
Final Year Third Year Project MTH6138

Name: Mohammed Alom

Student Id: 130528973

Project Title: Machine Learning Analysis

Supervisor: Wolfram Just

Abstract

In the 20th Century, the world was introduced to Artificial Intelligence. The generation that excited
scientists and mathematicians. A man who goes by the name of Alan Turing examined the
mathematical possibility of Artificial Intelligence. Turing pointed out that humans use available
information and research to solve problems, so he questioned why can’t machines do it? Artificial
Intelligence is essentially the notion of machine-driven intelligence. After years of technology
advancement, Artificial Intelligence is known to majority- a phase that excites everyone and most
people believe is the future. It is credit to Artificial Intelligence that the world may experience self-
driving vehicles or having robots as maids. Machine Learning, a subset of Artificial Intelligence,
which are algorithms that uses statistics to find patterns in massive amount of data, Machine
Learning is visible in the services we use today, systems like Netflix, YouTube use machine
learning models.

Introduction

Machine Learning is concerned with algorithms which learns from examples. Machine learning
contains classification models which will be used in this project. Classification models learns how
to assign a label. This project contains Statistical Machine Learning analysis on the IRIS data set.
This project will predict the different types of Irises using different machine learning algorithms.
The model will first get trained, using existing data and then learn how to classify/predict output. I
will also be analysing the IRIS dataset by performing statistical analysis to analyse patterns within
the IRIS dataset. I will use decision tree models and logistic regression models to attempt to
predict different types of Iris flowers. I will compare the two models in terms of effectiveness.

Info on dataset

IRIS is a type of flower; the word IRIS comes from the Greek meaning of rainbow. IRIS comes in
many different colours and there are many types of IRIS flowers. Irises come in different sizes.
The dataset has 150 entries, and 3 different types of IRIS flowers- Sertosa, Versicolour and
Virginica. The dataset includes the measurements of the length and width of the Iris features
which are sepal and petal

In [2]: from IPython.core.display import Image, display
display(Image(filename= 'Iris Versicolour.jpg'))#display images
print("Iris Veriscolour\n")

display(Image(filename='Iris Sertosa.jpg'))
print("Iris Sertosa\n")

display(Image(filename='Iris Virginica.jpg'))
print("Iris Virginica")

This project is written in jupyter notebook using python
programming language

First lets import all the necessary libraries required for analysis

Python has an extensive library, offering numerous facilities. The libraries provide mathematical
functions that we will use in this project.

A very popular library – NumPy, which stands for numerical python contains many mathematical
functions useful to manipulate arrays. NumPy is also very known for data analysis. Examples of
NumPy in mathematics is when studying Linear Algebra- where one can use NumPy for random
number generators. To use the library- NumPy, we need to import the library so python can access
the tools. This is simply done by writing the code “import NumPy” In Python, modules can be
renamed to something shorter, for succinct purposes. For example, in Python NumPy is written as
np, and this is done by writing “import NumPy as np”.

Pandas is used in Python for data manipulation and analysis. Panadas can take data from several
databases, i.e. SQL, CSV or Excel and creates a python object with rows and columns called data
frame. For our use, we use pandas to export data from excel to view data in python. We will use
pandas to also view many statistical objects and analyse them. Once again to keep code sleek In
python, Pandas can be renamed as pd so whenever we need to use pandas, pd can be used
instead.

Matplotlib and Seaborn are data visualisation libraries in Python. They provide a high-quality
statistical graphics. We will use matplotlib and seaborn to visualise data. Its popular to rename
matplotlib as plt and seaborn as sea in python, this is done so by importing matplotlib as plt and
seaborn as sea.

In [3]: #numpy library will give us access to mathematical functions
import numpy as np
we will use pandas to import dataset from excel
import pandas as pd
#data visualisation libraries
import matplotlib.pyplot as plt
import seaborn as sea

Understanding the data

The data I am importing from excel- I am assigning the name “data” to it. So whenever I need to
load or refer to the dataset, I can do so by typing data. As mentioned earlier, its popular to rename
pandas as pd, so instead of writing pandas.read, we write pd.read. pd.read means we are loading
the function read from the pandas library.

