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Abstract

This thesis covers the concept of signals and signal processing, and how they

are used to extract information about the data, specifically for electricity

market prices. In particular, we will be analysing if the amplitude and phase

has any relation with the appearance of extreme spikes in the time series. In

this paper, we will be using the Nord Pool market prices as a financial time

series, which contains houtly electricity prices from the 1st January 1999 un-

til the 26th January 2007.

Some mathematical techniques used in signal processing will be covered,

where we will study concepts of analytic signal, Hilbert transform and Fourier

transform, and how they associate with deriving amplitude and phase from

the signal. Those notions will be then applied on the Nord Pool financial

time series using R commands.

We will discover how the amplitude varies for the wave signal, and if the

phase provides any information regarding extreme events appearing in Nord

Pool electricity prices.
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Introduction

1.1 Signal and Signal Processing

Before we consider analysing extreme events of Nord Pool market data, we

should first go through some fundamental terms and notions. Specifically,

what does signal actually mean for us? “Ages ago, signal referred to some

physical manifestation of information that changed with time and/or space.”

[2]. Nevertheless, as time goes on, the signal has a wider meaning and the def-

inition depends on the field we are taking into account. The list of examples

of signal processing can be endless, including audio, video, communication,

musical data, chemical, medical and so on. In our discussion, however, we

are considering the definition of signal in signal processing arena. And here,

comes another question of what is signal processing?

Although it might not be that evident, signal processing appears everywhere

in our daily life, like in CD players, cameras, and even computers. Signal

processing is an area of electrical engineering that deals with analysing, mod-

ifying and synthesising of signals like sounds and images. It appears in many

diverse application fields like audio signal processing, image processing, con-

trol systems, and even financial signal processing, which we will cover to

analyse the financial data of Nord Pool in order to estimate the movement

of electricity prices.
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CHAPTER 1. INTRODUCTION 7

Coming back to our first question, in signal processing, a signal is “a func-

tion that coveys information about the behaviour of a system or attributes

of some phenomenon.” [5]. For our discussion we are referring to a signal

as a function of some independent variable, which is in our case the time.

And signal processing is, in other words, an action that performs on an input

signal to produce an output signal.

Signal processing is the procedure of the features of some signal, in order

to get a signal with more helpful for us properties. For that purpose, char-

acteristics of a signal like amplitude and phase may be modified. Signal

processing is, therefore, applied for signal generation and modification, as

well as extracting information from input signals. The field of signal pro-

cessing advantages form development of areas such as electrical engineering,

machine learning, applied mathematics and statistics.

Signals in signal processing are generally studied with respect to time, fre-

quency, or both simultaneously, and the transform called Fourier transform,

studied further later on, can be applied on signals to change the time-domain

signals to frequency-domain, or the other way around depending on the re-

quirements of our analysis. Signals can be classified as analog signals and

digital signals. For analog signals the variables interpreting the signal are

continuous in terms or the time and amplitude. For digital signals, on the

other hand, the signals are discrete in time and amplitude. Typically, signals

are in analog form, which then becomes digital by the sampling process.
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1.2 Financial Signal Processing

Like mentioned, the area we will be focusing on here is financial signal pro-

cessing, where we will be taking time varying signals from Nord Pool market,

which has data of electricity prices throughout 7 years, to extract the infor-

mation the changes in prices of the market.

Formerly, the finance section had very little overlap with the information-

processing and signal section. But due to a graduate raise in the interac-

tion between the fields, as finance started to cover more computing, signal-

processing technologies together with mathematics applications, the signal-

processing together with computer science, mathematics and statistics play

now a meaningful role in applications in financial risk and portfolio manage-

ment. With the emergence and growth of signal processing and its mathemat-

ical approaches, it became therefore a highly significant use in the financial

industry, where independent time variables are collected as data. Those vari-

ables are mainly described as discrete-time signals.

Having sufficient historical data collected, predictions of the price movements

can be made over some time using financial signal processing and its algo-

rithms. Although predictions may not be certain, the outcome might guide

the investor in their financial strategies and investments in aim to try to beat

the market.



Understanding the Electricity Market

The use of electricity has extremely changed our life and has become our

daily essential necessity. We probably cannot imagine doing our job and

tasks without it. But how exactly do we get the electricity to our home or

businesses? In other words, how do electricity market works? Electricity

is rather a different type of commodity than other tangible commodities.

The key features that make electricity distinct from natural gas, crude oil

or other commodities are that it is interchangeable, 1MWh electricity from

coal or natural gas produce the same amount of energy, the energy has to

be produced and used concurrently as the storage for electricity are hardly

achievable at the present time, and also the power grid has to be balanced

to avoid black-out. The price of the electricity in the market is set by supply

and demand of the commodity. Those are dependent of the features such

as seasonal maintenance, wind speed, price of fuel, temperature or time of

a day. Electricity is generally not storable, therefore it is available only on

demand.

The electricity industry involves four main sectors: generation, transmis-

sion, distribution and end user. Electricity is generated at power stations

by using natural gas, coal, wind, hydro or other energy sources. There are

number of types of power stations depending on each company, which then

make judgements depending on government policy, environment and market

signals. The energy then travels across country over high voltage transition

networks and distribution networks carries the electricity into our homes,
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offices or factories from the transmission lines at lower voltages. At the end

user sector retailers fix retail rates for consumers.

In electricity market the electricity is enabled to be purchased, sold or traded

through the bids and offers. The prices are determined using the principles of

supply and demand. In the wholesale market the electricity is purchased or

sold before it reaches the end users. It occurs while generators present their

commodity to retailers, who then introduce the re-priced electricity to the

market. Participants of the wholesale market does not necessarily own the

sources and they might not necessarily serve the end consumer directly. The

power market in general consists of day-ahead and real-time market pricing.

The day-ahead market offers participants commitment to purchase or sell

electricity a day in advance operating day. In the real-time market, on the

other hand, participants buy or sell the electricity on the day of the operation

day.

