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Abstract 
 

In my dissertation, we will investigate whether extreme events, such as seasonal changes, have 
an impact on the autocorrelation function of a dataset. We observed electrical prices from 
1999 to 2007, that were in an hourly interval. We conditioned the data on an hourly basis and 
tried to see whether the trend shown is what we would expect. The electricity prices were 
collected from a company called Nord Pool. When analysing the whole dataset and the data set 
conditioned hourly, we noticed some interesting extreme events. For example, at 2 am we 
noticed positive extremities that had somewhat of a periodic pattern, we then came up with a 
possible reason as to what caused such a periodic pattern. Furthermore, we investigated 
whether extreme events have an impact on how correlated the datasets are to itself, what we 
noticed is that the extreme events did not have an impact on the correlation. Finally, we 
analysed which dataset follows a Geometric Brownian Motion. The relevance of analysing 
which dataset follows a Geometric Brownian Motion is explained in section 6. 

  



Page 2 of 48 
 

 

Table of Contents 
 

1.0 Introduction ..............................................................................................................................3 

2.0 Background ...............................................................................................................................5 

     2.1 Financial Market ...................................................................................................................5 

     2.2 European Electricity Market ..................................................................................................6 

     2.3 Nord Pool ..............................................................................................................................8 

     2.4 Stationarity ......................................................................................................................... 10 

     2.5 Returns ............................................................................................................................... 10 

3.0 Analysis ................................................................................................................................... 13 

     3.1 Mean/Variance and conditioned Time Series Plots.............................................................. 13 

4.0 Probability Density Functions .................................................................................................. 22 

      4.1 Log-Log Plot and Semi Log Plot (Right Tail) ......................................................................... 23 

      4.2 Log-Log Plot and Semi Log Plot (Left Tail) ........................................................................... 27 

5.0 Auto-Correlation function (ACF) .............................................................................................. 34 

6.0 Geometric Brownian Motion ................................................................................................... 41 

7.0 Conclusion .............................................................................................................................. 45 

8.0 Reference ................................................................................................................................ 46 

 

 
 

 

 

 

 

 

 

 

 

 

 
 



Page 3 of 48 
 

 

1.0 Introduction 

What is financial time series analysis? Well in simple terms a financial times series is the study 
of the prices of commodities or assets over some time. These studies are recorded and as a 
result, this leads to a huge amount of data being made available online. These data’s have a 
huge role to play when it comes to predicting how future prices of commodities or assets will be 
impacted by certain events. The most iconic event that occurred which made a huge impact 
worldwide was the financial crisis that occurred in 2007. Many banks were impacted heavily, for 
instance, the Lehman Brothers filed for bankruptcy on September 15, 2008, and many others 
were expected to follow, such as Merrill Lynch, AIG, HBOS, Royal Bank of Scotland, Bradford 
and Bingley, Hypo and many more. Banks were not the only ones affected. The spending habits 
of the general public was affected immensely. The demand for goods had reduced due to 
economic uncertainty, as a result, firms witnessed a reduction in profit, this increased 
unemployment. Germany, France, Italy and Spain were among the countries that were hit the 
hardest by the financial crisis and took some time to recover from it. It is essential to be able to 
forecast how extreme events such as financial crisis would have affected prices of commodities 
or assets in the future, that way the government would be able to make strong financial 
decisions to cope with the damage done by these extremities. Another example which not only 
the UK but the whole world is going through is coronavirus. Around November 2019 
coronavirus started spreading around China, by February the virus had spread throughout the 
world. With a lockdown announced in the UK and other parts of the world, several markets 
would have been hit extremely hard. One market that was affected was the property market, 
and with people stuck at home, we can expect electricity prices to be impacted as well. The 
Guardian (2020) has stated in an article that the UK economic output is set to plunge by 15% 
and unemployment is set to double. Furthermore, analysts at the Centre for Economics and 
Business Research (CEBR) has stated that “The deepest recession since the financial crisis is now 
all but unavoidable”. 

 

FIGURE 1:BLOOMBERG, 2020, "THE IMPACT OF CORONAVIRUS ON STOCK MARKETS", BBC 
NEWS [ONLINE}. AVAILABLE AT: HTTPS://WWW.BBC.CO.UK/NEWS/BUSINESS-51706225 
[ACCESSED 30/03/2020] 

http://www.bbc.co.uk/NEWS/BUSINESS-51706225
http://www.bbc.co.uk/NEWS/BUSINESS-51706225
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Figure 1 illustrates the impact coronavirus has had on certain stock markets; this should give an 
idea about the impact that certain events have on the economy. It is essential to be able to see 
how prices are affected due to extreme events and then try to see whether future prices are 
correlated, that way predicting prices will become easier, thus the right political decisions could 
be made. In this thesis, we will analyse the behaviour of electricity prices in Nord Pool from 
01/01/1999 to 26/01/2007. Firstly, we will take a look at the whole dataset, and then we will 
condition the data at an hourly rate and investigate further. But, before we get into that, we 
will give an overview of the financial market, the electricity market and Nord Pool, followed by 
the concept of stationarity and returns. And then we will finally analyse our dataset in detail 
and then conclude our findings. 
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2.0 Background 
 

2.1 Financial Market 
 
 

A Market is defined as a means by which good and services are exchanged between buyers 
and sellers, this can be done directly or through agents and institutions [BRITANNICA 2017]. 
These goods and services can be, but not limited to, bonds, equities, derivatives, or 
currencies. Markets can vary in size, for instance, the largest trading market is the New York 
Stock Exchange (NYSE) with a market cap of US$29.3 trillion. There are different types of 
markets. Below are 4 examples: 

1. Stock Market: In a stock market ownership of public companies are traded. Each 
share is sold at a specific price, if the stock performs well in the market, then the 
investors make money. One advantage of the stock market is that it is easy to buy 
stocks, however, the difficulty is buying the right stock which will maximise investors 
earnings. Investors usually use various indices to monitor how the stock market is 
performing. Examples of these indices are the Dow Jones Industrial Average (DIJA) 
and the S&P 500. 

 
2. Bond Market: In a bond market companies and government are offered the 

opportunity to secure money to finance a project or investment. How this works is that 
investors buy bonds from a company, and the company then returns the amount of the 
bonds within an agreed price, with interest added on top. 

 
3. Commodities Market: This type of market involves the buying and selling of natural 

resources or commodities such as corn, oil, meat and gold. In this type of market 
prices are unpredictable. There is also a commodities future market where the price of 
items that are set to be delivered at a future date is already set and sealed. 

 
4. Derivative Market: A derivative is a financial contract whose value depends on the 

value of some underlying asset [M. Phillips 2020]. In this type of market derivatives or 
contracts whose value is based on the market value of the asset being traded is 
involved. Derivative products can be broken down into two classes, namely “lock 
products” and “option products”. Lock products such as swaps, futures or forwards 
bind the respective parties from the outset to the agreed-upon terms over the lifetime 
of the contract. Option products such as interest rate swaps give the buyer the right but 
not the obligation to adhere to the contract under the agreed terms. 
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2.2 European Electricity Market 
 
 

Overtime the electricity market has changed in the way it operates, these changes have 
occurred due to regulations placed on the amount of greenhouse gasses emitted per country. 
For instance, on 1st October 2012 in Australia a new legislation came into effect, which was 
known as the Greenhouse and Energy Minimum Standards Act (GEMS), this legislation created 
a national framework for product energy efficiency in Australia. Even though this legislation was 
specific to Australia and New Zealand, other countries had some sort of ruling opposed that put 
a limit onto how much greenhouse gasses were allowed to be emitted. As a result, this bought 
about changes to the electricity market. The biggest change that was bought about was the fact 
that electricity generated from renewable sources has been on the rise, electricity generated 
from renewable sources has surpassed electricity generated from gas. The Department for 
Business, Energy and Industrial Strategy has stated that “In 2010, the UK used 40.23 tonnes of 
coal to produce power with 345.69 terawatts per hour (TWh) of gas used. However, by 2018, just 
6.64 tonnes of coal were used – a dramatic shift.” These changes also bought about changes in, for 
example, transport. These come in the form of an increase in hybrid/ electric vehicles. 
 
The Electricity System 

 
The picture below gives a brief overview on how the electricity system works. 

 

FIGURE 2: ADAPTED FROM NATIONAL ENERGY EDUCATION DEVELOPMENT PROJECT 
[ONLINE] AVAILABLE 
AT:HTTPS://WWW.EIA.GOV/ENERGYEXPLAINED/ELECTRICITY/DELIVERY-TO-
CONSUMERS.PHP [ACCESSED 31/03/2020] 

 
 

The whole process starts at a power plant. This is where electricity is generated. Next, the 
transformer then steps up the voltage for transmission. The electricity after being stepped up is 
then passed along transmission lines. The role of the transmission is to send the high voltage 
electricity across long distances. The electricity is then passed from the transmission lines to 
the neighbourhood transformer. The role of the transformer is to step down the voltage, so it 
is safe for households to use electricity. Finally, the distribution lines carry electricity from the 
neighbourhood transformer to houses. But before electricity is passed onto the houses, the 
transformers on poles step down the electricity, which allows electricity to enter houses. We 
have spoken about how electricity is transmitted to houses, but how does the market work? 
We shall answer this in the next section. 
 

http://www.eia.gov/ENERGYEXPLAINED/ELECTRICITY/DELIVERY-TO-CONSUMERS.PHP
http://www.eia.gov/ENERGYEXPLAINED/ELECTRICITY/DELIVERY-TO-CONSUMERS.PHP
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The UK Electricity Market 

As mentioned above, the power plants are where electricity is generated, but that is not the 
only role of power plants. In a power plant, the electricity generators sell the electricity on the 
wholesale market. These generators can also buy electricity if enough electricity has not been 
produced to meet demand. It is the electricity suppliers who buy electricity from the wholesale 
market to supply it to their customers. If suppliers buy more electricity than required, then they 
can sell it back into the wholesale market. We also have traders; their job is to ensure 
customers get the best price for electricity. The price at which electricity is supplied to 
customers depends on demand and supply. 

 

 
FIGURE 3: APX SPOT PRICES [ONLINE] AVAILABLE AT: HTTPS://THESWITCH.CO.UK/ENERGY/GUIDES/ELECTRICITY-MARKET [ACCESSED 31/03/2020] 

Figure 3 shows us how electricity spot prices change every month. Demand for electricity is 
higher on certain months, this in return causes the price to be higher, this could be due to 
seasons. 

