequencies drawn from a Lorenztian distribution (3.52) with γ =
1/2. Oscillators are initially in a completely incoherent or splay state r = 0 (red point). r
increases rapidly to the theoretically predicted value of

√
1−Kc/K ≈ 0.71 but does not

follow the Ott-Antonsen solution (3.60) (in red) suggesting that this branch is unstable to
small perturbations (b). The perturbation is provided by computer roundoff error. The
oscillator phases, ordered by natural frequency (index-n), show partial synchronisation
where oscillators near to the central frequency are synchronised (c) and the angular speeds
Ωi of these synchronised oscillators are identical (and equal to zero in the rotating frame)
with fast and slow drifting oscillators in the tails.
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Figure 4.7: Synchronisation of N = 500 oscillators with natural frequencies drawn from a
Lorentzian distribution (3.52) and random initial phases. A second-order phase transition
occurs at Kc = 1 with a continuous transition from disordered to ordered state. Values
of r are obtained by averaging over a time period (the last 10%) after transients have
decayed and a stationary state is reached. The red curve shows the exact dependence of
r on K showing the (K −Kc)

1/2 scaling near the critical point.

4.3 Uniform distribution of oscillators and explo-

sive synchronisation

We have seen that for a Unimodal and symmetrical distribution of natural fre-

quencies (Lorentzian for example) we obtain a second-order phase transition at the

critical coupling value Kc. In this case we used the fact that g′′(0) < 0 in order to

derive the behaviour of r near to the phase-transition. Pazó (2005) considered the

case of uniformly distributed frequencies and found that at the critical frequency,

r changes discontinuously from zero to rc = π/4 and is a first-order phase transi-

tion. This is an example of explosive synchronisation. Further increase in coupling

strength K leads to increase in r towards one. Pazo also went on to show that
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near to this critical value r scales like, r ∼ π/4 + (K − Kc)
2/3 in contrast to the

r ∼ (K −Kc)
1/2 scaling for a unimodal distribution.

Here we consider a Uniform distribution of natural frequencies,

g(ω) =


1

2γ
, |ω| ≤ γ,

0, |ω| > γ

(4.1)

We chose a supercritical coupling constant r = 0.8 and take γ = 1/2, which leads

to a critical coupling constant of Kc = 2/π and integrate N = 500 oscillators over a

time of t = 100. Figure 4.8(a) shows how the oscillator’s initially random phases all

become entrained at around t = 20 with Figure 4.8(b) showing the corresponding

rapid rise in r.

Figure 4.9 shows the results of 50 separate integrations with N = 1000 and with

K varying between 0 and 1.5. Each oscillator has a natural frequency drawn from a

Uniform distribution (4.1) and initial phases randomly assigned on the circle. The

transition from the disordered to ordered state through a first-order phase transition

at the critical value Kc = 2/π is seen. r rises abruptly to π/4 at the critical value

and the (K −Kc)
2/3 scaling when K > Kc can be seen.

4.4 Introducing a phase shift - the Kuramoto-

Sakaguchi model

So far we have considered the simplest form for the interaction of phases, namely

sin(θj − θi). If θj > θi the the phase of oscillator i will accelerate θ̇ > 0. If θj < θi

the the phase of oscillator i will decelerate θ̇ < 0. For a unimodal distribution of

natural frequencies we have seen this can lead to drifting and locked oscillators and

for identical oscillators (delta function distribution of natural frequencies) this leads

to all oscillators synchronising.

Sakaguchi and Kuramoto (1986) modified this basic model by introducing a

constant phase shift α to the coupling function through the model

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t) + α), |α| ≤ π/2 (4.2)
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Here the coupling function does not vanish when phases align and α acts to frustrate

the attempt to synchronise. For α 6= 0, the contribution made by the interaction

function does not vanish for in-phase alignment, which effectively impedes synchro-

nization. Here we briefly investigate the effect of the additional parameter α on the

synchronisation of oscillators with distributed natural frequencies.