In [4]: #Import Iris dataset from document
data = pd.read_csv("C:\\Users\\alzy_\\Documents\\third\\project\\data\\I
RIS.csv")

Data.head() views the first few rows of data exported using pandas

In [5]: #shows me first couple of rows. to check if data was loaded correctly
data.head()

data.shape, is function that that records the dimension of the data frame in python. So from the
output, we see that the number of rows is 150 and has 5 columns.

In [6]: # check the dimension of dataset
data.shape

dataset has 150 rows and 5 columns

In mathematics, Boolean functions and operators are used to output a binary answer which is true
or false. Here, Isna is a Boolean function. This function checks each entry of the data frame to
check if there is a missing value. The output shows true if there is a missing entry and false if
there is a entry. And as you can see all the entries show false so there are no missing values. The
reason why we are checking this, is so when we are doing statistical analysis, its important that
there are no missing values, so results are accurate.

In [7]: # Isna is a boolean function to check for missing values
data.isna()

sum adds all the number of missing entries for each column, and summarises the results, since
there are no missing values, so the sum for each column is 0.

In [8]: #isna checks for missing data
data.isna().sum()

Calculating data averages tells us a lot about the data and gives us insight into the pattern of the
dataset- giving us an overall idea of the behaviour and trend of the dataset. By using describe, we
are getting all the different averages and statistical information on the dataset

In [9]: #We can use the describe() function to calculate some statistical inform
ation, such as mean and the standard deviation
data.describe()

Here is all the different measure of averages between the different features of iris flower

corr() is the function that compares the correlation between each feature. From the table, we can
see most have a positive strong correlation.

In [10]: # correlation matrix between features
petal_width abd petal_length are very correlated
data.corr()

Data Visualisation

Data visualisation is a clear way to view and summarize important information

In [11]: # .hist constructs a histogram
number of bins defines how many intervals
data.hist("sepal_length", bins = 20)
plt.show()

The data from "sepal_length" has a somewhat symmetrical distribution

In [12]: data.hist("sepal_width", bins = 20)
plt.show()

The data from "sepal_width" has a somewhat symmetrical distribution

In [13]: data.hist("petal_length", bins = 20)
plt.show()

The distribution for “petal_length" is somewhat inconclusive

In [14]: data.hist("petal_width", bins = 20)
plt.show()

The distribution "petal_width" is somewhat inconclusive

In [15]: #scatter plots of sepal_length vs sepal_width
data.plot.scatter("sepal_length", "sepal_width")
plt.show()

we dont observe any correlation between sepal width and sepal length

In [16]: data.plot.scatter("petal_length", "petal_width")
plt.show()

We can see there is a strong positive correlation between petal length and petal width

Majority features of the dataset have a strong correlation, and some have a weak negative
correlation. A pair plot can be used to display all the correlations visually. A pair plot a pairwise
relationships in a dataset.

In [60]: #outputs visuals in python
print(sea.pairplot(data))
plt.show()

The flowers of the same type have a strong correlation. Different flower types have less of a
correlation, this observation is pretty intuitive.

Machine Learning

Now that have investigated the pattern of the dataset, we can carry out the Machine learning
analysis.

Supervised learning is a type of machine learning. It is simply the process of teaching the model
from a training dataset. The aim is to create a function that predicts a new output variable with
new input data. Classification models comes under supervised learning, as the output variables
are labelled. Since we are predicting the classes of flowers, this is a classification Machine
learning problem.

In [62]: display(Image(filename='matrix.png'))

The entries of the data frames can be the input variables for the function. This can be done so by
constructing a matrix where its entries are data from the IRIS dataset. The tables created using
scikit learn are used as matrices when inputted into the cost function to predict a class. And the
output variables are simply a column vector, which is what the model predicts.

Scikit Learn

Scikit learn is a python library used for machine learning. It provides tools for machine learning
and statistical modelling. Scikit learn contains classification algorithms required to do machine
learning analysis.

