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Abstract 

The world is made up of complex systems: economic, biological, and ecological systems, amongst others, which 

exhibit a rich array of global dynamics, often typified as emergent properties of the localised interactions of a 

highly interconnected network of nodes. 

Nodes of such systems typically have their own set of directives – cells or businesses for example operating 

within broader frameworks like organisms and economies. Clusters of nodes which share a set of directives 

repeat nearly identical tasks cyclically, oscillating between states at slightly different rates. There are many 

examples of systems whose global behaviours rely upon the clusters of oscillators syncing up spontaneously – 

without specific direction from any single ‘leader’. Typical examples include pacemaker cells: which coordinate 

the heartbeat, neurones: which sync up their activity to perform a range of tasks, or even as a basis for social 

engagement; Pérez et al. (2017) demonstrated that conversational interactions between individuals can result in 

a phase locking of brain waves. Mathematicians have been keen to encode this phenomenon – termed 

‘synchronisation’ - which occurs ubiquitously across natural systems of varying scale.  

This project will provide an introduction to the Kuramoto model: a system of non-linear ODE’s commonly used to 

model synchronisation. We will explore the history and derivation of the most general form of the model, followed 

by a numerical integration of the equation. Subsequent visual representations will then demonstrate how 

synchronisation emerges by increasing the level of pairwise node interdependency – a notion known as ‘coupling 

strength’. We’ll finish by exploring some of the adaptations made to the general form of the model, and how these 

relate to some recent application areas of significance. 
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Introduction 

In the literature, the Kuramoto model often appears without detailed explanation for its derivation. Any model is a 

generalisation of more complex phenomena, and the choices a modeller makes to restrict this complexity are not 

arbitrary; they’re contextualised by a historical thread, woven through a myriad of previous works.  

Prior to delving into the derivation of the Kuramoto model, we see a brief synopsis of this history and define some 

fundamental concepts on which the model relies, hopefully providing a gradual introduction for undergraduate 

mathematicians, without belabouring points made in other introductions. 

Synchronisation 

We can imagine starting two oscillators from two different points on a circle, then having them cycle through the 

circle at different rates. Suppose at some point in time, their frequencies drift toward one another until they’re 

matching. Their positions will be different, but from any point thereon, they’ll exhibit a constant phase difference.  

We define phase as the proportion of the cycle travelled at time t. Synchronisation occurs when phases of the 

oscillators match.   

Setting the scene 

The first person to discover and then write about synchronisation was Christiaan Huygens in 1665. He noticed 

that two pendulum clocks (with slightly different initial phases) attached to the same wooden beam, would 

synchronise. The minute oscillations travelling through the beam had the effect of pairing the two clocks 

sufficiently to cause their pendulums to swing in phase. 

Synchronisation phenomena was subsequently observed in many natural and man-made systems. Collective 

synchronization i.e. synchronisation of a large number of oscillators, was first studied mathematically by Norbert 

Wiener. Unfortunately, Wiener’s mathematical approach based on Fourier integrals turned out to be a dead end 

(Steven H. Strogatz, 2000). 

The approach others have taken since depends on how oscillators themselves are characterised, so we will 

briefly observe these different characterisations.  

Relaxation oscillators 

One characterisation is that of the relaxation oscillator, an oscillator whose behaviour over time evolves steadily 

until a certain threshold is reached. At this point some activity is performed (perhaps a pulse being sent across a 

synapse after a building of action-potential), the oscillator then returns to its initial state and the cycle continues. 

Clearly this periodicity isn’t represented by a smooth waveform and instead exhibits a jagged profile.  

 
Transient analysis of a comparator-based relaxation oscillator. By Krishnavedala, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=15442360 

The first equation to describe the dynamics of a relaxation oscillator was developed in 1927 by Balthasar Van der 

Pol, a Dutch physicist who utilised the equation to model the human heart via three coupled “Van der Pol 

oscillators”.  

Self-sustaining oscillators  

Some objects oscillate simply because an external periodic force acts upon them; they do not maintain their own 

periodic motion internally. Other oscillators are described as ‘self-sustaining’; their periodicity is self-generated in 

the absence of a periodic external power supply. The pendulum clock is an example of a self-sustained oscillator, 

as noted by Binder, M.D., Hirokawa N., Windhorst U (2009), as are many important and familiar natural 

phenomena, such as the heartbeat, the firing of neurons, ocean waves, and the pulsation of variable stars 

(Jenkins , 2013).  