Now we keep mentioning that electricity is traded in the wholesale market. But how is 
electricity traded in the wholesale market? Well, this is done in 3 different ways. 

1) Bilateral trading: This refers to contracts being formed between generators and 
suppliers for the purchase of electricity. This is obtained through some sort of master 
contract for a set period, this contract establishes trading conditions. Individual 
trading contracts then set the amounts of electricity to be traded and the trading 
price. 

2) Market Trading: Electricity supply and demand is mostly matched on two exchanges 
when it comes to electricity delivered on the same day or the next day. Next, an 
auction process matches the offers from the generators and the bids from suppliers 
or large consumers. 

3) Long-term Trading: This is achieved through electricity brokers. Examples of these 
brokers are: BGC Partners, Evolution Markets Ltd, GFI Group Inc, ICAP plc, Marex 
Spectron Group Ltd, PVM Oil Associates, Tradition Financial Services Ltd, Tullet Prebon 
Inc, Griffin Market Limited. When it comes to long-term trading, electricity trading 
prices are established less according to supply and demand, and more on forecast 
market development. 
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2.3 Nord Pool 
 
 

The origin of Nord Pool can be traced back to 1932, where it was known as the Coordination 
Association. It was formed by eastern Norwegian electricity companies, and soon it 
encompassed all the electricity companies in eastern Norway. In 1971 the coordination 
association merged with many electricity companies in other parts of Norway, and it became 
known as the Coordination of power stations. In 1988 it consisted of 118 power companies as 
members. In 1991 the Norwegian parliament decided to deregulate the market for power 
trading, this allowed the establishment of Statnett Marked AS in 1993. In 1996 the Swedish 
electricity market was also deregulated, thus Statnett Marked AS was replaced by Nord Pool 
ASA, which was owned equally by the Swedish and Norwegian Transmission System Operators 
(TSO’s), Svenska Kraftnat and Statnett. In 1998, 1999 and 2000 Finland, Western Denmark and 
Eastern Denmark respectively joined Nord Pool ASA. On December 27, 2001, Nord Pool ASA’s 
spot market activities were spun off into a new company called Nord Pool AS. The remaining 
parts of Nord Pool ASA were later acquired by Nasdaq, which is currently known as Nasdaq 
Commodities. On 12th January 2010, Nord Pool AS in cooperation with Nasdaq Commodities 
launched the N2EX power market in the United Kingdom. On 20th January 2016 Nord Pool AS 
was rebranded to Nord Pool. On 27th August 2019 Nord Pool started trading in France, 
Germany, Luxembourg, Belgium, Austria and the Netherlands. On 5th December 2019 Euronext 
announced that it would acquire 66% of Nord Pool, this was officialised on 15th January 2020. 

 
 

Nordic Electricity Market 
 
The Nordic power system consists of different sources, such as hydro, nuclear and wind 
power as its main sources. Many industries in the Nordic region rely heavily on energy, 
furthermore, the Nordic region has a large share of electricity heated houses. As a result, the 
electricity consumption and the electricity’s share of total power use is higher than in the 
rest of the EU. Longer winters and shorter summers are reasons why the electricity 
consumption is greater in Nordic countries than in the EU. The weather has a major influence 
on electricity consumption, so during the winter, there is a higher electricity consumption 
and higher demand, whereas during the summer there is a lower electricity demand as well 
as lower electricity consumption. Over half of the electricity production is generated from 
hydropower, 20% from nuclear, 15% from fossil fuels and the rest from other sources. 
Furthermore, the pumped storage capacities available in Norway means that Scandinavia has 
considerable reservoirs at its dispose. All of these factors mean that electricity prices in the 
Nordic countries are far lower than in other parts of the world. 
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 FIGURE 4: SOURCE: ENTSO-E [ONLINE}, AVAILABLE AT: HTTP://WWW.NORDICENERGYREGULATORS.ORG/WP-
CONTENT/UPLOADS/2014/06/NORDIC-MARKET-REPORT-2014.PDF 

[ACCESSED ON 31/03/2020] 

 
Figure 4 highlights how much different sources contribute to electricity consumption 
in Nordic companies. 

 

 
FIGURE 5:NORDIC SYSTEM PRICE AND GERMAN WHOLESALE PRICE - AVERAGE, MAXIMUM AND MINIMUM HOURLY PRICES DURING THE SUMMER WEEKS 

(14-39, 2013), EUR/MWH AND AVERAGE, MAXIMUM AND MINIMUM HOURLY PRICES DURING THE WINTER WEEKS (40-13, 2013), EUR/MW. 
AVAILABLE AT HTTP://WWW.NORDICENERGYREGULATORS.ORG/WP- CONTENT/UPLOADS/2014/06/NORDIC-MARKET-REPORT-2014.PDF [ACCESSED 

ON 31/03/2020] 

 
 

Figure 5 above highlights electricity prices in Nordic countries compared to that of 
Germany, as we can see the average price of electricity is far lower in Nordic countries 
than in Germany. 

Overall, the Nordic electricity market has been a huge success, however, the Danish Energy 
Agreement, established in 2012, set a few primary targets by the end of 2020. These primary 
targets are “Reduce emissions by 34%, Increase renewable energy penetration by 35% and 
improve energy efficiency by 7.6%”. The success of the Nordic electricity market stems from the 
fact that not only are prices lower, but a lot of the electricity produced is from renewable 
sources. 

http://www.nordicenergyregulators.org/WP-CONTENT/UPLOADS/2014/06/NORDIC-MARKET-REPORT-2014.PDF
http://www.nordicenergyregulators.org/WP-CONTENT/UPLOADS/2014/06/NORDIC-MARKET-REPORT-2014.PDF
http://www.nordicenergyregulators.org/WP-
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2.4 Stationarity 
 

Stationarity is an important aspect of time series analysis. A stationary time series is one whose 
statistical properties such as mean, variance, autocorrelation (which we will define later on in 
the thesis) etc. is constant over time. The concept of stationarity is important because many 
statistical tests and models rely on it. This form of stationarity is known as a weak form of 
stationarity or covariance/mean stationarity (Liverani, 2020). A more formal definition of weak 
stationarity is given below. 

Definition 1 (W Yoo): We say that {𝑋𝑋𝑡𝑡} is weakly stationary if 

1) 𝜇𝜇(𝑡𝑡) is independent of t. Where µ(t) is the mean function. 
2) 𝛾𝛾(𝑡𝑡 + ℎ, 𝑡𝑡) is independent of t for each h. The function 𝛾𝛾(.) is the autocovariance function.  

3) The autocorrelation function of {𝑋𝑋𝑡𝑡} at lag h is ρ(h)=ϒ(ℎ)
ϒ(0)

=Corr(𝑋𝑋𝑡𝑡+ℎ , 𝑋𝑋𝑡𝑡) 

The above tells us that the covariance function does not depend on shifts in time, therefore we 
can rewrite 2) as 

𝛾𝛾(𝑡𝑡 + ℎ, 𝑡𝑡) = 𝛾𝛾(ℎ, 0) =: 𝛾𝛾(ℎ) 

For stationary time series the autocorrelation function drops to zero relatively quickly, 
whereas, for non-stationary time series, the autocorrelation function decreases slowly.  

As previously mentioned, the above is known as the autocovariance function. We will give a 
more rigorous definition of the autocovariance function later on.  

Another type of stationarity is strict stationarity, below we have the formal definition for strict 
stationary. 

Definition 2: A time series {𝑋𝑋𝑡𝑡} is called strictly stationary if for all sets of indices {𝑡𝑡1,𝑡𝑡2,𝑡𝑡3,…..,𝑡𝑡𝑘𝑘} and 
all integers h, the joint distribution of (𝑋𝑋𝑡𝑡1 , 𝑋𝑋𝑡𝑡2 , 𝑋𝑋𝑡𝑡3 , … . , 𝑋𝑋𝑡𝑡𝑘𝑘) is the same as the joint distribution 
of (𝑋𝑋𝑡𝑡1+ℎ, 𝑋𝑋𝑡𝑡2+ℎ, 𝑋𝑋𝑡𝑡3+ℎ, … . , 𝑋𝑋𝑡𝑡𝑘𝑘+ℎ). It can be written as: 

�𝑋𝑋𝑡𝑡1 , 𝑋𝑋𝑡𝑡2 , 𝑋𝑋𝑡𝑡3 , … 𝑋𝑋𝑡𝑡𝑘𝑘�  =𝑑𝑑  �𝑋𝑋𝑡𝑡1+ℎ , 𝑋𝑋𝑡𝑡2+ℎ , 𝑋𝑋𝑡𝑡3+ℎ , … 𝑋𝑋𝑡𝑡𝑘𝑘+ℎ�   

Similar to how for stationarity we need the mean, variance and covariance to be constant 
over time, we also need the joint distribution (𝑋𝑋𝑡𝑡1 , 𝑋𝑋𝑡𝑡2 , 𝑋𝑋𝑡𝑡3 , … . , 𝑋𝑋𝑡𝑡𝑘𝑘) to be constant over 
time. 

 

2.5 Returns 
 

When analysing and studying a financial data set, such as stock price of a company etc, it is 
often a better idea to analyse the log-returns of a dataset. This is because log-returns often 
has several benefits to it. One benefit is normalisation. What this means is that all variables 
are measured in a comparable metric, this allows us to evaluate analytic relationships 
amongst two or more variables. The concept of normalisation is a requirement for many 
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statistical analysis and machine learning techniques. Another benefit is the concept of 
additive. What this means is that with log returns you can add the values, whereas you can’t 
add simple returns, they need to be compounded first. These are just two benefits out of 
many. Next, we will define the returns, there are two definitions of returns. 
 

Definition 3 (W Yoo 2019): Simple return is defined as 

𝑅𝑅𝑡𝑡 =
𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡−1
− 1 =

𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1

𝑃𝑃𝑡𝑡−1
 

 
     Where 𝑃𝑃𝑡𝑡  is the price of an asset at time t, and 𝑃𝑃𝑡𝑡−1 is the price of the asset at time t-1. 