In [19]: #sklearn.metrics loads functions to measure prediction error
#acuracy score is a function used for multilabel classification
#train_test_split splits samples from dataset into random train and test
subsets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

In [20]: # x to be the random samples
X = data[["sepal_length","sepal_width","petal_length","petal_width"]]
y to be the predicted output
y = data["species"]

In [21]: print(X.shape)
print(y.shape)
splitting into 80% train data and 20% test data
X_train ,X_test, y_train,y_test = train_test_split(X, y, test_size = 0.2
)
#picking datapoints randomly

Part of the process to train the model is to split the dataset. A common split an 80-20. A random
80% of the dataset is used to train the model and remaining is used to test the model

As we split the train test dtaset as a 80-20 splot the size of the subset corrosponds to that split

In [22]: #check the dimention of train and test subset
print("Size of train data set ", X_train.shape)
print("Size of test data set ", X_test.shape)

The following shows the training dataset for the model

In [23]: print(X_train)

This table shows the data that will be used to train the model. As the ratio was 80-20 split, so it
has taken 80% of the entire data set. This information is formed into a matrix which predicts a
column vector which you can see in the next table. Scikit learn does all this behind the scenes.

The following shows the predicted outputs for the input variables used to train the model

In [24]: print(X_test)

To summarize, the way supervised learning model works is by splitting the dataset into training
and testing dataset. The model is taught how to predict/classify using the training set. This is
usually 80% of the dataset. The remaining 20% of the dataset is used to test the model. And it is
from the test set, we see how "accurate" the model is. Accuracy is defined as the probability of
how accurate the model is.

Logistic Regression

In Machine learning, more specifically supervised learning- the aim is to find a mapping between
vector spaces, or more simply, find a cost function. This function takes a collection of known inputs
and outputs the same number of collections.

In [51]: display(Image(filename='logistic.jpg'))
print("Sigmoid Function")

Logistic Regression can be used for a classification problem. Logistic Regression model uses
probability to describe possible outcomes of trials that are modelled using a logistic function. The
concept is based on probability. The logistic regression uses the cost function, and this function
has a limit between 0 and 1. For simplicity, we assume the cost function measures the
performance of a machine learning model. The cost function can be defined as the sigmoid
function. The function maps real numbers to a value between 0 and 1

This then forms a hypothesis representation of the cost function

In [52]: display(Image(filename='h(x).png'))

Hypothesis of logistic regression

We expect the classifier to give a set of outputs from the probabilities generated from the logostic
function

In [46]: display(Image(filename='cost.png'))

This is the cost function defined for logistic function

In [54]: display(Image(filename='compressed.png'))

The cost function can be compressed into one function

The goal is to reduce error of the cost function as much as possible, i.e. minimise the cost
function. This is done by using Gradient Descent Algorithm, minJ(theta)

In [49]: display(Image(filename='parameter.png'))

This is the gradient descent function simplified

In [50]: display(Image(filename='compressed1.png'))

To minimise the cost function, the gradient descent function runs on each parameter. This is the
gradient descent function simplified

All the mathematics explained earlier works invisibly in the Logistic function imported from the
scikit learn library

In [26]: #loading logistic function from machine learning library
from sklearn.linear_model import LogisticRegression

Since we can use logistic regression for a classification predictive modelling. Here I am assigning
the word lr, short for logistic regression to be the function- logistic regression estimator.

In [27]: # create logistic regression estimator
lr = LogisticRegression()

The following code trains the logistic regression model using default parameters

In [28]: # Training model on the training data set
print(lr.fit(X_train,y_train))

Assigning y_pred_lr as the predicted test set.