In the market, the electricity prices are more volatile than the prices of differ-

ent commodities as they are not storable and have limited transmission. As a

result of substantial price and volume risks that can be spotted in the market,

participants perceive the importance of risk management. The participants

can meet trading risks in the electricity market due to extreme price volatil-

ity at the period of peak supply and demand shortage. Price risk appear

on the account of hard to predict “price spikes”. Many risk management

techniques are used in the financial industry to prevent participants from

facing the risks in the market. Those include hedging agreements, portfolio

optimisation and asset valuation.



Nord Pool

Nord Pool is the Europe’s leading power market, which is owned by Euronext

and Nordic Transmission System Operators and Litgrid. The organisation

provides to its clients day-ahead and intraday market services, as well as

consultancy services. They have currently 360 companies across Europe that

are working with them.

Nord Pool has built and shaped their market for over 25 years and still

continues to grow. The power exchange was formed in 1991 as the Norwe-

gian parliament determined to deregulate the trade for electrical power. In

1993 Statnett Market AS has become an independent company and in 1996

was replaced by Nord Pool ASA and Norwegian-Swedish electricity market

was set up. In 1998 Finland decides to enter Nord Pool ASA and the com-

pany launch their office in Denmark. The Nordic market became completely

integrated in 2000 due to Denmark’s join. In 2002 Nord Pool’s spot market

appeared as an independent company under name of Nord Pool Spot. Later

on, in 2005, the power market then sets the Kontek bidding area in Germany.

In 2008 the superior turnover and share in the market was noted in the firm’s

history. In the early 2016, the company changed the corporate image to from

Nord Pool Spot to Nord Pool.

Nord Pool’s product is a clear and reliable price of the power that is pro-

cessed every hour daily in the market. They propose productive and secure
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day-ahead and intraday markets. They offer a liquid trade in the electrical

market and function as the information to the market. The markets of Nord

Pool are currently performed from offices in 6 countries - Norway, Sweden,

Finland, Estonia, UK and Germany.

In Nord Pool, for the day-ahead trade, customers may offer for sale or pur-

chase energy for the following 24 hours in a closed auction. Over 300 clients

make at least 2000 orders daily, and about 500 TWh of electrical energy is

traded annually across 14 countries. In general, the day-ahead market in

considered a starting point for preparation of the following 24 hour dura-

tion, which is then amended or intraday market with further possibilities

are offered. The intraday market, enabling clients to trade nearer upon the

physical delivery, can therefore operate with the day-ahead market in order

to meet the supply and demand law. The attractiveness of intraday market

rises as it lets participants to take into account any sudden and unplanned

modifications in consumption. The company offers a variety of orders for

their customers, both markets, to optimise the balance between supply and

demand they provide.

Although the Nordic electricity market can be stated as the creator of mod-

ern energy exchange, the Nord Pool still seeks to perfect the power market

in the future. The company focuses on 3 crucial factors to prevent any close

to delivery time concerns. They aim for the market model of the organisa-

tion to be dependent on the nature of the business leaded by participants

and the requirement for the protection of supply for system operators. They

also hold the view, that the market should rely on producers and consumers,

to be the main solvers for stability of power system. The last main factor

is for the market to be constructed to give an easy access and systematise

principles and products over broad areas, aiming to avoid barrier limitations

and optimise market liquidity.



Mathematics for Signal Processing

4.1 Sinusoidal Wave Signals

Before we go deep into what is sine wave signal, let us recap the term of

signals. A signal is a function that gives information of how some quantity

differs over some time or space. Signals pass through systems, where they

are processed to produce other signals.

Figure 4.1: Signal passing through a system

The key distinction of signals in this thesis, is continuous time (analog) ver-

sus discrete time (digital). Continuous time signal, x(t), occurs whenever the

independent variable t is continuous.

13
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Figure 4.2: Continuous Signal

The signal is a discrete time signal, denoted as x[t] if the independent variable

t consists of discrete values only.

Figure 4.3: Discrete Signal
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Sinusoidal signals are special signals, which are presented as a smooth pe-

riodic oscillation. The most basic function of the cure that describes it, is

given by:

y(t) = Asin(2πft+ θ) = Asin(ωt+ θ), (4.1)

where A is an amplitude of the wave, f is ordinary frequency, ω is an angular

frequency, and θ is a phase.

Amplitude is the height from the centre line to the peak of the wave. We can

also define it, as the height from the lowest and highest point in the wave and

divide it by 2. Frequency f is the number of oscillations that occur each unit

time and angular frequency ω measures the angular displacement per unit

time. The relationship between frequency and angular frequency is defined

by the equation:

ω =
2π

T
= 2πf, (4.2)

where T is the period, which is the length of time of one cycle in the reoccur-

ring event, and it is the reciprocal of the frequency f . The phase defines how

far the wave is shifted from the usual position, in other words the position of

a point in time on a cycle. Those characteristics define the nature of a signal.
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The following graph presents an example of a periodic signal wave expressed

in terms of sine function and the parameters of the wave:

Figure 4.4: Sinusoidal Wave

The function of sinusoidal signal is a sine like function, simply put, the

function can be constructed by shifting, stretching or compressing the sine

function.

Figure 4.5: Graph of sin(x) and cos(x)
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Figure 4.5 show that the sine and cosine functions are sinusoids of different

phases as a cosine wave can be represented as a sine wave with π/2 shift:

cox(x) = sin(x+ π/2), (4.3)

and therefore, it is sinusoid.

The complex sinusoid is presented as:

Acos(ωt+ θ) + jAsin(ωt+ θ) (4.4)

for a continuous time t, and as:

Acos(ωnT + θ) + jAsin(ωnT + θ) (4.5)

for a discrete time T.

As we can see from the formula, the real part is a cosine signal and imaginary

part a sine signal.

Re = Acos(ωnT + θ) (4.6)

Im = Asin(ωnT + θ) (4.7)

For the computations, one might find it easier to deal with complex expo-

nential formula:

x(t) = Aej(ωnT+θ), (4.8)

which is produced by the relationship between trigonometric functions and

exponential functions, namely, Euler’s formula which states that for any real

number x:

ejx = cos(x) + jsin(x). (4.9)
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Sine and cosine functions can, therefore, be interpreted in terms of the ex-

ponential functions:

cos(x) =
ejx + e−jx

2
, (4.10)

and

sin(x) =
ejx − e−jx

2j
. (4.11)

4.2 Basic operations on signals

Having introduced the notion of signals, we can now present some operations

that affect the signals, namely, signal processing. Those operations are per-

formed over the independent variable of the signal, which is mostly the time

parameter.