 
Definition 4 (W Yoo): Log-return is defined as 

𝑟𝑟𝑡𝑡 = ln(1 + 𝑅𝑅𝑡𝑡) = ln �
𝑋𝑋𝑡𝑡

𝑋𝑋𝑡𝑡−1
� = ln(𝑋𝑋𝑡𝑡) − ln (𝑋𝑋𝑡𝑡−1) 

     Where  1 + 𝑅𝑅𝑡𝑡 =  𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡−1

  (also we note that  ln(1 + 𝑅𝑅𝑡𝑡) ~  𝑅𝑅𝑡𝑡 for small  𝑅𝑅𝑡𝑡 therefore   𝑟𝑟𝑡𝑡~ 𝑅𝑅𝑡𝑡). 

 

The graph below is a plot of the electricity prices per hour from 1st January 1999 to 26th January     
2007 (roughly 72000 data points) from Nord Pool. From the data below, we can see that prices 
tend to fluctuate to a relatively large extent. Here the x-axis represents consecutive hours and the 
y-axis represents electrical prices. 
 

We next look at the logarithm return 
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From the logarithm plot above we see very large fluctuations, which consists of high peaks 
and low peaks. These peaks represent extreme price fluctuations, i.e. high peak represents 
an upward price fluctuation, whereas a low peak represents a downward price fluctuation. 
By analysing the natural logarithm of returns we can see price fluctuations, some extremely 
high, others extremely low. Further down the report, we shall see when these extremities 
occurred, more precisely what hour these extremities occurred in, and the impact these 
extremities had on the electricity prices. To do this we need to condition the full data set per 
hour. To do this we use a combination of the “=OFFSET” and “=ROW” functions. 

 

 
 

Column A up until column C represents the consecutive hours, electrical prices and the log 
return for the full data set respectively. Cell A2 has value “1” which represents midnight on 
January 1st, 1999. Now we need to filter out every 12 am data (from 1999 to 2007) from the 
original data. The first column of the original data and the first column for the 12 am data 
points are the same. To get the value for January 1st, 2000 (12am), we use “=OFFSET ($B$2, 
(ROW (A2)-1)*24, 0)”. What the offset function is doing here is, the position of cell B2 is fixed, 
and the “ROW” function is moving 24 positions down from cell B2 and returning the value 
that is in that specific cell i.e. cell B26, which is the value 15.28. Now use autofill to complete 
all of column F. For column G repeat the same process, using “=OFFSET ($C$2, (ROW (A2)-
1)*24, 0)”. This filters out all the data corresponding to midnight. Repeat the same process for 
1 am up until 11 pm. 
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3.0 Analysis 
 

3.1 Mean/Variance and conditioned Time Series Plots 
 

We will now be analysing the mean and variance of the log-returns of the whole data set as 
well as the conditioned data set. I have mentioned above how to filter out the conditioned 
data from the whole data set using the “=OFFSET” function. We will discuss the mean and 
variance of the conditioned data set in more detail later on. Now to get the mean value of the 
whole data set we use the function “=AVERAGE”, and to get the variance we use the function 
“=VAR”. The mean of the whole data set is 0.00000669257, which is very small, therefore can 
be considered as zero. What this means is that on average the rate of return of the electricity 
prices for the whole data set was zero. 
 

Time 12am 1am 2am 3am 4am 
Mean -0.013418417 -0.035791617 -0.02568097 -0.01788281 0.004151762 

5am 6am 7am 8am 9am 10am 
0.041234304 0.048697344 0.061423478 0.049650698 0.004674251 0.002181059 

11am 12pm 1pm 2pm 3pm 4pm 
-0.007824629 -0.01743224 -0.013289305 -0.01060853 -0.005467997 0.005864162 

5pm 6pm 7pm 8pm 9pm 10pm 
0.018271985 -0.000148934 -0.016335204 -0.016300567 -0.004282033 -0.013909881 

11 pm 
-0.037615285 

 
Now let’s look at the mean of the conditioned data set, the table above shows us the mean value 
of the data set conditioned per hour. Now straight away what we notice is that the mean values of 
the data set conditioned per hour is a lot larger than the mean value of the whole data (which was 
considered to be zero). The smallest average return was -0.037615285, which corresponded to 11 
pm, and the highest average return was 0.061423478, which corresponded to 7 am. In simple 
terms, negative average values reflect a reduction in price and a positive average value reflects an 
increase in price. When analysing the data, we see that between 12 am-3 am we have negative 
mean values, which is expected as most people would not be awake during that time, so the 
demand for electricity during those times will be low, hence price would go down. Now from 4 am-
10 am the mean values are positive, this comes across as somewhat surprising, because between 4 
am-6 am we would expect the mean to be negative since most people would still be asleep, hence 
not much electricity is being used. From 11 am-3 pm we also have negative means, which is also a 
bit of surprise since most people would be either at work or school, therefore we would be utilising 
a lot of electricity. From 4 pm to 5 pm the average values are positive which is expected, however 
from 6 pm- 8 pm the average values were negative, which is shocking because around 6 pm it 
would be rush hour, furthermore, it would be dark outside, so street lights, home lights etc. would 
be switched on. From 9 pm-11 pm the average mean values were negative, which seems sensible, 
as most people would be asleep at that time. 

The next step would be to plot the mean values, and to observe if there are any obvious patterns. 
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What we notice is that the mean is changing constantly, furthermore, what we see is that 
there is a fluctuating pattern, the fluctuations start of fairly large, but gets smaller 
throughout the day. Next, we will analyse the variance of the whole data set and the 
variance of the data set conditioned hourly. The variance of the whole data set was 
0.003491829, as we can see the variance is very small which means that generally 
speaking the log-return values are very close to the mean value i.e. the data points do not 
deviate away from the mean. 

11am 12pm 1pm 2pm 3pm 4pm 
0.001857343 0.001020176 0.000471443 0.000367755 0.001046861 0.001863455 

5pm 6pm 7pm 8pm 9pm 10pm 
0.002734446 0.003248869 0.003205587 0.001671708 0.000580473 0.00068256 

11 pm  
0.001094724 

 

Time 12am 1am 2am 3am 4am 
Variance 0.003212052 0.002927647 0.003010217 0.00333136 0.002718644 

5am 6am 7am 8am 9am 10am 
0.00491896 0.00522026 0.009349064 0.007659255 0.003642484 0.001984682 

Mean 
 0.08 

0.06 

0.04 

0.02 

 

-1 
  14 19 24 

-
0.04 
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The variance is a measure of volatility, in our instance, we are measuring how volatile the price 
of electricity is. The smaller the variance is then that means the data points are more evenly 
distributed and there are a minimal number of outlier’s present. The outliers are what leads to 
fluctuations in the data set. Variance of zero means that the data is completely evenly 
distributed, and no outliers exist. From the table above what we see is that the variance ranges 
from 0.000367755 (smallest variance corresponding to 2 pm) to 0.009349064 (largest variance 
corresponding to 7 am). This means that price tends to fluctuate the least at 2 pm and the most 
at 7 am.  

Previously I had mentioned how the average electrical price from 6 pm-8 pm were negative, 
which came as a surprise since most electricity would be used around that time, but now with 
the variance we can somewhat explain why that may be the case. The variance from 6 pm-8 pm, 
were 0.003, 0.003 and 0.002 respectively, which is fairly high when compared to the variance of 
the conditioned time. As previously mentioned, a higher variance means more spread in the 
data, hence the chances of outliers being present is very high. So, this means one possible 
reason for a negative mean around 6 pm-8 pm could be the fact that there were some outliers 
present that were highly negative, which consequently pulled the mean down to a negative 
value. 

I will now plot the variance to see if there are any visible trends. 

 

 
 

 

 
 
 
 
 
 

From the variance plot above what we can see is that between 1 am and 4 am the fluctuations 
are at a minimum, which means there isn’t much of a change with the variance. However, from 5 
am to 11 am there is a huge fluctuation in terms of the variance. Finally, from 11 am onwards the 
variance is almost periodic. Similar to the mean plot, the variance is not always constant, there is 
a degree of fluctuation present within the data set. 
 
We will now plot the hourly data set for each time, here we will analyse in more detail how the 
mean and variance change from each time, and we will look at any pattern within the data, i.e. 
whether there are any positive or negative extreme events are present or not. 
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In the 12 am plot there does not seem to be any set pattern in terms of the extremities, 
however towards the end of the 12 am plot we notice that the negative extremities become a 
lot more noticeable. The mean at 12 am was - 0.013418417, which meant that between 11 pm 
and 12 am the average electricity prices went down, which as previously mentioned makes 
sense, as most people would be asleep. The variance was 0.003212052, which was higher than 
the variance at 11 pm (0.001094724, this means that the data set at 12 am is more disperse 
than the data set at 11 pm. At 1 am straight away what we notice is that there are negative 
extremities which are visible. The mean 1 am is -0.035791617, which means that from 12 am 
till 1 am the average priced reduced. The rate at which the electrical price decreased from 12-1 
am is greater than the rate at which the electrical price decreased from 11 pm-12 am. The 
variance at 1 am was 0.002927647, which compared to 12 am tells us that the data is less 
dispersed, which is evident from the graph, because most of the data have a negative spike, 
and there are far fewer fluctuations present. 
 
 

 

 

 

 

 

 

 

The plot of 2 am is somewhat interesting, because immediately what we notice are extreme 
positive values, which seem to be periodic. What this can imply is that at a specific day, every 
year there seems to be a huge price increase. One possible explanation could be due to a 
computer update, for example, there might have been power network updates, which makes 
sense because at 2 am most people would be asleep, so it would be logical to have a power 
upgrade, without causing any disruption at 2 am. The mean at 2 am was -0.026 (3dp), which 
means on average price of electricity goes down from 1 am to 2 am, and the variance is 0.003 
(3dp). 



Page 17 of 48 
 

 

 
 

In the 3 am plot we get negative extreme points, which means that from 2 am to 3 am there 
seems to be a price decrease. Unlike the 2 am plot, there is no visible periodic pattern present. 
The mean of the 3 am plot is -0.018 (3dp), and the variance is the same as that of 2 am to 3dp, 
i.e. the variance is 0.003, so the dispersion is constant from 1 am to 3 am. When looking at the 
3 am plot we notice that the negative peaks in the 3 am data is similar to that of the positive 
peaks of 2 am, in terms of the modulus both data points have roughly a value of 0.7, thus 
having a constant variance from 1 am to 2 am, makes somewhat of a sense. At 4 am we get a 
mixture of positive and negative fluctuations; the negative extreme values seem to be greater 
than the positive extreme values. The mean at 4 am was 0.004 (3dp), which means on average 
there was a slight increase in electricity prices from 3 am to 4 am, however, the variance 
remained constant (3dp), i.e. the variance was 0.003, this means that price fluctuations were 
constant between 3 am and 4 am. 