In [29]: # predict on test data
y_pred_lr = lr.predict(X_test)

The following shows the test set for using logistic regression

In [30]: print(y_test)#test set

Prediction on test set

In [31]: print("this is our prediction for 30 samples ", y_pred_lr)

In [33]: print("Accuracy is " , accuracy_score(y_test, y_pred_lr))

Here, accuracy means that the logistic regression model predicts 93 flowers correctly out of 100

Decision Tree

Decision Tree is a model under supervised learning and works like a tree. The tree has leaves
which takes questions and nodes directing to another leaf. A decision Tree follows a binary
system, its controlled by conditional statements which is the leaf and uses the nodes as
True/False and reaches an outcome

In [34]: display(Image(filename='decide.png'))
print("Decision Tree")

The respective classifaction functions are required to be loaded from a machine learning library,
we import DecisionTreeClassifier and plot_tree from sklearn

In [35]: #decision tree function
from sklearn.tree import DecisionTreeClassifier, plot_tree

The following code trains the Decision Tree model using defualt parameters

In [36]: # create decision tree estimator
dtc = DecisionTreeClassifier()

learning decision tree given X_train amd y_train
dtc.fit(X_train, y_train)

Assigning y_predit to be the testing dataset

In [37]: # predicting on the entire test data set
y_predict = dtc.predict(X_test)

Prediction on test set

In [38]: print("This the model predcition for 30 samples:")
print(y_predict)

In [39]: #accuracy score 0 to 1, 1 is 100%
accuracy_score(y_test, y_predict)

The decision tree model predicts 90 flowers correctly out of 100

Conclusion

The objective was to train the dataset on a classification model, to demonstrate the effectiveness
of machine learning analysis and compare different models, statistical analysis was necessary to
analyse the trends of the dataset. We used the two clarification models and have seen that they
both are effective. The logistic regression model had 93% accuracy, where the decision tree model
gave a 90% accuracy. This means the logistic regression model is slightly more effective when
compared to the decision tree model. Where the logistic regression model predicts 93 out 100
correctly and the decision tree model predicts 90 out of 100 correctly

References
https://www.kaggle.com/, Accessed on 02/04/2021

https://www.mastersindatascience.org, Accessed on 14/04/2021

https://scikit-learn.org/stable/, Accessed on 21/03/2021

https://medium.com/, Accessed on 02/04/2021

https://en.wikipedia.org/wiki/Iris_flower_data_set, Accessed on 02/04/2021

https://www.xoriant.com/, Accessed on 02/04/2021

https://www.w3schools.com/python/numpy/numpy_intro.asp, Accessed on 02/04/2021

https://machinelearningmastery.com/types-of-classification-in-machine-learning/, Accessed on
15/04/2021

https://www.geeksforgeeks.org/python-pandas-dataframe/, Accessed on 02/04/2021

https://towardsdatascience.com/a-quick-introduction-to-the-pandas-python-library-f1b678f34673,
Accessed on 15/04/2021

https://www.educba.com/supervised-learning-vs-unsupervised-learning/, Accessed on 30/04/2021

Iris Veriscolour

Iris Sertosa

Iris Virginica

Out[5]:
sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

Out[6]: (150, 5)

Out[7]:
sepal_length sepal_width petal_length petal_width species

0 False False False False False

1 False False False False False

2 False False False False False

3 False False False False False

4 False False False False False

...

145 False False False False False

146 False False False False False

147 False False False False False

148 False False False False False

149 False False False False False

150 rows × 5 columns

Out[8]: sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

Out[9]:
sepal_length sepal_width petal_length petal_width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

Out[10]:
sepal_length sepal_width petal_length petal_width

sepal_length 1.000000 -0.109369 0.871754 0.817954

sepal_width -0.109369 1.000000 -0.420516 -0.356544

petal_length 0.871754 -0.420516 1.000000 0.962757

petal_width 0.817954 -0.356544 0.962757 1.000000

<seaborn.axisgrid.PairGrid object at 0x000001ED480A5AC8>

(150, 4)
(150,)

Size of train data set (120, 4)
Size of test data set (30, 4)

 sepal_length sepal_width petal_length petal_width
29 4.7 3.2 1.6 0.2
128 6.4 2.8 5.6 2.1
27 5.2 3.5 1.5 0.2
9 4.9 3.1 1.5 0.1
141 6.9 3.1 5.1 2.3
..
24 4.8 3.4 1.9 0.2
25 5.0 3.0 1.6 0.2
75 6.6 3.0 4.4 1.4
28 5.2 3.4 1.4 0.2
21 5.1 3.7 1.5 0.4