Figure 4.6: Original Signal

Flipping: This operation is basically flipping the sample around y axis, which

is also called time reversal. The process can be simply done by multiplying

the time variable by -1.
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Example 4.2.1.

Figure 4.7: Flipping Signal

Scaling: The signal process compresses or dilates a signal by multiplying the

independent variable by some quantity a. If a > 1, the signal is narrower,

which is compression, and if a < 1, the signal is wider and named dilation.

However, in case of a discrete signal, the operation works slightly differently.

Example 4.2.2. Let us scale a discrete signal x[t] with some quantity a,

which is greater than 1, say 2:

Figure 4.8: Scaling Signal by 2
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Now, for a less than 1, say 1/2:

Figure 4.9: Scaling Signal by 1/2

We notice for discrete signals when a > 1 the samples are lost, in other

words we are losing some information. On the other hand for a < 1, the

signal is slowing down by some factor.

Shifting: This is performed by subtracting or adding by some quantity b to

the independent time variable. Subtraction shifts a signal to the right, which

causes the signal to be delayed. Addition shifts a signal to the left, which

advances the signal by some added quantity.
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Example 4.2.3.

Figure 4.10: Shifting by -3

4.3 Properties of systems

Periodicity: Occurs whenever signal behaviour repeats after a fixed length of

time T, and is mathematically defined as:

x(t) = x(t+ nT ), n = 1, 2, 3 . . . , (4.12)

where T is the fundamental period.

Causality: A system is causal if the output at time t, only depends on the

input up to time t.

Example 4.3.1. y[t] = x[t]− 3x[t− 1] is casual.

Stability: The system is BIBO stable (the bounded input bounded output)

if:

||x[t]||∞ <∞ (4.13)

implies that

||y[t]||∞ <∞. (4.14)
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That is, if bounded input leads to bounded output.

Even and Odd: Every signal has even and odd parts to make some con-

versions easy. The following equation decomposes a signal as a sum of even

and odd parts:

x(t) = xe(t) + xo(t) =
1

2
(x(t) + x(−t)) +

1

2
(x(t)− x(−t)), (4.15)

where

xe(t) =
1

2
(x(t) + x(−t)), (4.16)

xo(t) =
1

2
(x(t)− x(−t)). (4.17)

Linearity: A system is linear if a linear combination of inputs cause the same

combination of outputs (Superposition Principle).

Example 4.3.2. Let x1[t] and x2[t] be inputs with the corresponding outputs

y1[t] and y2[t] respectively. If for input z[t] = ax1[t] + bx2[t] the output is

ay1[t] + by2[t], then the system is linear.

Time invariant: This means that the system behaves the same way, regardless

of when input is applied. The system is time invariant whenever the shift in

time domain results the same shift to the output.

Example 4.3.3. Let the system be defined as y[t] = x[t] − 4x[t − 1] and

the shifted version of the input z[t] = x[t − t0]. Then, putting z[t] into the

system: z[t] = z[t]−4z[n−1] = x[t− t0]−4x[t− t0−1] = y[t− t0]. Therefore,

the system is time invariant.

LTI systems: In real-word, systems are typically modelled as linear time-

invariant systems (LTI) as it is often a good approximation, since there are

many system that are almost linear, and analyses are easy and powerful. The

key concept is the superposition for LTI systems:

a0x[t] + a1x[t− 1] + a2x[t− 2]+. . . = a0y[t] + a1y[t− 1] + a2y[t− 2]+. . . .
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4.4 Analytic Signal and Hilbert Transform

An analytic signal is a signal with non negative frequency, which is used in

signal processing. Let us consider a sinusoidal wave, given by cos(2πft). The

value is the same for both positive and negative frequencies. Therefore, if

given the value of frequency, we know the number of oscillations per unit

time, but not the direction (the frequency can be positive or negative). An-

alytic signal does not have this limitation.

The important concept here, is that the analytic signal is obtained by apply-

ing the Hilbert transform to the input signal. Hilbert transform extracts the

analytic representation of real-valued signal s(t). It is simply a method that

derives the complex components from a signal, for the analytic signal to be

represented as:

sa(t) = s(t) + jH(s(t)), (4.18)

where sa(t) is the analytic representation of a signal s(t), and H(s(t)) is the

Hilbert transform of s(t). The analytic representation of a signal is, there-

fore, defined as a complex number with original signal as the real part, and

its Hilbert transform as the imaginary part.

The Hilbert Transform for a given signal s(t) is defined as:

H(s(t)) =
1

π

∫ ∞
−∞

s(τ)

t− τ
dτ. (4.19)

The Hilbert transform has the impact of transforming the signal as +/-

90 phase shift of its all components. As a result, performing the Hilbert

transform on signal only changes its phase and the amplitude and frequency

remains unchanged.
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Example 4.4.1. For our cosine function, considered above:

H(cos(2πft)) = cos(2πft− π

2
) = sin(2πft). (4.20)

And therefore:

sa(t) = cos(2πft) + isin(2πft) = ei2πft, (4.21)

where last equality is the complex exponential, used numerously in signal

processing.

A crucial part of the signal processing, is that it is commonly written in

terms of the amplitude and the phase, which takes the form:

x(t) = acos(θ(t)), (4.22)

where a(t) is an instantaneous amplitude and θ(t) is an instantaneous phase.

Taking into account the previous formula, however, there can be numer-

ous pairs of a(t) and θ(t), which concludes that the above definition might

be incoherent, as it does not relate a given real signal with a precise pair of

the instantaneous amplitude and phase. The solution to this problem is the

concept of a canonical pair of a(t) and θ(t). In order to get a pair of a(t) and

θ(t) that has a one-to-one relationship with signal s(t), we relate s(t) with its

analytic signal sa(t). From the formula (4.18) we know that s(t) = Re(sa(t)),

therefore there is a desired one-to-one relationship if the analytic signal is

real. However, since sa(t) is a complex function, is can be defined as:

sa(t) = a(t)eθ(t), (4.23)

where θ(t) is modulo 2π, and a(t) is non-negative. Therefore, applying an-

alytic signal and changing the formula (4.18) for polar coordinates, makes
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it possible to associate a unique pair of a(t) and θ(t), called canonical pair,

with a real signal s(t).