 

 
At 5 am the positive spikes seem to be more noticeable, so generally there seems to be some 
sort of a price increase, however, the mean (0.041 to 3dp), shows that the price remained fairly 
constant from 4 am to 5 am, however, the variance at 5 am was 0.005 (3dp), which is larger 
than that of 4 am, so the data seems to be more dispersed than the data points at 4 am. At 6 
am we have more positive extreme events, which indicates that there is a price increase from 5 
am to 6 am, which is highlighted from the fact that the mean at 6 am (0.05 3dp) is higher than 
that of 5 am (0.04 3dp). The variance to 3dp remained constant from 5 am to 6 am (0.005). 
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At 7 am we notice positive events taking place, and a few positive extreme events, but when 
comparing with the 6 am data we notice that the values of the extreme positive events is 
higher than that of 6 am, upon analysing we see that the extreme positive events are above 1, 
whereas at 6 am all the values are below 1. This may explain why the variance at 7 am is higher 
than that of 6 am. The variance at 7 am is 0.009. The mean at 7 am is higher than that of 6 am, 
this means that the price of electricity increased from 6 am to 7 am. By observing the 8 am 
data set we notice that there seems to be far more positive events compared to any other data 
set. We would expect more positive events to occur (as the graph shows), because at 8 am 
most people would be getting ready for work or getting ready for school, thus more electricity 
would be utilised. It would seem that the fluctuations of the data points at 8 am would be far 
greater than that of 7 am, however that is not the case, in reality, the variance at 7 am is far 
greater than that of 8 am. The variance at 8 am was 0.007 (3dp). Just as the previous case, one 
reason the fluctuations may be small is because the extreme events at 8 am have a value 
smaller than 1.2, whereas at 7 am some values are larger than 1.2, so at 7 am the data points 
are more spread out compared to 8 am. The mean at 8 am is 0.050 (3dp), which is smaller than 
that of 7 am, this means that in general, the average price of electricity reduces from 7 am to 
8 am, which comes as somewhat of a surprise, since most people would be up at 8, thus utilising 
more electricity, so we would expect electricity price to be higher at 8. 
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From 9 am till 12 pm there seems to be more negative events occurring than that of positive 
events, thus indicating that we should expect some sort of price decrease occurring. At 9 am 
the mean is 0.005 (3dp), which is considerably smaller than the mean at 8 am (which was 0.05), 
thus indicating that there was a price decrease from 8 am to 9 am. The variance at 8 am was 
0.007 (3dp), which is smaller than the variance at 7 am, thus there are fewer price fluctuations 
at 8 am than there are at 7 am. At 10 am the negative events seem to be more apparent than 
that of 9 am. Thus, we would expect there to be a price decrease. This is supported by the fact 
that the mean is smaller at 10 am, the mean is 0.002. This means from 9 am to 10 am there is a 
price decrease. The variance is smaller at 10 am than 9 am. The variance at 10 am is 0.001. 
 
Similarly, to the 9 am and 10 am plot we notice negative events occurring, the mean at 11 am is   
-0.008, thus there is a price decrease from 10 am till 11 am. Just by observing the 11 am plot, 
we would expect the variance to be fairly small, since there seems to be a few fluctuations 
present which is indeed the case. The variance at 11 am is 0.001 (3dp), which is fairly small, 
furthermore, the variance is the same (to 3dp) as the variance at 10 am. This means that from 
10 am to 11 am price fluctuations remain fairly constant. At 12 pm we also notice negative 
events occurring. The mean at 12 pm is -0.017 (3dp), which means overall there is a price 
decrease, and when comparing to the mean at 11 am price decreases from 11 am till 12 pm. 
Just like the 10 am and 11 am plots, the variance is 0.001 (3dp), which means that price 
remained fairly constant from 10 am till 12 pm. 
 

 
When analysing the 1 pm plot we notice that it follows a similar behavioural pattern to that of 
the 12 pm plot. This is indeed supported by the fact that the mean remained constant from 12 
pm to 1 pm (-0.01 to 3dp), this means that from 12 pm till 1 pm prices remained fairly 
constant. By looking at the y-axis of the 1 pm plot we would expect the variance to be very 
small, because the y-axis ranges from roughly 0.1 till about -0.35. This is indeed the case as the 
variance is 0.0005, which up until now the smallest variance we have encountered. This 
indicates that price fluctuations are at a minimal at 1 pm. From 9 am till 1 pm the plots seem to 
have more negative events occurring. However the 2 pm plot has a mixture of positive and 
negative events occurring, but the negative events seem to be more apparent and drastic 
compared to the positive events, as a result, we would expect the mean to be small or even 
negative, which is indeed the case. The mean at 2 pm is -0.01 (3dp), which tells us that the 
price of electricity between 1 pm and 2 pm remained constant. When analysing the graph, we 
see that the fluctuations for 2 pm seem to be fairly similar to that of 1 pm, which is indeed the 
case, the variance for 2 pm is 0.0003, which is slightly smaller than the variance of 1 pm. 
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At 3 pm we see a change in extreme events, there seems to be more positive extreme events 
occurring at 3 pm, thus we would expect the price to increase from 2 pm till 3 pm. This is 
indeed the case as the mean price of electricity at 3 pm is -0.005, which is larger than the mean 
at 2 pm which was -0.01. At 4 pm we also expect a similar trend to follow, because the positive 
extreme events seem to be far greater than that of 3 pm. This is the case as the mean at 4 pm 
is 0.005, which also indicates that the price of electricity goes up from 3 pm to 4 pm. This 
makes sense as 4 pm is usually the time when children get home from school, so a lot more 
electricity will be utilised during that period. 
 
 

 

 

 

 

 

 

 

At 5 pm we notice a similar pattern, but we would expect the mean to be higher at 5 pm than 
that of 4 pm, because at 5 pm there seems to be far more positive values, but hardly any visible 
negative extremities occurring. This is supported by the fact that the mean at 5 pm is higher 
than the mean at 4 pm. The mean at 5 pm is 0.01. Therefore, electricity prices increased from 4 
pm to 5 pm. When analysing fluctuations, we look at the y-axis for the graphs, upon inspection, 
it becomes fairly apparent that we would expect the variance to be highest at 5 pm followed by 
4 pm then finally 3 pm. This is because when analysing the y-axis, we notice that the values for 
3 pm ranges from [-0.2-0.5], for 4 pm the values range from [-0.2 - 0.8], and finally for 5 pm the 
values ranged from [-0.2 – 1.3]. From the ranges, we can see that fluctuations were highest at 5 
pm then 4 pm and then 3 pm. This is supported by the variance. The variance at 5 pm was 
0.003, followed by the variance of 4 pm which was 0.002, and then finally 0.001 for 3 pm. 
Generally speaking, the variance for all three graphs were fairly small and very close to one 
another (difference of 0.001), this means that from 3 pm till 5 pm there was not much 
change in the price during that period. 
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From 6 pm to 7 pm we have negative and positive extreme events, however, the negative 
events at 7 pm are a lot more noticeable and apparent. The mean value at 6 pm is -0.0001, 
which is very close to 0, this means that from 5 pm to 6 pm price decreased ever so slightly, the 
change is so small that it could be considered that the price pretty much remained constant 
from 5 pm to 6 pm. The mean at 7 pm was -0.01, which means that from 6 pm to 7 pm the price 
of electricity ended up reducing. From 6 pm till 7 pm the variance remained the same (to 3dp), 
the variance at 6 pm and 7 pm was 0.003, which means that price fluctuation remained 
constant from 6 pm to 7 pm. 
 

At 8 pm and 11 pm we have negative and positive extreme events, however, the negative 
events at 6 pm and 11 pm are a lot more noticeable and apparent. The mean value at 8 pm is -
0.01, this means that from 7 pm to 8 pm price decreased ever so slightly. The mean at 11 pm 
was -0.03, which means that from 10 pm to 11 pm price of electricity ended up reducing. From 
6 pm till 7 pm the variance remained the same (to 3dp), the variance at 8 pm and 11 pm was 
0.02 and 0.001, which means that price fluctuation was very similar at 8 pm and 11 pm. 
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From 9 pm to 10 pm we have negative extreme events. The mean value at 6 pm is -0.004, 
which is very close to 0, this means that from 8 pm to 9 pm price decreased ever so slightly, the 
change is so small that it could be considered that the price pretty much remained constant 
from 8 pm to 9 pm. The mean at 10 pm was -0.01, which means that from 9 pm to 10 pm price 
of electricity ended up reducing. At 9 pm the variance was 0.0005, which means that price 
fluctuations were very small, it was so small that it could be considered that the prices 
remained fairly constant. The variance at 10 pm was slightly larger, it was 0.0006, which is still 
very small, hence it could be considered that the price remained fairly constant from 9 pm to 
10 pm. 

 

4.0 Probability Density Functions 
 

We will now be plotting the probability density function (PDF) of the whole data set and the 
data set conditioned per hour. The PDF can be plotted in terms of a histogram in RStudio, 
however, to plot the histogram in RStudio we need to ensure that the whole data set and the 
data set conditioned per hour are centred around the mean. This can be done by simply 
subtracting the log-returns of the data set by the average of the log-returns. For example, if our 
data for log-returns is in column D, to calculate the mean log-returns we subtract column D with 
the average of column D. We repeat this step for the conditioned data set. To plot the 
histogram in RStudio we use the function hist(….), in the histogram function we specify the 
breakpoints, x boundaries and y boundaries. Ideally, we would like the PDF to be smoothed out, 
this requires trial and error. 
 

 
The image on the left is the mean Log-Returns with 1000 breaks and with the y-axis ranging 
from [0:9000]. As we can see the plot on the left could be smoothed out. Which brings us to the 
plot on the right. The plot on the right has 10000 breaks and the y-axis ranges from [0:1000]. As 
we can see the plot on the right is far smoother. However, we should note that different data 
sets will require different breakpoints to turn out smooth. 