Figure 4.10 shows the variation of r with the coupling strength K for different

values of the frustration parameter α. Thirty separate integrations were carried out

for each value of α = 0, π/4, π/3. N = 1000 oscillators were used with natural

frequencies drawn from a Lorentzian distribution (with γ = 1/2) and were initially

distributed randomly on the circle.

It is clear that increasing the value of α impedes the process of synchronisation

by increasing the critical coupling parameter Kc with increasing α.
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(a) (b)

(c) (d)

Figure 4.8: Evolution of N = 500 oscillators with natural frequencies drawn from a
Uniform distribution from an initially incoherent start. The coupling is supercritical (K =
0.8 > Kc). The phase rapidly align around a mean phase into a coherent synchronised
state (a) also shown by the rapid increase in r (b). Note that all oscillators end up in the
synchronous group. The oscillator phases, ordered by natural frequency (index-n), show
full synchronisation (c) and the angular speeds Ωi of these synchronised oscillators are
identical (and equal to zero in the rotating frame) with no drifting oscillators in the tails.
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Figure 4.9: Explosive synchronisation of N = 1000 oscillators with natural frequencies
drawn from a Uniform distribution (4.1) and random initial phases. A first-order phase
transition occurs at Kc = 2/π. Values of r are obtained by averaging over a time period
(the last 10%) after transients have decayed and a stationary state is reached. The (K −
Kc)

2/3 (for K > Kc) scaling near the critical point can be seen.

Figure 4.10: Delay to the phase-transition to synchronisation due to the inclusion of a
phase-shift or frustration parameter into the coupling function. Here N = 1000 oscillators
with natural frequencies drawn from a Lorenztian distribution (with γ = 1/2) are modelled
using (4.2) with three values for α. Initial phases were randomly distributed on the circle
(disordered state). It is clear that as α is increased the phase transition occurs at larger
critical values of K.



Chapter 5

Chimera states on a non-locally

coupled 1D ring network

5.1 Kuramoto-Sakaguchi model on a network topol-

ogy

The models considered in previous chapters have centred around a population of

oscillators where each oscillator is coupled to every other oscillator in a global all-

to-all coupling. In the language or network theory, the oscillators reside at the

nodes of a complete network (or graph). Oscillators evolve either into incoherent,

synchronised or partially synchronised states.

Many authors have considered the situation where oscillators reside at the nodes

of other network topologies. The simplest case is a one-dimensional line or ring

network (Abrams and Strogatz, 2004, 2006; Kuramoto and Battogtokh, 2002; Laing,

2009) which can easily be extended to a two-dimensional array of oscillators (Kim

et al., 2004; Martens et al., 2010; Shima and Kuramoto, 2004). A large amount of

research has also been carried out into synchronisation of Kuromoto-type models

on complex networks (Rodrigues et al., 2016). A further modification can also be

made to the complete all-to-all coupled network if the coupling is assumed to be

inhomogeneous (Ko and Ermentrout, 2008) or the newtork consists of two sub-

populations with couple within and between them (Abrams et al., 2008).

In all of these situations new rich and exciting behaviour can be seen.

40
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5.2 Coexistence of coherence and incoherence

Next we consider the Kramoto-Sakaguchi model on a one-dimensional ring network

with non-local coupling. Kuramoto and Battogtokh (2002) considered this case for

identical oscillators. Their model in the continuum limit was

∂

∂t
θ(x, t) = ω −

∫ 1

0

G(x− x′) sin (θ(x, t)− θ(x′, t) + α))dx′ (5.1)

where

G(x− x′) =
κ

2
e(−κ|x−x

′|) (5.2)

which is a reduced phase description derived from a complex Ginzburg-Landau

equation with weak coupling. The space variable x ∈ [0, 1] is a periodic variable and

can be interpreted as an angle on a circle (mod 1) (Abrams and Strogatz, 2006).

Non-local coupling is provided by the kernel function G(x− x′) and decreases with

oscillator separation.