An important property of self-sustaining oscillators is that since their motion is self-governed, if they’re perturbed 

slightly, they eventually return to their regular motion. As a result, their trajectories can be modelled via stable 

limit cycles.  

Limit cycles 

Limit cycles are isolated, closed trajectories of non-linear dynamical systems, and are not to be confused with 

centres, which are periodic trajectories of linear dynamical systems. For limit cycles, if we start from a point 

outside of the cycle, there are no other periodic cycles to be found nearby and its trajectory will eventually 

converge to the cycle.  

Arthur Winfree, an engineering physicist turned biologist, was the first to attempt to model synchronisation in a 

large network of biological oscillators, each represented as weakly coupled limit-cycle oscillators.  

Project scope 

In this project we will build our intuition around the development of the Kuramoto model, then solve the model via 

numerical integration using MATLAB, applying it to a set of 500 oscillators. Solving the ODE generates phases 

for the oscillators which we then plot as a function of time. To take this further, we introduce an equation for an 

order parameter, which quantifies the similarity of phases at a given time for an assumed coupling parameter V. 

We will vary this coupling parameter, demonstrating that at a certain critical value, synchronisation will occur.  

  



 

The Kuramoto Model 

Since the Kuramoto model is based on many of the same assumptions as the Winfree model, we’ll start to build 

our intuition for the model here.   

Winfree oscillators 

Suppose there are n interacting self-sustained limit-cycle oscillators in a network. The first assumption we make 

is that they’re nearly identical. We expect the intrinsic frequencies of the oscillators to be sufficiently similar so 

that they’re represented within the same probability distribution, in which we have expected (mean) frequencies.  

We also know that the oscillators are affected by one another; they’re ‘coupled’ through metabolic, 

bioluminescent, electrical, mechanical or other channels (Winfree, A. T, 1967). In the absence of this coupling, 

each oscillator is left to operate independently and therefore maintains its own frequency, allowing no 

synchronisation to occur.  

In modelling the evolution of individual oscillators within such a system, we start with this intrinsic frequency 𝜔𝑖 

and then take into account the influence of all the other oscillators. We avoid further complication by ignoring 

outside interference – that is, anything outside of the network of oscillators which may also influence their 

frequencies. This forms an ODE in an n-dimensional vector space.  

We previously mentioned a property of stable limit cycles: that trajectories originating within a neighbourhood of 

the limit cycle will spiral into it. We won’t formally define how we would find this neighbourhood, but it suffices to 

say that trajectories originating from outside of it may not converge to the limit cycle. This could occur for an 

oscillator if the influences of other oscillators cause a sufficiently strong perturbation. In order to avoid this, 

Winfree required that no oscillator could be significantly affected by the total influence of the others, they must be 

coupled ‘weakly’(1) so as not to take them away from the limit cycle.  

Now that we’ve ensured the oscillators traverse the same limit cycle regardless of perturbation, albeit at differing 

frequencies, we have reduced the problem from consideration of dynamics in an N-dimensional vector field, to 

description of pertinent inter-relations among functions of a single scalar variable, namely phase in the cycle 

(Winfree, A. T. 1967). This just means that since they’re traversing the same cycle, we’ll always know the position 

simply by observing a single parameter: the phase. 

Winfree defined an ‘influence function’ X, which output the level of influence for an oscillator depending on its 

phase. The sum of these (weak) influences for all oscillators in the network is denoted by ‘S’ for ‘stimulus’.  

𝑆 = ∑ 𝑋(𝜙𝑗)

𝑗

 

He also defined a ‘sensitivity function’ Z, as follows: 

Z(ϕ) =  lim
𝑠→0

Δ𝑓

𝑆
 

This represents the change in frequency of an oscillator when perturbed by an arbitrarily small stimulus. It’s also 

dependent on phase, so this tells us that the sensitivity of an oscillator depends on where it is within its oscillation 

period. 