When we plot the probability, density functions we notice that some distributions have long 
right tails and some distributions have long left tails. The distributions that contain long right or 
long left tail, we will plot the log-log plot. Once again, the log-log plot can be calculated via 
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RStudio, by taking the logarithm (base 10) of the x and y-axis. The log-log plot tells us whether a 
power law exists or not. If the log-log plot is more or less a straight line, then we say that a 
power law in the form of 𝑦𝑦 = 𝑎𝑎 ∗ 𝑥𝑥𝑛𝑛 exists (where a is a constant). The next plot that we will be 
analysing is the semi-log plot. If our log-log plot is not close to a straight line, then we will plot 
the semi-log plot. The semi-log plot is calculated by taking the logarithm (base 10) of the y-axis, 
whereas the x-axis remains unchanged. Just as in the case of the log-log plot we will also be 
analysing whether the semi-log plot is more or less a straight line. If the semi-log plot appears 
in a straight line, then we say that an exponential fit in the form of 𝑦𝑦 = 𝑎𝑎 ∗ 10𝑚𝑚𝑥𝑥 exists (where m 
is the gradient of the line) for the right/left tail of the distribution. However, if a straight line 
does not exist then we claim that an exponential fit does not exist.  

Skewness 
 

As previously mentioned, we will analyse the PDF of the plots which have a right or left tail. One 
way of grouping the PDF’s into a right tail and left tail is through the measure of skewness. 
What skewness helps us see is the degree of symmetry of a plot. Most statistical programmes 
will have a means of calculating skewness without any computations. One of the easiest ways 
to calculate skewness is through the use of the function “SKEW(…)” in excel. The skew function 
in excel will return a value, which can be interpreted. 

The following interpretations will allow us to classify whether the plots are symmetric, right-
tailed or left tailed 
(Taken from Bulmer, 1979, p. 63 ). 

• If skewness is greater than 1 then we say the distribution is highly (positively) 
skewed, i.e. the right tail is longer than the left. If the skewness is less than -1 then 
the distribution is also highly (negatively) skewed, i.e. the left tail is longer than the 
right tail. 

• If skewness is between -1 and -0.5, or between 0.5 and 1, then we say that 
the distribution is fairly symmetrical, or we can say that the distribution is 
moderately skewed. 

• If skewness is between -0.5 and 0.5 then we say that the distribution is 
fairly/approximately symmetrical. 

 
 

4.1 Log-Log Plot and Semi Log Plot (Right Tail) 
 

We will start by analysing plots that appear to be right-tailed, and further back this up by 
calculating the skewness. As mentioned earlier we will analyse the mean values of each data 
conditioned per hour. When it comes to the log-log plot, I have split it up into two types, we 
have the positive and the negative log-log plot. These variations arise since we cannot take the 
logarithm of negative values, some of our x values may be negative, hence, to take a logarithm 
of the negative values we would have to take the logarithm of minus the negative values. For 
example, if our x value is -3, to take the logarithm of that we would take log(-(-3)). Once again, 
the logarithm is to the base 10. If a power law does not exist, we will analyse the semi-log plot. 
We will first consider the 5 am data set. 
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Upon inspection, it seems like the 5 am plot is right tail, which is indeed the case as the value of 
the skew is 2.302 (to 3dp), which means that the distribution is highly (positively) skewed. When 
looking at the positive log-log plot it becomes obvious that the points do not lay on a straight line, 
and its, even more, obvious when looking at the negative log-log plot that the points are more of 
a curvature rather than a straight line. Hence, we conclude that a power law does not exist. Since 
a power law does not exist, hence we will take a look at the semi-log plot. 
 

The semi-log plot is somewhat interesting, we can break 
down the semi-log plot into two instances. The first 
instance being the positive half of the graph, and the 
second being the negative portion of the graph. When 
analysing the positive half from roughly points [0.0, 0.3] 
there seems to be a straight which is a clear indication of an 
exponential fit, however after around 0.3, we see that the 
points flatten out. The same trend follows for that of the 
negative portion of the graph, from points [0.0,-0.2] we 
have roughly a straight line, but after -0.2 the points seem 
to flatten up. This indicates that overall, there doesn’t seem 
to be a strong exponential fit. 
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We will now consider the 6 am data set. Similarly, to the 5 am distribution there seems to be 
evidence of the distribution having a right tail. The skewness for the 6 am distribution is 6.984 (to 
3dp), which tells us that the 6 am distribution is highly positively skewed. Hence, we will consider the 
log-log plot (positive and negative portion). For the positive portion of the log-log plot, we see that 
for the interval [-1.5, -0.5], there seems to be somewhat of a straight line and after -0.5 the points 
flatten out, so there is not a strong evidence of a power law. However, we will still consider a power 
law (since certain points in the positive log-log plot do form a straight line). The equation of the line 
of best fit that best follows the positive log-log plot is y=-1.52311x-1.98153. The gradient of the 
equation is -1.5 (to 1dp). Therefore, we can consider a fit with exponent -1.5. The equation of the 
power law is in the form of: 𝑦𝑦 = 𝑎𝑎 ∗ 𝑥𝑥−1.5 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜖𝜖 ℛ. Now when looking at the negative log-log plot 
we can see that the data points are a curvature rather than a straight line. Therefore, we conclude 
that a power law does not exist in the negative log-log plot. Hence, we can analyse the semi log-log 
plot and focus on the negative portion of the data. 
 

 
 

The semi-log plot is somewhat similar to the semi-log plot of the 
5 am distribution. What we can see is that from [0,0.2] and       
[0,-0.2], we have somewhat of a straight line, thus indicating an 
exponential fit, however after 0.2 we see that the points flatten 
out, and the same can be said for points before -0.2. Thus, we 
conclude that a strong exponential fit does not exist. 

 

 

Next, we shall look at the 7 am plot, the skewness for the 7 am plot was 5.346, which indicates that 
the distribution is highly (positive) skewed. We shall now consider the log-log plot. Just as the case 
for 5 am we see that the positive log-log plot of 7 am does not lay on a straight line. In the positive 
log-log plot, the points between [-1.5: 0.3] are roughly in a straight line, but overall, they are not 
straight. The negative plot however does not lay in a straight line. Hence, we shall consider the semi 
log-log plot. 
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We shall analyse both portions of the semi-log plot. The 
semi-log is somewhat straight between [0.0,0.2], but since 
this is such a small interval it would not make sense to claim 
that the graph is exponential for certain points. The same 
argument can be used for the negative portion of the semi-
log plot. The graph is fairly straight for the interval [0,0.1], 
which is a small interval, hence we claim that an exponential 
fit does not exist for the right tail. 
 

 

 

Next, we analyse the final graph with the right tail, which is the 4 am dataset. The skewness for the 
4 am dataset is 4.606, which indicates that the distribution is highly (positively) skewed. We shall 
now consider the log-log plot (positive and negative). Generally speaking, the positive log-log plot 
is more of a curvature rather than a straight line, however there are certain points in which the 
graph appears roughly straight. The interval [-1.2, -0.5] is somewhat of a straight line, hence we 
consider a line of best fit in the interval [-1.2,-0.5]. A similar trend follows for negative log-log plots, 
we see that for the interval [-1.5, -0.8] the distribution is straight. The equation of the line of best 
fit is y=-1.19476x-3.43047. The gradient is -1.2 (to 1dp), hence we consider a fit with exponent -1.4. 
Which means the equation of the power law is in the form of: 𝑦𝑦 = 𝑎𝑎 ∗ 𝑥𝑥−1.2 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 ∈ ℛ. 
 
We can summarise the findings of the right tail distributions in a table. The table will consist of the 
exponent of the power-law fit (if any) and the skewness of the distribution. This can help see if any 
potential relationships between skewness and the exponent exists. 
 

Time Exponent Skewness 
4 am -1.2 4.61 
5 am No power law 2.30 
6 am -1.5 6.98 
7 am No power law 5.35 
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The first thing that we notice is that all the distributions are highly positively skewed, which is fairly 
self-explanatory when we consider the time series that we observed earlier on, more specifically 
the time series plot for 5 am, 6 am and 7 am, consisted of positive extremities whereas the 4 am 
plot contained a mixture of positive and negative plots, with the negative extremities being the 
more eye-catching extremity, however, positive extremities occurred more frequently, which 
explains why the skewness is highly positive. This means that positive extreme events generally 
lead to a highly positive skewness which as a result leads to long tails on the right side of the 
histogram distributions. Now we come to the exponent, regarding the exponent, the smaller the 
exponent is, the faster the tail of the distribution decays. What we notice from the table above is 
that the distribution that decays the fastest is for the 6 am database (smallest exponent), and the 
slowest for the 4 am dataset (largest exponent), moreover, the skewness for the 6 am dataset is 
greater than that of the 4 am dataset. Therefore, there seems to be a relationship between 
skewness and exponent. More specifically, it seems like the larger the skewness is the faster the 
right tail decays. We shall clarify if this is indeed the case when we analyse the distributions that 
contain left tails. Finally, what we see is that the 5 am and 7 am plots did not follow a power law or 
an exponential fit. This concludes the analysis of distributions with right tails. 

 

4.2 Log-Log Plot and Semi Log Plot (Left Tail) 
 

We now move to distributions that have long left tails, and as we did for the right tail, we shall 
calculate the skewness and investigate whether a power law exists for these distributions. Keeping 
in mind that we are dealing with the left tail, our values will be negative, therefore we cannot take 
the logarithm of those values. To overcome this, we shall take the absolute value of these 
numbers, this will allow us to take the logarithm of these number, hence we can calculate the log-
log and the semi-log plot. This can be done in RStudio, when calculating the log of the x vector we 
put a minus in front of it. For example, in RStudio the command could be log(-x[….], base=10), this 
will give us the absolute values of the negative numbers. In the case of left tailed distributions, if a 
power law does indeed exist then it will be in the form of 𝑦𝑦 = 𝑎𝑎 ∗ |𝑥𝑥|−𝑛𝑛 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 ∈ ℛ and ‘n’ is the 
value of the exponent. 
 

We shall first analyse the 11 am dataset. 
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The skewness of the plot is -7.339, which indicates that the data is highly (negatively) skewed. 
Generally speaking, when looking at the log-log plot (positive and negative), it is fairly obvious that 
the line is not straight, however upon close inspection we notice that in certain intervals the line 
does seem to be almost straight. From the positive log-log plot, the interval [-2,-1.3] seems to be 
fairly straight and for the negative log-log plot the interval [-1.8, -1] seems to be roughly straight. 
Hence, we consider a line of best fit for those intervals. The equation of the line of best fit is:  
𝑦𝑦 = −1.42325𝑥𝑥 − 2.02252. Hence, we consider a fit with exponent -1.4 (1 dp), which means the 
equation of the power-law will be in the form of 𝑦𝑦 = 𝑎𝑎 ∗ |𝑥𝑥|−1.4 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜀𝜀 ℛ. 