[120 rows x 4 columns]

 sepal_length sepal_width petal_length petal_width
110 6.5 3.2 5.1 2.0
53 5.5 2.3 4.0 1.3
147 6.5 3.0 5.2 2.0
117 7.7 3.8 6.7 2.2
123 6.3 2.7 4.9 1.8
143 6.8 3.2 5.9 2.3
61 5.9 3.0 4.2 1.5
83 6.0 2.7 5.1 1.6
135 7.7 3.0 6.1 2.3
57 4.9 2.4 3.3 1.0
113 5.7 2.5 5.0 2.0
47 4.6 3.2 1.4 0.2
144 6.7 3.3 5.7 2.5
55 5.7 2.8 4.5 1.3
132 6.4 2.8 5.6 2.2
112 6.8 3.0 5.5 2.1
104 6.5 3.0 5.8 2.2
31 5.4 3.4 1.5 0.4
19 5.1 3.8 1.5 0.3
108 6.7 2.5 5.8 1.8
70 5.9 3.2 4.8 1.8
72 6.3 2.5 4.9 1.5
58 6.6 2.9 4.6 1.3
100 6.3 3.3 6.0 2.5
11 4.8 3.4 1.6 0.2
103 6.3 2.9 5.6 1.8
65 6.7 3.1 4.4 1.4
101 5.8 2.7 5.1 1.9
67 5.8 2.7 4.1 1.0
13 4.3 3.0 1.1 0.1

Sigmoid Function

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=T
rue,
 intercept_scaling=1, l1_ratio=None, max_iter=100,
 multi_class='warn', n_jobs=None, penalty='l2',
 random_state=None, solver='warn', tol=0.0001, verbose
=0,
 warm_start=False)

C:\Users\alzy_\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.
22. Specify a solver to silence this warning.
 FutureWarning)
C:\Users\alzy_\Anaconda3\lib\site-packages\sklearn\linear_model\logisti
c.py:469: FutureWarning: Default multi_class will be changed to 'auto' i
n 0.22. Specify the multi_class option to silence this warning.
 "this warning.", FutureWarning)

110 Iris-virginica
53 Iris-versicolor
147 Iris-virginica
117 Iris-virginica
123 Iris-virginica
143 Iris-virginica
61 Iris-versicolor
83 Iris-versicolor
135 Iris-virginica
57 Iris-versicolor
113 Iris-virginica
47 Iris-setosa
144 Iris-virginica
55 Iris-versicolor
132 Iris-virginica
112 Iris-virginica
104 Iris-virginica
31 Iris-setosa
19 Iris-setosa
108 Iris-virginica
70 Iris-versicolor
72 Iris-versicolor
58 Iris-versicolor
100 Iris-virginica
11 Iris-setosa
103 Iris-virginica
65 Iris-versicolor
101 Iris-virginica
67 Iris-versicolor
13 Iris-setosa
Name: species, dtype: object

this is our prediction for 30 samples ['Iris-virginica' 'Iris-versicolo
r' 'Iris-virginica' 'Iris-virginica'
 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa'
 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica'
 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica'
 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-versicolor' 'Iris-setosa']

Accuracy is 0.9333333333333333

Decision Tree

Out[36]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=No
ne,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=Non
e,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False,
 random_state=None, splitter='best')

This the model predcition for 30 samples:
['Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica'
 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa'
 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica'
 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica'
 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-versicolor' 'Iris-setosa']

Out[39]: 0.9

https://www.kaggle.com/
https://www.mastersindatascience.org/
https://scikit-learn.org/stable/
https://medium.com/
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://www.xoriant.com/
https://www.w3schools.com/python/numpy/numpy_intro.asp
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://towardsdatascience.com/a-quick-introduction-to-the-pandas-python-library-f1b678f34673
https://www.educba.com/supervised-learning-vs-unsupervised-learning/