Numerical exploration of a discrete version of (5.1) with particular values for α

and κ and certain initial conditions, they found the system evolves to a coherent

synchronised state co-existing with incoherent drifting oscillators. This was com-

pletely unexpected as all oscillators were identical and symmetrically coupled with

each other.

Abrams and Strogatz (2006) named these states ”chimera states” where coher-

ence and incoherence exist at the same time. It is not obvious that the oscillators

would evolve into anything but the fully synchronous state, and yet chimeras are

regularly observed. These states cannot form in globally coupled or locally coupled

systems. If G(x) ≡ 1, then a Lyapounov function exists and all states converge

on the synchronous states as outlined in section 3.6. If α = 0, for any value of

G(x), then (5.1) is a gradient system and evolves towards a fixed-point of the syn-

chronous state (Abrams and Strogatz, 2006) (see section 3.6). Hence coherence and

incoherence cannot exist together in these circumstances.

In order to describe the degree of synchrony in the current situation, the global

order parameter defined by (3.6) is no longer suitable, and a complex spatial order
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parameter is introduced (Kuramoto and Battogtokh, 2002).

R(x, t)eiψj(x,t) =

∫ 1

0

G(x− x′)eθ(x′,t)dx′ (5.3)

This spatial order parameter provides a measure of local coherence on the ring.

Fig. 5.1 shows results from numerical integration of (5.1) with N = 512 oscilla-

tors. The chimera can be seen in Fig. 5.1(a), where phase coherence can be seen

near the boundary (x ≈ 0 and x ≈ 1) and incoherence where 0.2 < x < 0.8. The

corresponding value of R(x) for this state is shown in Fig. 5.1,(b).

(a) (b)

Figure 5.1: Taken from Kuramoto and Battogtokh (2002), a snapshot of the distribution
of phases obtained from (5.1) with N = 512, α = 1.457, κ = 4.0 (a), together with the
amplitude of spatial order parameter R(x) (b).

5.3 Numerical simulation

To explore the occurrence of chimera states numerically we consider a Kuramoto-

Sakaguchi model with non-local coupling on a one-dimensional ring. We consider N

identical oscillators placed evenly around the ring and modelled by

θ̇i(t) = ω +
2π

N

N∑
j=1

G

(
2π|i− j|

N

)
sin(θj(t)− θi(t) + α) i = 1, . . . N (5.4)
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with coupling provided by the kernel

G(x) =
1

2π
(1 + A cosx) (5.5)

where, 0 ≤ A ≤ 1, gives a measure of how far the non-local coupling varies from

global coupling.

The relevant spatially discrete version of R(x, t) is given by (Laing, 2009)

Ri(t)e
iψj(x,t) =

2π

N

N∑
j=1

G

(
2π|i− j|

N

)
eiθj(t) (5.6)

Numerous simulations are run with a variety of values for the ’tunable’ parame-

ters A and α as well as a varying initial conditions. A variety of final states were

observed. Sometimes complete disorder with drifting oscillators. Other times com-

plete synchronisation of all oscillators, and occasionally chimera states. It is clear

that there is a sensitive dependence of the relative values of these parameters to the

corresponding final state. Often there is a dynamical evolution from one state to

another over time.

Figure 5.2 shows the output from a typical integration of (5.1). Here we choose

α = 1.37, A = 0.95, N = 250 and we start from an initially disordered state and

integrate for t = 200. A chimera can easily be seem in Fig. 5.2(a) where phase

coherence can be seen at locations 125 . n . 245 on the ring and incoherence and

drifting oscillators elsewhere. The corresponding R(x) can be seen in Fig. 5.2(b)

and areas of coherence correspond to higher values of R(x). Another way to visualise

the chimera state is to wrap the phase space (x, θ) on a torus. Figure 5.3 shows

the phase pattern displayed in Fig. (5.2) on a torus where the azimuthal angle

represents position on the ring x and latitude represents phase of each oscillator,

θ(x) at that location. The coherent and incoherent oscillators can easily be seen.

Figures 5.2 and 5.3 display a ’snapshot’ of θ(x) and R(x) at a single value of

time, but it will be interesting to see the evolution of the phases across the entire

integration time t = 0 . . . 200.