 

 

Next, we move onto the 12 am plot. The skewness of the 12 am distribution is -4.643, which 
indicates that the distribution is highly (negatively) skewed. As with the 11 am plot, we notice that 
the positive log-log plot is a clear curvature, but certain intervals are fairly straight. For example the 
positive log-log plot has a slight positive trend in the interval [-1.6, -1.3] but the interval is way too 
small to generalise for the whole data set, however the negative log-log plot is straight for the 
interval [-1.5, -0.8], hence we can consider a line of best fit for that interval. The equation for the line 
of best fit is:  𝑦𝑦 = −0.19212𝑥𝑥 − 0.51959. Hence, we consider a fit with exponent -0.2 (1 dp), which 
means the equation of the power-law will be in the form of 𝑦𝑦 = 𝑎𝑎 ∗ |𝑥𝑥|−0.2 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜀𝜀 ℛ. 

Next up is the 1 am plot. 
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The skewness for the 1 am distribution is -2.006, which once again indicates that the distribution is 
highly (negatively) skewed, but not as skewed as the 11 am and the 12 am distributions. When 
looking at the positive log-log plot, we can see that the distribution is that of a curve rather than a 
straight line, and the same can be said for the negative log-log plot. The positive log-log plot is fairly 
straight for the interval between [-1.5, -1.1], but the interval is too small to generalise for the whole 
dataset of the positive log-log plot. With the negative log-log plot, there does not seem to be an 
interval where the distribution seems to be straight at all. This indicates that there does not seem to 
be any power-law involved. Hence, we will consider the semi-log log plot to investigate whether 
there is evidence of an exponential fit involved. 

 

 

 

From the semi-log plot, we can see that the plot is not a 
straight line, hence we can conclude that an exponential 
fit for the 1 am does not exist. 
 

 

 

 

Next up we have the 2 am plot. 

The skewness for the 2 am distribution is -8.051 (3 dp), which means that the 2 am distribution is 
highly (negatively) skewed. When analysing both the positive and the negative log-log plot we 
notice that there does not seem to a straight line visible. It could be argued that in the positive 
log-log plot there seems to be somewhat of a straight line between the interval [-1.5,-1.2], 
however once again the interval is far too small to generalise a power law for the whole 2 am 
distribution. For the negative log-log plot, we can see the plot is of a curvature. Hence, we shall 
analyse the semi-log plot. 
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Just as in the case for 1 am, we notice that the plot is not 
of a straight line, hence we conclude that an exponential 
fit does not exist for the 2 am plot. 
 

 

 

 

 

Upon inspection, the 3 am distribution seems to be centred, but there is a hint of skewness to the 
left, hence I have considered the 3 am plot to be left tailed. Surprisingly the skewness for the 3 am 
distribution is -1.897, which indicates that the 3 am distribution is highly (negatively) skewed. When 
compared to the other left tailed distributions the skewness is fairly small, which is to be expected. 
Now we analyse both the positive log-log and the negative log-log plot. With the positive log-log 
plot, there seems to be an interval in which the plot seems to contain a straight line. Thus, we shall 
consider the interval [-1.7,-0.8] for the positive log-log plot, and for the negative log-log plot, we 
shall consider the same interval when calculating the equation for the line of best fit. Since most of 
the points seem to lay in a straight line, this indicates that a strong power law may exist. The 
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equation for the line of best fit is: 𝑦𝑦 = −1.5841𝑥𝑥 − 1.98744. Hence, we consider a fit with exponent -1.6 
(1 dp), which means the equation of the power-law will be in the form of 𝑦𝑦 = 𝑎𝑎 ∗ |𝑥𝑥|−1.6 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜀𝜀 
ℛ. 

Next, we look at the 10 pm dataset. 

The skewness for the 10 pm distribution is -2.256, which indicates that the 10 pm distribution is 
highly (negatively) skewed. We now analyse the log-log plots. The negative log-log plot is a clear 
curvature, whereas with the positive log-log plot the interval [-1.6,-1.3] seems fairly straight. 
However, the interval is far too small to consider a power law. Hence, we can conclude that a 
power-law may not exist for the 10 pm dataset. Hence, we consider the semi-log plot to 
conclude whether there is an exponential fit for the 10 pm distribution. 

 
 

Just like every other semi-log plot we have come across, there 
does not seem to be a straight line present, hence an 
exponential fit is not present in the 10 pm plot. 

 

 

 

 

Now we consider the 11 pm plot and the 1 pm plot. 
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We shall first start with the 11 pm dataset. Now when looking at the histogram for the 11 pm 
dataset, we have a similar situation as we did with the 3 am dataset. That is the fact that the 11 
pm distribution seems to be fairly centred, with just a hint of skewness. The skewness of the 11 pm 
plot is -3.931, which indicates that the distribution is highly (negatively) skewed. This came as 
somewhat as a surprise since I would have expected the skewness to be closer to -1 rather than -3. 
Next, we move to the log-log plots. We start with the positive log-log plot. The plot is somewhat 
straight, more specifically the interval [-1.7, -0.9] seems to be fairly straight. For the negative log-
log plot, the interval [-1,-0.4] seems to be somewhat straight. Hence, we consider a power law. 
The equation of the line of best fit is: 𝑦𝑦 = −1.49847𝑥𝑥 − 1.84427. Hence, we consider a fit with 
exponent -1.5 (1 dp), which means the equation of the power-law will be in the form of 𝑦𝑦 = 𝑎𝑎 ∗ 
|𝑥𝑥|−1.5 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜀𝜀 ℛ. 
 

Now we move onto the 1 pm dataset. From the histogram, we can see that the distribution is 
skewed towards the left. The skewness of the 1 pm dataset is -2.006, which indicates that the 
distribution is highly (negatively) skewed. Just as in the case of the 11 pm dataset there are some 
intervals in which a power law is possibly present. We first consider the positive log-log plot. The 
interval [-2, -1.3] seems to indicate a power law, and for the negative log-log plot, the interval [-2, -
1.1] seems to indicate some sort of a power law. Hence, we shall consider an equation for the line of 
best fit in the interval [-2, -1.1]. The equation of the line of best fit is: 𝑦𝑦 = −1.45739𝑥𝑥 − 2.00288. Hence, 
we consider a fit with exponent -1.5 (1 dp), which means the equation of the power-law will be in 
the form of 𝑦𝑦 = 𝑎𝑎 ∗|𝑥𝑥|−1.5 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎 𝜀𝜀 ℛ. 

Now we consider the final plot, which is the 12 pm plot. 
 

 

The skewness of the 12 pm distribution is -4.643 which indicates a highly (negatively) skewed 
distribution. Both log-log plots do not seem to indicate a power law; hence we consider a semi-
log plot. 
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Once again, we see that the semi-log plot is not that of a 
straight line, hence we can conclude that the 
distribution does not contain an exponential fit. 
 

 
 
 
 
 

We can summarise the findings of the left tail distributions in a table. The table will consist of 
the exponent of the power-law fit (if any) and the skewness of the distribution. This can help see 
if any potential relationships between skewness and the exponent exists. 
 

Time Exponent Skewness 
11am -1.4 -7.34 
12am -0.2 -4.64 
1 am No power law -2.01 
2 am No power law -8.05 
3am -1.6 -1.90 
10 pm No power law -2.26 
11pm -1.5 -3.93 
12 pm No power law -4.64 
1pm -1.5 -2.01 

 

The first thing that we notice is that all the distributions are highly negatively skewed, which is 
fairly self-explanatory when we consider the time series (plots) that we observed earlier on, 
more specifically the time series plot for 11 am, 1 am, 3 am, 11 pm, 12 pm and 1 pm consisted 
of negative extremities whereas the 12 am and 10 pm plots contained a mixture of positive and 
negative plots, with the latter being the more eye-catching extremity, furthermore, the negative 
extremities were larger than that of the positive extremities, which is a possible explanation as 
to why the skewness is highly negative. There seems to be one dataset that does not seem to fit 
in with the trend, and that is the 2 am dataset. The time series plot for the 2 am dataset 
consisted of periodic positive extremities, but when looking at the skewness it was highly 
negatively skewed, and the skewness was far more severe compared to the other datasets. One 
possible explanation could be that the 2 am dataset had positive extremities which were greater 
than the negative extremities in terms of value, but the frequency in which the negative 
extremities occurred was greater than that of the positive extremities. Therefore, the frequency 
of the negative extremities may have had a greater impact than the value of the extremities. 
This means that negative extreme events generally lead to a highly negative skewness which as 
a result leads to long tails on the left side of the histogram distributions. 

What we notice from the table above is that the distribution that decays the fastest is for the 3 am 
database (smallest exponent), and the slowest for the 12 am dataset (largest exponent). However 
there does not seem to be any relationship between exponent and the skewness, because the 3 
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am dataset had the smallest exponent and had the largest skewness, followed by the 11 pm and 1 
pm dataset, but that trend is not followed by the 11 am dataset. The 11 am dataset had a smaller 
exponent than the 12 am dataset, yet the skewness for the 11 am dataset was far smaller than that 
of the 12 am dataset. Earlier on, for the right tail, we concluded that the larger the skewness is the 
faster the right tail decays, however that is not backed up by the left tail. One reason could be due 
to the fact for the right tail there wasn’t enough datasets to compare and come up with a 
conclusive relationship between exponent and skewness (only 2 data sets were compared for the 
right tail distributions), whereas for the left tail we had 5 distributions to compare and contrast. 
Hence, we can conclude that there does not seem to be a relationship between exponent and the 
skewness. 

 

5.0 Auto-Correlation function (ACF) 
 

We shall now analyse the ACF for the distributions with right and left tail. The aim of this is to 
see whether the exponent or skewness has an impact on the shape of the ACF. Before we get 
into analysing the ACF plot, we shall give a mathematical definition and then a more informal 
definition of the ACF. 
 