Example 4.4.2. Considering a very simple case with a signal s(t) = 4cos(2),

then:

H(s(t)) = 4sin(2)

and

sa(t) = 4cos(2) + i4sin(2)

.

Now, changing sa(t) for polar coordinates:

a(t) = |r| =
√
x2 + y2 =

√
(4cos(2))2 + (4sin(2))2 =

√
42(cos(2)2 + sin(2)2 = 4,

and

θ(t) = tan−1(
y

x
) = tan(

4sin(2)

4cos(2)
) = arctan(tan(2)) = 2.

Example 4.4.3. Let us, now, analyse a more complex example with the sum

of 2 cosines: s(t) = 0.4cos(3.5t) + 0.9cos(4t).

The equation can be evaluated in terms of exponentials as:

s(t) = 0.4(
ei3.5t + e−i3.5t

2
) + 0.9(

ei4t + e−i4t

2
).

Defining an analytic signal by keeping the positive frequency part we obtain:

sa(t) = 0.4ei3.5t + 0.9ei4t.

We already know that s(t) = Re(sa(t)), and it, therefore, can be defined as:

s(t) = Re(sa(t)) = Re(A(t)eiθ(t)),
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where A(t) = |sa(t)| is the instantaneous amplitude, and θ(t) = arg(sa(t)) is

the phase of a signal.

Hence:

A(t) = |0.4ei3.5t + 0.9ei4t|

= |0.4ei3.5t(1 +
0.9

0.4
ei(4−3.5)t)|

= |0.4ei3.5t||1 +
0.9

0.4
ei(4−3.5)t|

= 0.4

√
(1 +

0.9

0.4
cos(0.5t))2 + (

0.9

0.4
sin(0.5t))2,

and

θ(t) = arg(0.4ei3.5t + 0.9ei4t)

= arg(0.4ei3.5t(1 +
0.9

0.4
ei(4−3.5)t))

= arg(0.4ei3.5t) + arg((1 +
0.9

0.4
ei(4−3.5)t)

= 3.5t+ arg(1 +
0.9

0.4
ei0.5t).

4.5 Computing the Fourier Transform

From the previous subsection it is known, that if the function of the signal is

defined as the sum of sinusoids, then Hilbert transform, as well as analytic

signal, can be easily interpreted. However, signals are ordinarily expressed in

time space rather than frequency space, and this is when the mathematical

tool called Fourier transform is stepping in.

One of the Fundamental Secrets of the Universe: “All waveforms, no matter

what you scribble or observe in the universe, are actually just the sum of

simple sinusoids of different frequencies.”[18]
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Practically, everything can be represented by a waveform, such as images,

sounds or stock prices. Fourier Transform enables to visualise these wave-

forms, by decomposing waveform into its sine and cosine components. A huge

strength of LTI systems is, therefore, the capability to use some transforma-

tion methods, which takes the input into the system that outputs some new

domain, which is the Fourier domain, and that makes solving LTI systems

easier.

4.5.1 Fourier Series

An incentive of studying Fourier transform arose from first, introduction of

Fourier series by a French mathematician, Joseph Fourier. Fourier Series

states that every periodic, continuous-time signal can be mathematically de-

fined as the sum of sinusoids.

Given the continuous, periodic signal defined as x(t) = x(t + T ), which

goes to infinity, there is a part in the signal that repeats each T period.

Figure 4.11: Example of a periodic wave signal



CHAPTER 4. MATHEMATICS FOR SIGNAL PROCESSING 28

The most natural periodic signals that also have the same period T are

sinusoids. And if each sinusoid is periodic with period T, then similarly does

the complex signals or the summation of their combination. Therefore,

ejkw0t = cos(kw0t) + jsin(kw0t) (4.24)

is periodic with period T, and so does

∞∑
k=−∞

ake
jkw0t. (4.25)

This demonstrates, that a given periodic signal, like the one in Figure 4.11,

can be constructed in such a way to look like the sum of sinusoids. The

aim is, then, to find each ak for a given x(t) and a fixed integer k. Those

constants coefficients are worked out by the following equation:

ak =
1

T

∫ T

0

x(t)e−jkw0tdt (4.26)

Hence, a signal can be expanded as the Fourier Series, which, in trigonometric

form, is is defined as:

f̂ = a0+
∞∑
m=1

amcos(
2πmt

T
)+

∞∑
n=1

bnsin(
2πnt

T
) =

∞∑
m=0

amcos(
2πmt

T
)+

∞∑
n=1

bnsin(
2πnt

T
),

(4.27)

where the constants

a0 =
1

T

∫ T

0

f(t)dt (4.28)

am =
2

T

∫ T

0

f(t)cos(
2πmt

T
)dt (4.29)

bn =
2

T

∫ T

0

f(t)sin(
2πnt

T
)dt (4.30)

are Fourier coefficients, which define the weight of each sinusoid.
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4.5.2 Fourier Transform

Fourier series applies only to continuous-time periodic functions. However,

in real life we deal with aperiodic signals most of the time. Recall that

expansion of Fourier series is
∑∞

k=−∞ ake
jkw0t, and we can define ak as ak =

1
T

∫ T
0
x(t)e−jkw0tdt, which we can expand as 1

T
x(kw0) Fourier transform is an

extension of Fourier series, where signal x(t) becomes an aperiodic function,

when the period of the signal approaches to infinity, T →∞. As a result:

1. w0 = 2π
T
→ 0

2. kw0|w0→0 → w

3. The summation of the expansion becomes an integral:

x(t) = limT→∞ x(t) = limT→∞
1
T

∑∞
−∞ TX(k)ejkw0t

= limw0→0
w0

2π

∑∞
−∞X(kw0)e

jkw0t = 1
2π

∫∞
−∞X(w)ejwtdw,

which is called the inverse transform.