Together, the stimulus and sensitivity function represent a ‘mean-field’. The equation we arrive at is as follows: 

𝑑𝜃𝑖

𝑑𝑡
=  𝜔𝑖 + (∑ 𝑋(𝜙𝑗)

𝑗

) Z(ϕ𝑖),        𝑖 = 1, … . . 𝑁. 

Using this model, Winfree derived the following property of limit cycle oscillators; under certain threshold 

conditions relating to both the strength of the stimulus and the sensitivity function, oscillators will synchronise 

their frequencies to that of a periodic stimulus.  

(1) Winfree restricted his attention to weak interactions in which Z and X were both less than 10% of the size of the average frequency of an oscillator. 



Deriving the Kuramoto model 

Whilst Winfree demonstrated synchronisation numerically, his model was analytically difficult to solve. Kuramoto, 

taking the baton from Winfree’s approach, developed a solvable model in 1975.   

Kuramoto was primarily motivated by a desire to model synchronisation behaviour within chemical reaction-

diffusion systems, though he reflected on the broader applicability of his model to other synergetic natural 

processes.   

Stuart Landau oscillators 

A system which is dissipative i.e., a system that is thermodynamically open, in that it exchanges information with 

its environment, is typically dependent on a number of parameters. Exploring how the system behaves as a result 

of small variations in the parameter values is known as perturbation theory. This can greatly reduce the 

complexity of modelling a real-world system, as its behaviour is approximated via a more succinct dynamical 

equation. Dissipative systems very close to a Hopf bifurcation can - through perturbation analysis - be 

represented via the Stuart-Landau equation.  

Kuramoto derived a more general form of the Stuart-Landau equation, called the Ginzburg-Landau equation, in 

order to overcome limitations of the Stuart-Landau equation in representing systems of larger size: 

𝑑𝑄

𝑑𝑡
= (𝜔𝑖 +  𝛼)𝑄 −  𝛽|𝑄|2𝑄 

Where 𝛼, 𝛽 > 0, and Q is a complex variable signifying disturbance, representable via Euler’s formula in its 

exponential form as Q(K,𝜃) =K𝑒𝑖𝜃. 

Calculating partial derivatives, we have: 

𝜕𝑄

𝜕𝐾
=  𝑒𝑖𝜃                 

𝜕𝑄

𝜕𝜃
= 𝐾𝑖𝑒𝑖𝜃  

 

𝜕𝑄

𝜕𝑡
=  

𝜕𝑄

𝜕𝐾

𝜕𝐾

𝜕𝑡
+  

𝜕𝑄

𝜕𝜃

𝜕𝜃

𝜕𝑡
= 𝑒𝑖𝜃

𝜕𝐾

𝜕𝑡
+  𝐾𝑖𝑒𝑖𝜃

𝜕𝜃

𝜕𝑡
= (𝜔𝑖 +  𝛼)K𝑒𝑖𝜃 −  𝛽|𝐾|2K𝑒𝑖𝜃 

Rearranging and simplifying, we have: 

𝜕𝐾

𝜕𝑡
+  𝐾𝑖

𝜕𝜃

𝜕𝑡
=  𝜔𝑖K + (𝛼 −  𝛽|𝐾|2)K 

 

Equating real and imaginary parts: 

𝜕𝐾

𝜕𝑡
= (𝛼 −  𝛽|𝐾|2)K               

𝜕𝜃

𝜕𝑡
= ω   

Looking at Q in terms of polar coordinates, we have Q = K(isin𝜃 + cos𝜃) 

If we imagine this as a traversal of a (limit) cycle of radius K, we have a cycle where 𝜃 = ωt varies in time. 

 



This requires us to fix K in time, so we look for solutions to 
𝑑𝐾

𝑑𝑡
= 0. This occurs when 𝛼 −  𝛽𝐾2 = 0 i.e. radius K = 

√
𝛼

𝛽
 

A system of interacting oscillators 

Suppose we have N interacting Ginzburg-Landau oscillators of varying frequencies. Each oscillator can be 

represented by the following equation: 

𝜕𝑄𝑖

𝜕𝑡
= (𝑖𝜔 +  𝛼)𝑄𝑖 + ∑ 𝑣𝑖𝑗𝑄𝑗

𝑗≠𝑖

−  𝛽|𝑄𝑖|
2𝑄𝑖 

This takes into account the effects the other N-1 oscillators have on oscillator i.  