 
Definition 5 (W Yoo): The autocovariance function of a stationary time series {𝑥𝑥𝑡𝑡} at lag k 
denoted by 𝛾𝛾(𝑘𝑘), is defined as 

𝛾𝛾(𝑘𝑘) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑡𝑡+𝑘𝑘, 𝑥𝑥𝑡𝑡) 

Definition 6 (W Yoo): The autocorrelation function of a stationary time series {𝑥𝑥𝑡𝑡} at lag k 
is defined as 

𝛾𝛾(𝑘𝑘) 
𝜌𝜌(𝑘𝑘) = = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟(𝑥𝑥𝑡𝑡+𝑘𝑘, 𝑥𝑥𝑡𝑡) 

𝛾𝛾(0) 
 
 
Now we shall give a more informal definition of autocovariance function and autocorrelation 
function. The autocovariance is a function that gives the covariance of the process with itself at 
certain points in time (known as lag- denoted by k), whereas the correlation gives us the 
correlation of the process with itself at certain points in time. 

What the ACF plot will tell us is whether electricity prices today have an effect on electricity 
prices in say 10 days, 20 days or even 100days’ time. 

We shall start by analysing and comparing the ACF for the right tail distributions. To be able to 
compare the ACF for each right tail distribution I ensured that the axis range were the same for 
each ACF. For the dataset conditioned per hour, 3 lag values were used, namely 100,200 and 500 
lag values (i.e. k=100,200 and 500). 

 
We first start with the 4 am dataset. 
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For the ACF 4 am with lag 100 we notice an interesting trend that seems to occur. We see high 
positive spikes every (roughly) 7 days. This indicates that the electricity prices seem to be positively 
correlated every 7 days. When looking at the ACF 4 am with lag 200 we notice that the trend of 
positive spikes every 7 days seems to carry on occurring, however this time we notice that a slight 
oscillating pattern seems to be emerging. The oscillating pattern becomes evident when we 
consider the ACF 4 am with lag 500. 

Next up is the 5 am plot, we shall first analyse the 5 am plot but also compare it with the 4 am ACF 
plot. 
 

 

First, we analyse the 5 am plot with lag 100. What we notice is that the lag 100 plot follows the same 
pattern as the 4 am plot with lag 100, in the sense that the most evident positive spikes seem to 
occur every 7 days, the difference between the 4 am and 5 am with lag 100 is that the 5 am plot 
seems to have a lot more positive spikes compared to the 4 am set. This means that for the first 100 
days the electricity prices seem to be positively correlated, with the correlation being the greatest 
every 7 days. Next, we look at the ACF 5 am with lag 200, what we notice is that the pattern is 
similar to the 4 am plot, in the sense that an oscillating pattern seems to be emerging. Finally, we 
look at the ACF 5 am with lag 500, the plot is very interesting because we see a very evident 
oscillating pattern, namely, we see positive correlation followed by negative, followed by positive 
and then finally a negative correlation. This might be due to changes in season. The positive 
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correlations could represent winter and summer since during those seasons people would be using 
their central heating and using fans for the summer, which utilises electricity. 

 

The first thing we notice with the 6 am ACF with lag 100 is that the points are all positively 
correlated, unlike the 4 am and 5 am plots which had some points that had some negative 
correlations present. We notice the same trend for the 6 am ACF with lag 200. This means that the 
electricity prices are positively correlated with each other for the first 200 days. Now we come 
across the 6 am ACF with lag 500, what we notice is that most points are positively correlated to 
each other, but some points are negatively correlated. These occurrences seem to be random. 

Finally, we take a look at the 7 am dataset. 

 
The 7 am plot with lag 100 follows a similar pattern to the 6 am plot with lag 100, all the points are 
positively correlated. When looking at the ACF 7 am with lag 200 we notice some negative 
correlation after (roughly) 125 days. Now we look at the ACF 7 am with lag 500, just as the case 5 
am ACF with lag 500 we notice some sort of repetition of positive and negative correlation. Again, 
this might be an indication of a seasonal effect. From the lag 500 graphs for 7 am and 5 am we 
notice that the seasonal effects had a greater effect on the 5 am data set than the 7 am dataset. 
Now we shall briefly state whether the exponent has a possible effect on the ACF plot, as well as 
whether skewness impacts the ACF plot. The exponent does not seem to have any obvious impact 
on the trend of the ACF plot. Next, we look at the skewness, the 6 am dataset had the largest 
skewness, now the 6 am plot also had more frequent as well as larger positive correlations when 
compared to the other datasets. The prospect of a larger skewness leading to a larger and more 
frequent positive correlations is not supported by the 4 am dataset. The 4 am dataset had a larger 
skewness compared to the 5 am dataset, however, the 5 am ACF had larger and more frequent 
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positive correlations than the 4 am ACF. One possible reason could be since the time series plot of 
the 4 am consists of positive and negative extremities, hence why the ACF of the 4 am plot had 
smaller and less frequent positive correlations. So, it seems like extremities might impact the ACF 
plots. We shall take a look and see if the left tail distributions support the prospect of a larger 
skewness leading to a larger and more frequent positive correlations, also we can analyse whether 
the extreme events impact the ACF plots. 

Next, we consider the left tailed distributions. First up we consider the 11 am ACF. 

 
 
 
 
 
 
 
 
 
 
 

For the 11 am data we see that lag 100,200 and 500 all follow a similar trend, in the sense that we 
see that on the first day we see the highest positive correlation, and generally the positive 
correlation seems to get smaller and smaller. In lag 500 we have a few negative correlations but to 
a small degree. Next up is the 12 am dataset. 

 
 

 

 

 

 

 

 

 

The ACF 12 am with lag 100 follows a similar pattern to the 11 am dataset, in the sense that all the 
points are positively correlated, with the first point being the greatest correlated. However, the 12 
am with lag 100 has higher positive correlations compared to the 11 am dataset. Now we move 
onto the 12 am with lag 200, here we some differences arise compared to 11 am ACF with lag 200. 
ACF 12 am with lag 200 we notice that the plot starts positively correlated, but after about 120 
days (roughly) we notice the points become negatively correlated. This may be due to seasonal 
changes. This is further backed up by the lag 500 plot, we can see a repetition of positive and 
negative correlations, which further indicates seasonal changes. 
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The ACF 1 am plot follows a similar trend to the 12 am plot, we notice seasonal changes in lag 200 
and lag 500 plots. Around roughly day 365 we notice a spike in the value of the correlation. This 
might indicate a periodic pattern that occurs after every year. 
 

The 2 am ACF for all lag values follows pretty much the same trend as the 1 am dataset, we 
notice a slight periodic trend occurring. Next up we look at the 3 am plot. 
 

The 3 am plot seems to be affected by some sort of seasonal change, but unlike the 2 am and 1 am 
plot, the fluctuations do not seem to be periodic. Another difference is that with the 3 am dataset 
the data is more positively and negatively correlated compared to the 2 am and 1 am dataset. So, 
the electricity prices at 3 am are more positively correlated at certain days compared to the 2 am 
and 1 am dataset, and electricity prices are more negatively correlated at certain days compared 
to the 2 am and 1 am dataset. 
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The 10 pm and 1 pm follow somewhat of a similar trend, what we see is that at lag 100 the ACF for 
10 pm and 1 pm are all positively correlated, the only difference coming from the fact that the 1 
pm dataset are more positively correlated than the 10 pm dataset, this means that for both 10 pm 
and 1 pm the electricity prices are correlated to each other in the first 100 days, more correlated 
for the 1 pm dataset. Next up is the lag 200 graph, what we notice is that for both 10 pm and 1 pm 
plot after roughly 100 days the electricity prices become negatively correlated, once again much 
more negatively correlated for the 1 pm dataset. This means after about 100 days the electricity is 
negatively correlated to one another. This means that electricity prices today have a negative  
impact on the electricity after 100 days. Now we come across lag 500, immediately we can see 
some sort of seasonal effect, but for the 500 lag for 1 am the seasonal impact is far less severe 
compared to the 10 pm dataset. 

 

For the 11 pm dataset what we notice is that for lag 100 the electricity prices are all positively 
correlated, but lag 200 and 500 we notice some sort of oscillation taking place, so there are certain 
days where the prices are negatively correlated and others where they are positively correlated. 
Most days the electricity prices are positively correlated. 
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Finally, we come to the final dataset which is the 12 pm dataset. Now what we notice is that 
correlations are very tiny, more specifically smaller than 0.0005, so electricity prices today have a 
very small impact on electricity prices in the future. 

 

We now summarise our findings and look for any potential relationship between skewness and 
the ACF plots also any potential relationship between extremities present in the time series 
plot and the ACF plots. 

 
When looking at skewness there does not seem to be any apparent relationship between skewness 
and the ACF plot. Now we look at extremities. When analysing the extremities for the left tailed 
distributions we realise that there does not seem to be any relationship between extremities and 
the ACF plots, for example, the 12 pm dataset had negative extremities yet the values of the 
correlations in the ACF was the smallest, however, the 3 am plot also contained negative 
extremities yet the correlation values for the ACF plot was fairly large when compared to the other 
left tailed distributions. Hence, we can conclude that skewness, exponent and extremities do not 
have an impact on the ACF. 

One potential area worth researching further could be whether the dataset conditioned per hour 
and per season has an impact on how correlated electricity prices are to each other. 
  



Page 41 of 48 
 

6.0  Geometric Brownian Motion 
 

We have observed datasets with either a left tail or a right tail, now we shall look at the datasets 
that do not have a left tail nor right. We shall look at the skewness of these datasets and try to 
determine which dataset is the closest to following a Geometric Brownian Motion. Why 
Geometric Brownian Motion? This is because the Geometric Brownian Motion (GBM for short) Is 
a common model used to simulate stock prices, this means that the dataset that best follows a 
GBM we can simulate a rough idea of the electricity prices in the future.  According to the GBM, 
the future price of a financial stock has a lognormal probability distribution. Therefore, we can 
estimate the future prices to a certain level of confidence. In a Geometric Brownian Motion, we 
will expect a normal distribution, hence the datasets with a skewness closest to 0 will be the 
dataset that is the closest to following a Geometric Brownian Motion (GBM). 

Before we start analysing, we will state a few definitions, starting with Brownian motion, 
also known as the Weiner process. 

Definition 7 (Phillips, 2019) 

The Wiener process 𝑊𝑊(𝑡𝑡) 𝑡𝑡 ≥ 0, (also known as Brownian motion) is a stochastic process which 
satisfies the following criteria: 

• 𝑊𝑊(0) = 0 

• 𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝑒𝑒 𝑠𝑠𝑎𝑎𝑡𝑡ℎ𝑠𝑠 𝐶𝐶𝑜𝑜 𝑊𝑊(𝑡𝑡)𝑎𝑎𝑟𝑟𝑒𝑒 𝑐𝑐𝐶𝐶𝑛𝑛𝑡𝑡𝑐𝑐𝑛𝑛𝑐𝑐𝐶𝐶𝑐𝑐𝑠𝑠. 