4. And finally, the Fourier transform becomes:

X(w) = limT→∞X(kw0) = limT→∞
∫
T
x(t)e−jkw0tdt =

∫∞
−∞ x(t)e−jwtdt

Summarising, for x(t) being a continuous function, if a signal is periodic,

we get the Fourier series with the discrete set of aks, and for a non-periodic

signal, we get the Fourier Transform with continuous X(w).

4.5.3 Discrete-Time Fourier Transform

Now, to analyse the discrete-time signals, like our Nord Pool time series,

which has samples at each fixed interval, we define the Discrete-Time Fourier

Transform (DTFT), which converts a discrete-time signals at each n interval,

x(n), into continuous frequency-domain signals.
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Given the FT of a continuous-time signal:

X(w) =

∫ ∞
−∞

x(t)e−jwtdt.

If x(t) is sampled with sampling frequency 1/T, then we obtain:

X(w) =
∞∑
−∞

x(nT )e−jwnT =
∞∑
−∞

x(n)e−jwn, (4.31)

where x(n) represents x(nT ).

In other words, instead of integration, all the discrete values are summed.

We, therefore, obtain a complex function DTFT which can be expanded as:

X(w) =
∞∑
−∞

x(n)cos(wn) + j
∞∑
−∞

x(n)sin(wn). (4.32)

Therefore,

X(w) = Re(X(w)) + Im(X(w)). (4.33)

DTFT can be, hence, defined as an amplitude and phase, with phase angle

computed as:

θ = tan−1(
Im(X(w))

Re(X(w))
) (4.34)

and amplitude:

|X(w)| =
√
Re(X(w))2 + Im(X(w))2 (4.35)

Note, that this is still a continuous function of w, the equation above does

not make the frequency domain discrete. In discrete time, however, there

is a fixed set of frequencies with the frequency range of (−π, π). This is

because the function of the phase is ambiguous, if we shift the phase by,

for example, 2πk, the result we get is ejθ+2πk = eθ. This shows that DTFT

can be evaluated for any w, but it is 2π through value, therefore, the range
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normally has the restricted attention to the range of −π to π.

4.5.4 Discrete Fourier Transform

As we noted, DTFT of a signal is continuous in terms of frequency, which

requires incredible huge amount of storage and time to compute. It is impos-

sible for DSP (digital signal processing) processor to process such a signal.

We, therefore, need an alternative solution to this problem with a finite num-

ber of samples of X(w) taken.

This is form of result is defined as Discrete Fourier Transform (DFT) which

takes samples at each fixed interval with finite time duration and converts a

discrete signal at each n interval, x(n), into equally spaced DFT, X(k):

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N =
N−1∑
n=0

x(n)[cos(
2π

N
kn)− jsin(

2π

N
kn)], (4.36)

k = 0, 1, 2, ..., N − 1,

where the inverse transform is defines as:

x(n) =
1

N

N−1∑
k=0

X(k)ej2πkn/N , (4.37)

n = 0, 1, 2, ..., N − 1.

As a result, we get a sequence of N frequencies, which are equally spaces

by n interval. Note that, here, n represents a time index and k a frequency

index. For simplicity we will represent e−j
2π
N in the Equation 4.36 as WN ,

resulting the above equations for DFT and IDFT to be expressed as:

X(k) =
N−1∑
n=0

x(n)W kn
N for 0 ≤ k ≤ N − 1, (4.38)
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and

x(n) =
1

N

N−1∑
k=0

X(k)W−kn
N for 0 ≤ n ≤ N − 1, (4.39)

respectively.

Some properties of W kn
N :

1. For the sequence of length N:

W nN
N = W kN

N = e−j2πkN/N = e−j2πk = 1 = W 0
N .

2. W kn
N is periodic in terms of n:

W
k(n+rN)
N = W kn

N W rkN
N = W kn

N for −∞ < r <∞.

3. W kn
N is periodic in terms of k:

W
n(k+rN)
N = W kn

N W rnN
N = W kn

N for −∞ < r <∞.

4. For even number of samples, n = 2r:

W kn
N = W 2rk

N = e2(−j2πkr/N) = e−j2πkr/N/2 = W kr
N/2.

In other words, for W kn
N with even samples of length N can be converted

as W kr
N/2 of length N/2.

Therefore, from above features of complex sequence W kn
N , we can conclude

that a sequence with N number of samples, has a periodic DFT: X(k+N) =

X(k)
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The DFT takes finite sequence of signals and transforms it to finite length of

transform, which takes finite amount of memory and time. To our disadvan-

tage, however, sometimes the sequence of signals for is too long, which takes

a large amount of memory and time to derive. Those signals, in real-life,

cannot be proceeded in DSP processors. Using the properties of DTF, a sim-

plified version of transform was constructed called Fast Fourier Transform,

giving a fast and efficient computation of the DFT. The implementation pro-

vides nearly the same results as the DFT, but with less computation time

as it reduces the number of operations, by decomposing DFT into smaller

DFTs.



Implementation with R

Having covered background of some essential mathematical techniques used

in signal processing, namely for extracting instantaneous amplitude and

phase from the wave signals, we can now explore how they can be used using

R commands. And then, we will be using those R commands to analyse the

financial time series of Nord Pool electricity prices.

Example 5.0.1. Let us consider first the case of signal with 2 cosines, which

we covered in Example 4.4.3:

s(t) = 0.4 ∗ cos(3.5 ∗ t) + 0.9 ∗ cos(4 ∗ t),

represented in Figure 5.1 using the code:

#Def in ing s i g n a l s ( t ) and independent v a r i a b l e t

t=seq (0 , 1 00 , 0 . 01 )

s =0.4∗ cos ( 3 . 5∗ t )+0.9∗ cos (4∗ t )

#Plo t t i ng s i g n a l s ( t )

p l o t ( t , s , type=” l ”)

34
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Figure 5.1: Signal of 2 cosines

First we apply Fast Fast Fourier Transform on signal using commands in R

represented with the code below:

#Implementing Fast Four i e r Transform

z=f f t ( s , i n v e r s e=FALSE)

z [1 ]=0

z [5002 :10001 ]= seq (0 ,0 ,5000)

w=f f t ( z , i n v e r s e=TRUE)/ length ( t )

fft function returns z, which is the discrete Fourier Transform of the sequence,

and fft when inverse=TRUE extracts a complex signal defined by w.