Kuramoto used a ‘mean-field’ assumption, similar to Winfree, to simplify the model somewhat: 

vij = 
𝑉

𝑁
   for all i,j 

Repeating the same steps as in the individual oscillator case, after equating real and imaginary parts we have: 

𝜕𝐾

𝜕𝑡
= (𝛼 −  𝛽|𝐾|2)K + 

𝑉

𝑁
∑ cos (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖)                   
𝜕𝜃𝑖

𝜕𝑡
=  𝜔𝑖 + 

𝑉

𝑁
∑ sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖)                       

The right-hand side equation is the Kuramoto model. Similar to Winfree’s model, the model is simplified since 

each oscillator is approximately specified by its phase value. Thus the dynamics of our system of N discrete 

oscillators may be reduced to N coupled ordinary differential equations for N phase variables (Kuramoto, 1983). 

The order parameter 

Suppose we plot the initial N oscillators on a circle. At various times, we want to have some way of determining 

the level of coherence i.e, how clustered together their phases are.  

Kuramoto defined an order parameter on this basis, distributing oscillators on the unit circle so that their positions 

were represented by unit vectors. The sum of these vectors, divided by the number of oscillators N, is how he 

defined the order parameter. 

𝑟(𝑡)𝑒𝑖𝜑 =  
1

𝑁
∑ 𝑒𝑖𝜃(𝑡)𝑗

𝑗

 

The order parameter is therefore a complex variable, dependent on time, which we can view as a vector pointing 

from the origin of the circle, with angle 𝜑 (the average of the phases of the oscillators). 

The magnitude of the vector quantifies the level of coherence, differing depending on how close the oscillators 

are to one another. For example, if the oscillators have identical phase, then the above formula reduces to: 

1

𝑁
∗ 𝑁𝑒𝑖𝜃(𝑡) =  𝑒𝑖𝜃(𝑡) 

The magnitude |𝑒𝑖𝜃(𝑡)| is 1. This is the value associated with complete coherence. Alternatively, if the oscillators 

are placed as far from one another as possible (distributed uniformly on the unit circle) then by symmetry of sine 

and cosine, for uniform phases, the equation cancels to 0. 

1

𝑁
∑ 𝑒𝑖𝜃(𝑡)𝑗

𝑗

=  
1

𝑁
∑ 𝑖𝑠𝑖𝑛𝜃(𝑡)𝑗 + 𝑐𝑜𝑠𝜃(𝑡)𝑗 =

1

𝑁
∗ 0 = 0

𝑗

 

The critical value of the coupling parameter V 

Kuramoto derived a critical coupling value at which synchronisation could be analytically proven to occur, defined 

as the following: 

𝑉𝑐 =  
2

𝜋𝑔(0)
 

Where g is the probability distribution function used to draw intrinsic frequencies 𝜔𝑖, required by Kuramoto to be 

symmetric and unimodal (Winfree did attempt to use bimodal distributions for his numerical analysis, but found 



that this resulted in two synchronised clusters, bimodal distributions have subsequently been studied in adapted 

forms of the general Kuramoto model). 

We have opted to use the standard normal distribution, so g in this case is given by: 

𝑔(𝑥) =  
1

√2𝜋
𝑒− 

 𝑥2

2  

Hence g(0) ≈ 0.399 

Thus, our critical value is 𝑉𝑐 ≈ 1.6 

We will therefore focus our attention numerically on coupling values V = 0, 1, 1.5, 2, 3. 

Numerical integration 

We first define the ODE as a function within MATLAB. We initially specify the coupling parameter V and number 
of oscillators N as local variables, then iterate over the oscillators to build an ODE vector for a single time step. 
We specify the time interval we’re iterating over, and we create a vector of initial conditions by first drawing 500 
random values between 0 and 1, then multiplying by 2*pi (the perimeter of the unit circle). This gives us a random 
variety of different initial phases at t = 0. 

 
For simplicity we choose to draw our intrinsic frequencies randomly from the standard normal distribution. Finally, 

we find an approximation for the evolution of phases, via MATLAB’s built in ODE solver: ode45.  