• 𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑛𝑛𝑐𝑐𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 𝐶𝐶𝑜𝑜 𝑊𝑊(𝑡𝑡)𝑎𝑎𝑟𝑟𝑒𝑒 𝑐𝑐𝑛𝑛𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑖𝑖𝑒𝑒𝑛𝑛𝑡𝑡, 𝑐𝑐. 𝑒𝑒. 𝑜𝑜𝐶𝐶𝑟𝑟 𝑎𝑎𝑛𝑛𝑦𝑦 𝑠𝑠𝑒𝑒𝑡𝑡 𝐶𝐶𝑜𝑜 𝑡𝑡𝑐𝑐𝑚𝑚𝑒𝑒𝑠𝑠 0 ≤ 𝑡𝑡1 < 𝑡𝑡2 < ⋯ 
<𝑡𝑡𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖𝐶𝐶𝑚𝑚 𝐶𝐶𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑣𝑣𝑠𝑠𝑒𝑒𝑠𝑠 

𝑊𝑊(𝑡𝑡2) − 𝑊𝑊(𝑡𝑡1), 𝑊𝑊(𝑡𝑡3) − 𝑊𝑊(𝑡𝑡2), … …., 𝑊𝑊(𝑡𝑡𝑛𝑛) − 𝑊𝑊(𝑡𝑡𝑛𝑛−1) 
𝑎𝑎𝑟𝑟𝑒𝑒 𝑐𝑐𝑛𝑛𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑖𝑖𝑒𝑒𝑡𝑡. 

• 𝐹𝐹𝐶𝐶𝑟𝑟 𝑎𝑎𝑛𝑛𝑦𝑦 0 ≤ 𝑠𝑠 < 𝑡𝑡, 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑛𝑛𝑐𝑐𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 𝑎𝑎𝑟𝑟𝑒𝑒 𝑛𝑛𝐶𝐶𝑟𝑟𝑚𝑚𝑎𝑎𝑠𝑠𝑠𝑠𝑦𝑦 𝑖𝑖𝑐𝑐𝑠𝑠𝑡𝑡𝑟𝑟𝑐𝑐𝑣𝑣𝑐𝑐𝑡𝑡𝑒𝑒𝑖𝑖 

𝑊𝑊(𝑡𝑡) − 𝑊𝑊(𝑠𝑠) ~𝒩𝒩(0, t − s) 

However, the Brownian motion has a huge flaw to it, and that is the fact that the Brownian 
motion assumes equal probability of stock price going up and stock price going down. In reality 
stock prices on average tend to increase over time. Hence, we come across an improved version 
of the Brownian motion which is known as the Brownian motion with drift. We will define 
Brownian motion with drift. 

Definition 8 (Phillips, 2019) 

The process: 𝑋𝑋(𝑡𝑡) = 𝑋𝑋(0) + 𝑚𝑚𝑡𝑡 + 𝜎𝜎𝑊𝑊(𝑡𝑡) is defined as a Brownian motion with drift. Where, 

• 𝑋𝑋(0) = 𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑠𝑠 𝐶𝐶𝑎𝑎𝑠𝑠𝑐𝑐𝑒𝑒 𝐶𝐶𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 

• 𝑚𝑚 = 𝐷𝐷𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡 𝑐𝑐𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑒𝑒𝑟𝑟 𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐𝑚𝑚𝑒𝑒 

• 𝜎𝜎 = 𝑉𝑉𝐶𝐶𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡𝑦𝑦 𝐶𝐶𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 

• 𝑊𝑊(𝑡𝑡) = 𝑊𝑊ie𝑛𝑛𝑒𝑒𝑟𝑟 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 
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The Brownian motion with drift also has a major flaw to it, that is the fact that the Brownian 
motion with drift can take negative values. In reality, stock prices cannot be negative, therefore 
the Brownian motion is not the best process to describe fluctuations of stock prices. We hence 
come across an even better process known as the Geometric Brownian motion. 
 
 
Definition 9 (Phillips, 2019) 

The process: 𝑌𝑌(𝑡𝑡) = 𝑌𝑌(0)exp [𝑚𝑚𝑡𝑡 + 𝜎𝜎𝑊𝑊(𝑡𝑡)] is defined as a Geometric Brownian motion. Where 

• 𝑌𝑌(0) = 𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑠𝑠 𝐶𝐶𝑎𝑎𝑠𝑠𝑐𝑐𝑒𝑒 𝐶𝐶𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 

• 𝑚𝑚 = 𝐷𝐷𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡 𝑐𝑐𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑒𝑒𝑟𝑟 𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐𝑚𝑚𝑒𝑒 

• 𝜎𝜎 = 𝑉𝑉𝐶𝐶𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡𝑦𝑦 𝐶𝐶𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 

• 𝑊𝑊(𝑡𝑡) = 𝑊𝑊ie𝑛𝑛𝑒𝑒𝑟𝑟 𝑠𝑠𝑟𝑟𝐶𝐶𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠 

The Geometric Brownian is a better process at pricing fluctuations of stock prices than the 
Brownian motion with drift, because the GBM does not take negative values. 
 

FIGURE 6: SAMPLE PATH OF GEOMETRIC BROWNIAN MOTION. TAKEN FROM PHILLIPS, M., 
2019, LECTURE NOTES, FOUNDATIONS OF MATHEMATICAL MODELLING IN FINANCE, 
MTH771P, QUEEN MARY UNIVERSITY OF LONDON. 

 
Figure 6 illustrates a sample path of Geometric Brownian Motion. We saw a similar upward trend 
when we plotted the whole data set of the prices. As earlier mentioned, the distributions with a 
skewness close to 0 will best follow a GBM, hence the distributions with left or right tails (long) do 
not represent a GBM. Furthermore, from figure 6 we notice that there does not seem to be any 
extreme events present, hence this further backs up the fact that the right and left tailed 
distributions certainly do not follow a GBM. 
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At first glance all the distributions above seem fairly symmetrical, however, to get a better picture 
of whether these distributions show a strong evidence of a GBM, we would need to take a look at 
the skewness. The table below shows the skewness of these distributions. 
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Time Skewness 

Whole dataset 1.94 
8 am -3.73 
9 am -7.71 
10 am -1.83 
2 pm 4.40 
3 pm 6.58 
6 pm -7.09 
7 pm -8.10 
8 pm 0.56 
9 pm -0.23 

 
 
From the table above, some of the skewness comes as somewhat of a surprise as some distributions 
are highly skewed. For example, the whole dataset, 2 pm and 3 pm distributions are all highly 
positively skewed. On the other hand, the 8 am, 9 am, 10 am and 6 pm distributions are all highly 
negatively skewed. As previously mentioned, any highly skewed distributions will most certainly not 
follow a GBM, hence we can conclude that these highly skewed distributions do not follow a GBM. 
Now we come across the 8 pm distribution, from the skewness we can see that the 8 pm distribution 
is moderately skewed, furthermore, the skewness is far less when compared to the others. However, 
it is not the 8 pm distribution that shows the strongest evidence of a GBM, rather it is the 9 pm 
distribution that shows the evidence of a GBM. With a skewness of -0.23, it is the distribution that is 
the closest to being symmetrical. Hence the 9 pm distribution best supports a GBM. 

 
We have taken a look at the skewness to determine which dataset best demonstrates a GBM. We 
concluded that the 9 pm dataset best demonstrates a GBM. However, skewness is a necessary 
condition for GBM, but not a sufficient condition. This is because a large skewness rules out the 
possibility of a GBM, but a small skewness does not necessarily mean the dataset follows a GBM. It is 
possible to have a dataset with a small skewness that is not a GBM. Hence, it will be wise to look at 
the ACF (correlation function) for the 9 pm dataset. For GBM the autocorrelation function vanishes, 
or is very small i.e. close to zero, this is because the increments are independent. To get a good idea 
of whether the 9 pm dataset follows a GBM, we shall take a look at the correlation when the data is 
short-ranged (in our case we shall take a look at instances when the lag is 40 and lag is 60). 
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Now what we notice for both lag values is that the largest correlation value is slightly greater than 
0.0005, which is very close to zero. Furthermore, what we can see is that the correlation seems to 
reduce to almost zero as the lag value increases. Other datasets have correlation values that are also 
very small, such as the 1 pm dataset, but as previously mentioned the 1 pm had a large negative 
skewness, namely -1.5. As stated, a large skewness does reject the notion of a GBM, which is why 
even though both 9 pm and say 1 pm had very small correlations, it is the 9 pm that does indeed 
best follow a GBM. 

7.0  Conclusion 
 
We analysed a large set of data, more specifically around 72000 datasets, from the period of 1st 
January 1999 till 31st December 2007. Analysing datasets over a long period is known as a 
longitudinal study. There are several benefits to longitudinal studies, some of these advantages 
are: they are effective in determining variable patterns over time, they are effective in researching 
developmental trends and they can provide high accuracy when observing changes. These are just 
a few advantages of longitudinal studies. We first analysed the mean and variance of the datasets 
conditioned hourly, the results for some were expected while for others the results were 
somewhat surprising. For instance, the mean at 2 am was negative, which makes sense as most 
people would be sleeping, however, the surprising results were, for example, the 6 pm dataset 
had a negative mean, which is surprising because at 6 pm it would be rush hour, hence a lot of 
electricity would be utilised. We next analysed the log-returns plot and noticed extreme events 
present in some of the datasets, these extreme events were either positive, negative or a bit of 
both. We then analysed the probability density functions for each hourly dataset, followed by the 
log-log plot and semi-log plot. By looking at these plots, we were able to approximate an exponent 
for some of these datasets. 

For the penultimate step, we analysed the ACF and tried to derive any possible relationship 
between the exponent and the ACF plot, as well as any possible relationships between the 
extreme events and the ACF. We concluded that there did not seem to be any possible 
relationship between extreme events and the ACF. Hence, it may be difficult to come up with a 
relationship between extreme events and the ACF when solely looking at a given dataset. Finally, 
we looked at the distribution without any tails present, and tried to see which dataset best 
demonstrated a Geometric Brownian Motion. The conclusion we reached was that the 9 pm 
distribution best illustrated a Geometric Brownian Motion, as it had a skewness close to zero, and 
had a correlation value that was very close to zero. 
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