We then can calculate the instantaneous amplitude and phase of the sig-

nal using:

2∗ abs (w)

for amplitude, and

atan2 (Im(w) , Re(w) )

for phase, where w is the transformed signal.
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Figure 5.2: Amplitude Figure 5.3: Comparing A(t)s

Figure 5.4: Phase Figure 5.5: Unwrapped phase

Figure 5.2 shows the output of instantaneous amplitude. The amplitude seem

to envelopes the original signal. The amplitude vary approximately between

1.3 and 0.5 for the upper envelope and between -0.5 to -1.3 for the lower

envelope. The envelope on the instantaneous amplitude is, therefore, +/-

A(t), where A(t) represents the instantaneous amplitude. Comparing with

the amplitude calculated in Example 4.4.3, on the Figure 5.3, we observe

that the lines for both amplitudes overlap.
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Figure 5.4 shows the output of phase of the wave. The signal seems to vary

with the same phase, in other words, there are no sudden extreme changes

in a signal. Figure 5.5 shows phase in the unwrapped form of the Figure 5.4,

which was plotted using the following code:

#Function f o r unwrapping a phase

up=atan2 (Im(w) , Re(w) )

f o r ( i in 2 : l ength ( t ) )

{ d i f f e r e n c e=up [ i ]−up [ i −1]

i f ( d i f f e r e n c e > pi )

{up [ i : l ength ( t )]=up [ i : l ength ( t )]−2∗ pi }
e l s e i f ( d i f f e r e n c e < −pi )

{up [ i : l ength ( t )]=up [ i : l ength ( t )]+2∗ pi } }
#Figure 5 .5

p l o t ( t , up , type=” l ” , main=”Unwrapped Phase ” ,

c o l=”blue ” , ylab=”phase ” , xlab = ” time ”)

The difference between them is, that the former one is constrained to (−π, π),

and this type of phase is called wrapped phase, and the other one is called

unwrapped phase. Figure 5.6 shows the comparison between the unwrapped

phase in Figure 5.5, and the phase function calculated in Example 4.4.3.

Figure 5.6: Comparing phases
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Example 5.0.2. Now, we will analyse a signal of sum of cosine and sine:

s(t) = 0.7 ∗ cos(2 ∗ t) + 0.8 ∗ sin(3 ∗ t),

shown in Figure 5.7.

Figure 5.7: Signal of sum of sine and cosine

Applying the same R commands on the wave signal, as in previous example,

we get the instantaneous amplitude represented in Figure 5.8, instantaneous

phase in Figure 5.9 and unwrapped phase in Figure 5.10. The amplitude,

here, is a proper envelope of the wave, and it varies roughly between -1.6

and 1.6. The phase of the signal seems to have a phase slip after each

constant interval of about 6.5, which is more visible on from the bumps

in the unwrapped phase in Figure 5.10. This is indicated by the sudden

decreases and increases of the signal after each interval.
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Figure 5.8: Amplitude

Figure 5.9: Phase Figure 5.10: Unwrapped phase
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Example 5.0.3. Let us now analyse more complex example:

s(t) = (1 + 0.7 ∗ t) ∗ cos(2 ∗ t),

which is represented in Figure 5.11.

Figure 5.11: Signal with growing amplitude

As before, we get the output of instantaneous amplitude and phase, presented

in Figure 5.12 and Figure 5.13 respectively. The amplitude is varying linearly,

which seems to match with the time varying amplitude of the input signal.

There are no large phase slips indicating any sudden extreme values in the

signal, which can also be confirmed by a straight line of the unwrapped phase

in Figure 5.14. This agrees with the original signal, as waves of the signal

seems to enlarges gradually, and there are no extreme spikes appearing.

At this time, we can now use those mathematical techniques and R com-

mands, studied above, on Nord Pool data, and analyse the instantaneous

amplitude and phase of the electricity prices of the company and observe if

there is any relation between the outputs of the signal and appearance of the

extreme spike prices.
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Figure 5.12: Amplitude Figure 5.13: Phase

Figure 5.14: Unwrapped phase



Analysing Nord Pool Market Prices

6.1 Nord Pool Data

In this paper, we are going to study the market prices of Nord Pool market.

The data is represented in the form of electricity prices at each hour inter-

val, which have been noted for 8 years, from 1st January 1999 to the 26th

January 2007. We can visualise the data as the time series graph in Figure

6.1, which has been imported and formatted as time series accordingly using

R code:

#Importing Nord Pool Data

setwd (”/ Users / thuytrangnguyen /Desktop/ D i s s e r t a t i o n ”)

data=read . t ab l e (”BEUR. txt ” , header=FALSE)

#Creat ing Time S e r i e s

l i b r a r y ( xts )

dates<−seq ( from=as . POSIXct(”1999−01−01 00 : 00” ) ,

to=as . POSIXct(”2007−01−26 23 : 00” ) , by=”hour ”)

t i m e s e r i e s<−xts ( data , order . by=dates )

42
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Figure 6.1: Nord Pool Hourly Electricity Prices

The graph shows 70,752 data points, which represent spot prices in Euro per

MegaWatt Hour with sampling rate of 1 hour. The time series is evidently

not stationary, which can be supported using tests for stationarity, such

as Augmented Dickey-Fuller test, Ljung-Box test and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test, where the null hypothesis for the first test is that

the time series is non-stationary, and the null hypothesis of the last two tests

shows the stationarity. It is worth noting, however, that the Ljung-Box test

points out the absence of serial correlation, which is stronger than station-

arity. Therefore, the time series can still be stationary for p-value less than

0.05 for Ljung-Box test.

The results for stationary tests of the Nord Pool data time series are repre-

sented in Figure 6.2. The Ljung-Box and KPSS tests indicate non-stationarity

(p-value<0.05), however ADF test shows some stationarity (p-value<0.05).