 

Visual demonstration of synchronisation  

For varying coupling strengths (V = 0, 1, 1.5, 2, 3). We calculate the magnitude of the coherence parameter, then 

plot this as a function of time. 

From figure 1 we see that after approximately T = 5 time steps, for a coupling value V  = 3, the magnitude of the 

coherence parameter nears 1, indicating synchronisation. To a lesser but still pronounced extent, after 

approximately T = 10 time steps, for a coupling value V  = 2, the magnitude of the coherence parameter 

oscillates around 0.7. This is approximately in line with our earlier observation of a critical value existing at VC = 

1.6. 

 

 

function dYdt = kuramoto_experiment_2(~,X,Y) 

V = 2; 

N = 500; 

for p = 1:N 

    for s = 1:N 

        X(p) = X(p) + (V/N)*sin(Y(s) - Y(p)); 

    end 

end 

dYdt = X; 

end  

t = [0 500] 

y0 = 2*pi*rand(1,500) 

X = randn(500,1) 

[tSol,Ysol] = ode45(@(t,Y) kuramoto_experiment(t,X,Y),t,y0) 
A = 0 

for n=1:500 

A = A + exp(i*Ysol(:,n)) 

end 

A = (1/500)*abs(A) 

plot(tSol,A) 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A graph showing the evolution of coherence for different coupling strengths. 

We would therefore expect to see a clustering of phases at V = 2, which we visualise by first generating the unit 

circle, then plotting phases at different times.  

 
Figure 2: A plot of phases on the unit circle at different times. 

We now take a closer look at how phases evolve over time. For a value at which synchronisation is clearly 

occurring (V=3), we see in figure 3 that phases are randomly distributed initially, with a pattern beginning to 

emerge after only a few time steps. 

Then, zooming out to encompass the full extent of time steps, we can see in figure 4 that the phases traverse the 

unit circle in tandem, resetting periodically. 

for n = 1:500 

r = 1; 

xc = 0; 

yc = 0; 

theta = linspace(0,2*pi); 

x = r*cos(theta) + xc; 

y = r*sin(theta) + yc; 

plot(x,y) 

axis equal 

end 

hold on 

scatter(cos(y0),sin(y0),'*') 



 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3 and 4: Graphs showing the evolution of phase for 500 oscillators, with coupling strength V = 3. 

 

 

 

 

 

 

 



Further exploration 

The simplicity of the model, combined with its broad range of applications has meant it has become one of the 

primary tools for studying synchronisation, and has seen a number of different adaptations since its conception. 

We’ll briefly explore some of these adaptations and then some areas of recent (and significant) application. 

The presence of noise 

Synchronisation is known to be affected by noise i.e. random deviations inherent within natural systems, like 

thermal fluctuations. Noise can be added to the Kuramoto model as below, by adding a value drawn randomly 

from a (typically Gaussian) distribution. This can add to the plausibility of the model for representing real systems: 

𝜕𝜃𝑖

𝜕𝑡
=  𝜔𝑖 + 

𝑉

𝑁
∑ sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖)  + 𝜂𝑖(𝑡)     

Complex Networks and the Kuramoto model 

Complex networks are graphs which represent complex systems – or more specifically, the nodes within complex 

systems and their interactions. Synchronisation and Complex Networks are two interwoven topics of study. A 

paper in the late 90s - arguably one of the founding papers of the field of Complex Networks - written by Duncan 

J. Watts and Steven Strogatz, consisted of the idea of including shortcuts between oscillators connected as a 

regular graph to analyse how crickets synchronize their chirps (Rodrigues et al, 2016). Since then, a great deal of 

emphasis has been placed on determining how network structure influences synchronisation. 

Initially, the model was studied in complete graphs – simple undirected graphs, where every pair of distinct nodes 

are connected by a unique link. This is known as all-to-all coupling, and isn’t always realistic in modelling real 

complex systems, where connections between nodes exist in some instances and not others. 