Figure 5.4(a) shows the phase θ(x) of each oscillator at its location on the ring

(given here by the index n) over time. Starting from an initial disordered state

it is possible to see coherent phases at locations 125 . n . 245 on the ring and
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(a) (b)

Figure 5.2: Snap shot of a typical chimera obtained from the system 5.4. (a) shows the
phase of each oscillator at each location on the ring (index-n and (b) shows the R(x), the
magnitude of the spatial order parameter at around the ring. Here N = 250, α = 1.37,
A = 0.95.

incoherence and drifting oscillators elsewhere. HoweverR(x, t) gives a clearer picture

of the evolution of the chimera over this timescale. Figure 5.4(b) shows the evolution

of R(x, t), the amplitude of the spatial order parameter. Staring from an initially

disordered state (in blue) a chimera emerges after about t ≈ 7 and continues to exist

throughout the integration time. However, the coherent and incoherent regions do

not remain static over time. The spatial extent of the coherent oscillators varies as

can be seen in oscillations of R over time.

In the single case considered here, the chimera state seems to be stable over the

limited integration time (t = 200). However from other integrations using the same

parameters this is not always the case. The only variation in each integration is the

randomness introduced into the initial conditions (the initial distribution of phases

on the ring).

In order to explore this further numerous additional integrations were carried

out using the identical values of the parameters α and A all staring from a random

disordered state.

Figure 5.5 shows the results from four typical integrations with the same param-

eters but over a time of t = 1000. In each case the initial state is one of disorder

(blue) but with different randomisation of initial phases on the circle.

In Figure 5.5(a) the initial disordered state bifurcates into a fully synchronous
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Figure 5.3: A snap shot of a chimera state (as in Fig. 5.2) shown on a torus. Azinuthal
angle represents spatial position on the ring (index-n), and each line of latitude on the
torus represents constant phase. Here N = 250, α = 1.37, A = 0.95.

state that remains stable for some time. A chimera state is born an remains in

existence for a brief time which in turn re-forms into complete synchronisation.

This synchronous state is the lost and disorder remains for the time.

In Figures 5.5(a,b) the initial disordered state bifurcates into a chimera synchro-

nised state almost immediately and remains stable for an extended period. In both

cases a fully synchronous state emerges followed by a disordered state. When a

chimera state is formed it is interesting to see that it the synchronous state remains

localised in space but the degree of synchronisation, R(x), displays some oscillation

in time.

Finally, in Figure 5.5(d), the initial disordered state bifurcates after some time

into complete synchronisation that remains stable for finite time. The synchronous

state is then lost to disorder for the remaining time.

These four integrations are not special and display typical examples of the wide

variety of the dynamics of the system (5.4) where the only difference in each case

is the random distribution of the initial phases. In this short exploration it has not

been possible to explore the full range of parameter space and initial conditions to

enable an understanding the emergence and stability of the chimera. In fact it has

raised more questions than it has answered.
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(a)

(b)

Figure 5.4: A typical integrations of (5.4) with α = 1.37, A = 0.95, t = 200, N = 250.
(a) shows the evolution of the distribution of phase on the ring. Index - n is the spatial
variable x and specifies the location on the ring network. In (b) the evolution of the spatial
order parameter, R(x, t) is shown. Colour coded is its magnitude, with blue signifying
incoherence and red signifying coherence. A chimera state is born at around t = 7 and
remains for the entire length of the integration. There are clear oscillations in space and
time.

With further numerical and analytical work some further questions could be

explored. In what regions of the parameter space (A, α) do chimeras form? What

are the basins of attraction? Can chimeras been born out of both disordered and

synchronous states, particularly as the synchronous state is stable? What is the

nature of the bifurcation from disordered state to chimera? How are chimeras born

and how do they die? Globally synchronous states depend on network structure,

what about chimeras? Do stable chimeras exists or are they always transient as seen

here?
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(a)

(b)

(c)

(d)

Figure 5.5: Four typical integrations of (5.4) with α = 1.37, A = 0.95, t = 1000, N = 250.
Colour coded is the magnitude of the spatial order parameter, R(x, t), with blue signifying
incoherence and red signifying coherence. Index - n is the spatial variable x and specifies
the location on the ring network. Chimera states can be seen in (a),(b) and (c) and can
be seen to oscillate in both space and time, although they do not survive for the entire
integration time. In each case they die and a fully synchronous state is born. The only
quantity varying in each run is the randomisation of initial phases.