This might indicate that even though the data is non-stationary, as there

is a slight increasing trend noticeable, the time-series perhaps shows some

stationary behaviour.
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Figure 6.2: Stationarity Tests for time series

The graph also reveals are some extreme spikes, which appear in the market

prices. The largest spikes seem to arise roughly each year, especially in 2000,

2001, 2002 and 2003. Those price spikes can cause price risks, which are

not beneficial to the electricity market. The highest spike occurred in 5th

February 2001 of 238.01 EUR/MWh.

The statistics of the time series are shows as follows:

Min: 2.33

1st Q: 16.75

Median: 25.88

Mean: 27.48

3rd Q: 32.79

Max: 238.01

There also seem to be many outliers occurring in the data, which are indicated

by the box-plot and histogram shown in Figure 6.3.
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Figure 6.3: Boxplot and Histogram of time series

Box-plot reveals the appearance of high spikes in the financial time series.

The histogram is right skewed as it can be seen by looking the right tail of

the graph, meaning that most of the data fall into the low values category

with few large values.

Having already an overall review of the data, let us now analyse the in-

stantaneous amplitude and phase of the time series, which are derived using

R commands for Fast Fourier Transform, explained in Chapter 4, and showed

in practice in Chapter 5.

The Figure 6.4 represents the complex signal wave with instantaneous am-

plitude. The wave seems to vary between the lower and upper envelope of

the amplitude. There is no periodicity noticed in the amplitude as the time

series of the Nord Pool data does not any periodic pattern visible. The graph

in Figure 6.5 shows the original time series and the instantaneous phase. The

phase slip appears to be showed up during the spike prices. To analyse it

further we will, later on, split the time series to analyse the data more closely.
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Figure 6.4: Amplitude of time series

Figure 6.5: Phase of time series
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As the data seems not to be stationary, let us now look at the logarithm

returns of the data instead and check if the data becomes stationary. The

new data is derived, from the original time series, using the function:

l o g r e t u r n s=d i f f ( l og ( t i m e s e r i e s ) )

Figure 6.6: Log returns

The time series of the log returns, presented in Figure 6.6, appear to be

stationary. For confirmation, three tests for stationarity are derived and the

results are shown in Figure 6.7.
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Figure 6.7: Stationarity Tests for log returns

The p-value of ADF test is below 0.05 , which rejects the hypothesis that

the data is non-stationary. KPSS tests also confirms the stationarity of time

series. However, the p-value of Ljung-Box is less than 0.05, but as mentioned

before, the test of Ljung-Box is much stronger than stationarity. Therefore,

it is safe to conclude that the log returns of the prices are stationary.
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The graph in Figure 6.8 shows how the envelope of amplitude almost matches

with the transformed signal. This is because, unlike the prices, the log-

returns are stationary.

Figure 6.8: Amplitude of log returns

The instantaneous phase of the log-returns of time series does not show any

specific pattern in relation with the signal, as the data is stationary. The

phase varies between −π and π.

Figure 6.9: Phase of log returns
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6.2 Average Nord Pool Data

The graph below in Figure 6.10 represents the time series of average Nord

Pool prices, which is constructed by averaging prices for each hour of each

day of a week, starting from Friday 00:00 to Thursday 23:00. The graph,

therefore, represents 7*24=168 data point, where each average price is cal-

culated by taking the mean of each 421-422 prices. Unlike, the original time

Nord Pool time series, the average of Nord Pool data shows some seasonal-

ity pattern. We can therefore conclude that there is some daily seasonality

pattern in the Nord Pool prices. The pattern seems to be influenced by the

hours of the day. It is also noticeable from the graph, that there are two days

where the average prices are quite lower than the other days of the week. The

range of average prices vary between approximately 23 and 33 EUR/MWh.

Figure 6.10: Average prices
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Figure 6.11: Box Plot by
week day Figure 6.12: Box Plot by hour

The two box-plots in Figure 6.11 and Figure 6.12, of each seven-day week

and of each hour, support in visualising in more deep, which days and hours

effect the previous graph in Figure 6.10.

The first box-plot confirms our previous observation that there are 2 days

with lower electricity prices, which are Saturday and Sunday. This might be

due to the fact, that majority of the offices are closed during the weekends

and people tend to have these days off, which lower the prices of the elec-

tricity as, like mentioned in the second chapter, the prices of electricity are

based on the demand and supply. The second box-plot indicates that there is

a rise of prices in the mornings, from 3am, with the peak at 8am. The prices,

then, stay relatively high at between 29 and 30 EUR/MWh, and reaches the

second peak at 5pm. The prices decline afterwards with the lowest price at

3am, and rises to 8am again.

The instantaneous amplitude and phase of the average data are calculated

using, again, the Fast Fourier transform, and are represented on the graphs

in Figure 6.13 and Figure 6.14. The illustration of the amplitude shows

how the wave varies between upper and lowers amplitude envelope. The
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Figure 6.13: Amplitude Figure 6.14: Phase

Figure 6.15: Unwrapped phase

instantaneous amplitude demonstrate some periodicity, which accounts to

the pattern in the Figure 6.10. The fluctuations of the amplitude slightly

changes during weekends, where the prices were the lowest. The graph of in-

stantaneous phase shows the compatible way of action as amplitude, where

the phase varies with similar pattern each weekday, with a large phase slips

on weekends. From the unwrapped phase in Figure 6.15, the phase bumps

also are most noticeable on Saturday and Sunday.
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6.3 Price Spikes

As noted before, that there are some high spikes in Nord Pool prices, which

we will now have closer look at. The most extreme spikes occurred in early

2000, 2001, 2002 and 2003. The results of those high spikes at the beginning

of each year might be due to the fact that the temperature tends to be the

lowest during January and February. The graphs of time series of each spike

and their instantaneous amplitude and phase are represented below respec-

tively.

The first graph in Figure 6.16 shows the time series of prices between 01/01/2000

to 29/02/2000, where the first extreme price spike appeared. The prices seem

to be maintain in between 10 to 30 EUR/MWh for those 2 months, with ex-

treme high spikes on 24th and 25th January, indicating that on those 2 days

the weather was the coldest, which increased the demand of electricity, re-

sulting in the increase in price. There is also daily seasonality pattern visible.