The Kuramoto model is adapted to this perspective as follows: 

𝜕𝜃𝑖

𝜕𝑡
=  𝜔𝑖 + ∑ 𝛾𝑖𝑗𝐴𝑖𝑗sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖)                       

Where 𝐴𝑖𝑗 is the (i,j) entry to the adjacency matrix of a complex network, corresponding to 1 in the presence of a 

link between nodes, and 0 otherwise. 𝛾𝑖𝑗 is the coupling strength between nodes i and j. In a fully connected 

graph, the approximation 𝛾𝑖𝑗 =  𝛾  is used. 

 

Figure 5: Pictorial and matrix representation of different network models. Taken from ‘Generalising the Kuramoto model for the study of neuronal 

synchronisation in the brain’ by D. Cumin, C. and P. Unsworth (2007). 

If we abandon all to all coupling then we allow for clusters of nodes to occur, or ‘hub’ nodes which have more 

influence than others. There is therefore significant attention paid to how the degree distribution of nodes affects 

synchronisation. For example, numerical analysis has found that networks with a high occurrence of triangles 

reach lower levels of synchronization in comparison with networks with the same degree distribution at the same 

coupling strength (Rodrigues et al, 2016). Other adaptations allow for time-delayed coupling and evolving 

networks, in which nodes join the network at different times. 



In recent years, many attempts have been made to expand the analysis of the Kuramoto model to different 

classes of network models, allowing the topological properties of different systems of oscillators to be explored.  

Recent areas of application 

We observe two examples of important application areas in recent years: power-grid networks and cortical 

networks. 

Power-grid networks 

Power grid networks consist of a network of generators, which convert sources of energy into electricity, and 

consumers/machines which do the opposite. There are therefore two kinds of dissipative oscillators, whose 

overall set of intrinsic frequencies are best modelled as originating from a bimodal distribution. 

Continuation is an important component of power-grid networks i.e., for energy to flow seamlessly throughout. 

Synchronisation of oscillators is therefore important. Otherwise, areas of the network may become overloaded or 

vulnerable to small fluctuations. Dramatic events like power outages may occur if the system transitions to 

incoherence. 

It’s therefore of interest to develop a robust model for the synchronisation of such oscillators, and estimation of 

the coupling parameter V at which synchronisation occurs. This was achieved by Filatrella, G., Nielsen, A. and 

Pedersen, N in 2008, in which a second order Kuramoto model was derived, as below: 

𝜕2𝜃𝑖

𝜕𝑡2 =  𝜔𝑖 − 𝑎
𝜕𝜃𝑖

𝜕𝑡
+  𝐾 ∑ 𝐴𝑗𝑖sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖) 

𝐴𝑗𝑖 are entries of an adjacency matrix A which convey the existence of transmission lines between electrical 

generators.  

Cortical Networks  

Prior to the Kuramoto model’s development, in the late 1950’s, Norbert Wiener hypothesised that synchronisation 

of brain waves was a result of tempering effects between neuronal oscillators. Neuronal synchronisation has 

been observed extensively experimentally in subsequent years and numerical simulations are increasingly 

deployed to study the phenomena.  

This is one example where the model must be adapted to accommodate properties of cortical connectivity 

relating to their spatial distribution. For example, a model devised by Breakspear, M, Stewart, H and 

Daffertshofer,A in 2010, integrated time delays to represent the distance between dense (fully connected) 

neurons within the cortical sheet: 

𝜕𝜃𝑖

𝜕𝑡
=  𝜔𝑖 + 

𝑉

𝑁
∑ sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖 − 𝑎𝑖𝑗)                       

where 𝑎𝑖𝑗 is a spatially dependent parameter representing time delay. 

A 2007 paper by D. Cumin and C.P Unsworth noted that intrinsic frequencies of oscillators - as applied to 

neuronal oscillators - must be time adaptive to reflect the naturally changing threshold levels at which neurons 

fire. It also pointed to the need to establish the aforementioned adjacency matrix term to reflect the different types 

of connectivity within different clusters of neurons, which could move beyond a simple ‘1’ or ‘0’ value to reflect 

existence of links, and instead could be given a weighting to reflect both existence and strength of link/coupling. 

This is represented below: 

𝜕𝜃𝑖

𝜕𝑡
=  𝜔𝑖(𝑡) +  ∑ 𝐾𝑖𝑗sin (𝜃𝑗 −

𝑗≠𝑖

𝜃𝑖)                       
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