Chapter 6

Summary and further work

We have explored the globally coupled Kuramoto model both analytically and nu-

merically and have seen that this fundamental model is able to produce synchro-

nisation in a finite population of oscillators. The numerical results compare well

with the predications from theoretical analysis in the continuum limit. We further

considered the Kuramoto-Sakaguchi model with phase shifted coupling. Numerical

exploration on a ring network with non-local coupling revealed interesting chimera

states where both incoherent and synchronous states coexist and a brief look at the

long term behaviour suggest that these states may not be stable in the long term.

There are numerous avenues that can be explored when considering extending

this work. We have assumed that the distribution of natural frequencies g(ω) is both

symmetric and unimodal. It would be interesting to examine the effect of asymmetry

on the dynamics. The main difficulty will be in constructing, self-consistently, the

equations describing the mean field. A starting point would be the work of (Martens

et al., 2009) who consider bimodal frequency distributions. We considered initially

the dynamics of globally (or all to all) coupled oscillators on a complete network. It

would be interesting to examine the role of the network connectivity to see whether

synchronisation occurs with reduced connectivity. This is still unanswered, but

(Townsend et al., 2020) investigate this problem for identical oscillators and suggest

that the critical connectivity may be 75%.

In searching for chimera states in the Kuramoto-Sakaguchi model we considered

the dynamics on a one-dimension ring with non local coupling. It would be worth-

while extending this to two-dimensional array networks where interesting pattern

48



CHAPTER 6. SUMMARY AND FURTHER WORK 49

formation, phase and frequency spirals are observed (Kim et al., 2004; Ottino-Löffler

and Strogatz, 2016; Shima and Kuramoto, 2004). Alternatively we could remain

with all-to-all coupling but introduce an inhomogeneous coupling strength (Ko and

Ermentrout, 2008). Chimera states have also been observed on two sub-networks

that are coupled together with all-to-all coupling within each network (Abrams and

Strogatz, 2006; Laing, 2009).

In attempting to apply these abstract mathematical models to real-world phe-

nomena we would need to move away from the simple, but rich structure of the

simple Kuramoto-Sakaguchi model and modify the dynamics somewhat.

One modification that has been extensively explored is a noisy or stochastic

model. This is the standard Kuramoto model with a white noise term added. The

first to consider this was Sakaguchi (1988) and there has been a great deal of research

ever since (Acebrón et al., 2005).

One observation with the first-order models considered in this work is that they

tend to approach synchronization more rapidly than is observed in practice, partic-

ularly in biological systems. They also require infinite coupling strength to achieve

full synchronisation. Introducing an inertia term into the dynamics can solve these

issues. The addition of inertia makes the model second-order by introduction a θ̈

into the model, in effect giving the oscillators a ’mass’. The second-order model has

many applications including synchronisation in power grids (Filatrella et al., 2008).

One of the most natural modifications to a Kuramoto model is the introduction

of time-delayed coupling. In biological an physical systems signals propagate at

finite speed and transmission delay between oscillators is to be expected. Time

delayed coupling changes the dynamics substantially (Yeung and Strogatz, 1999;

Lee et al., 2009).

Finally, an exciting new avenue of research has opened up into oscillators that

synchronise in phase as well as self-organise in space through a coupling of phase

and spatial dynamics. This brings together two historically unrelated areas of re-

search, namely synchronisation and swarming or flocking (of birds, insects or fish

for example). O’Keeffe et al. (2017) call these oscillators that both synchronise and

swarm ”swarmalators”, and this seems to be fascinating area worth pursuing.
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