Figure 6.16: Time series of 01/01/2000 - 29/02/2000
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Figure 6.17: Amplitude Figure 6.18: Phase

Figure 6.19: Phase and wave

Using the same method as before, the outputs of the instantaneous amplitude

and phase of this time series are presented on graphs as follows in Figure 6.17

and Figure 6.18. The complex wave of signal varies between the lower and

upper envelope of the amplitude with the spikes following the upper envelope.

The extreme spikes do not seem to affect the prices after the spikes. The

instantaneous phase shows the significant difference in phase. The Figure

6.19 compares the phase with the time series. The phase slips are noticeable

during spikes.
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The next time series represent the prices from 01/01/2001 to 01/07/2001.

Through those 6 months, there were many price spikes recorded. The highest

spikes occur during the first 3 months from January to March. After the

end of April the prices do not exceed 50 EUR/MWh, and there are some

downwards spikes observed. This is the effect of the change in season, and

following with it the change in the weather.

Figure 6.20: Time series of 01/01/2001 - 01/07/2001

As with the time series analysed in Figure 6.16, the prices lie within the

lower and upper amplitude line with the spikes following the upper envelope

whenever the price is dramatically increasing, and reaching lower envelope

when there is a decrease in price. The instantaneous phase in Figure 6.22,

as well, looks like it have the same behaviour as the previous time series. In

other words, there are large phase slips visible, especially where there were

3 highest spikes occurring. This relationship between spikes and phase slips

can also be observed in Figure 6.23.
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Figure 6.21: Amplitude Figure 6.22: Phase

Figure 6.23: Phase and wave

To confirm the observations noted on behaviour of the amplitude and phase

affecting the signals, we will analyse two more time series with spike prices,

and see if the same conclusions were spotted.
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Figure 6.24 shows the hourly prices from 01/01/2002 to 01/02/2002. The

prices show a periodic pattern with extreme spikes at the beginning of the

time series, and some small spikes at the end of time series. The outputs of

analysis of instantaneous amplitude and phase are presented in Figure 6.25

and Figure 6.26.

Figure 6.24: Time series of 01/01/2002 - 01/02/2002

Figure 6.25 agrees with our observation that there are some spikes at the

beginning and end of Figure 6.24. Figure 6.26 shows how the phase looks

like comparing to time series.
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Figure 6.25: Amplitude Figure 6.26: Phase

Figure 6.27: Phase and wave

The Figure 6.28 shows the how to prices vary between 01/01/2003 and

01/07/2003. The prices gradually increase until it reaches 121.75 EUR/MWh

on 06/01/2003, and then gradually decrease. A month after, on 06/02/2003

there is a sudden spike of 129.75 EUR/MWh. As similarly observed in year

2001, the prices after end of March do not exceed 50 EUR/MWh due to

change in the temperature. There are also bottom spikes noticeable in May

and June. Figure 6.29 shows the instantaneous amplitude using the data in

Figure 6.28. For first 2 months the time series follows the upper amplitude

line, and then slowly following the lower amplitude line. Figure 6.30 shows
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Figure 6.28: Time series of 01/01/2003 - 01/07/2003

the output of the phase of Figure 6.28 and Figure 6.31 shows their relation.

The graphs show how there are sudden changes in price value during phase

slips. There is especially noticeable phase slip around the beginning of Febru-

ary where the largest spike appeared. The extreme spike does not seem to

affect the prices of the electricity after. Figure 6.31 shows the comparison of

the time series and the phase slips. The graph shows how the price changes

dramatically on February, resulted from the low temperature on that day.

And there are also fluctuations in price in between May, where there were

changes in the temperature.
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Figure 6.29: Amplitude Figure 6.30: Phase

Figure 6.31: Phase and wave

Let us now analyse the time series between 15/04/2004 and 15/10/2004,

where there were 3 extremely decreasing spikes prices, presented in Figure

6.32. The largest downwards spikes appeared in May, July and September

with the lowest piece value of 3.84 EUR/MWh reached on 09/05/2004. The

prices stayed below 40 EUR/MWh, which can be explained by the high

temperature during those months
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Figure 6.32: Time series of 15/04/2004 - 15/10/2004

The instantaneous amplitude in Figure 6.33 show downwards spikes which

adapts with the sudden spike in the time series. The phase in Figure 6.34 and

Figure 6.35 show the phase slips occurring around May, July and September,

where the sudden decreases in prices were observed.
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Figure 6.33: Amplitude Figure 6.34: Phase

Figure 6.35: Phase and wave

From those observations of spikes we can, therefore, conduct that the instan-

taneous amplitude accommodates with the complex signal time series, and

the phase slips provide us with the information about extreme price spikes

occurring in the Nord Pool market prices.



Conclusions

In this paper, we explored the importance of signal processing in many ap-

plication fields, and then we made a specified focus on financial signal pro-

cessing to exact the information from the financial time series. Hourly Nord

Pool market prices were used in this paper to analyse extreme events of the

market. To understand the Nord Pool pricing, we also reviewed how does

electricity market work, and observed how the electricity prices are affected

by the demand of the commodity. We observed that extremely high spike

prices appeared to occur mostly on the days with the low temperature, par-

ticularly at the beginning of the year.

Instantaneous amplitude and phase were extracted from analytic signal,

which is derived by applying the Hilbert transform to a signal. Fourier Trans-

form, which is an important application of decomposing signals, supports in

obtaining analytic signal by removing unrequited negative frequencies. Since

analytic signal is a complex function, we interpreted it in terms of instanta-

neous amplitude, and instantaneous phase.

After deriving instantaneous amplitude and phase of Nord Pool time series,

we learned how amplitude adapts with a signal and discovered that there is

a relation between the phase and price spikes. Analysing closely the high

spikes of Nord Pool electricity prices, it is deduced that the phase slips seem

to indicate the appearance of extreme events of prices.

63
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Further studies could be considered on the discovering the space slips in

advance of the extreme events to predict the movements of the electricity

prices.
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