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Chapter 1 – The Introduction  
 

Section 1.1: Introduction 

 
One of the most interesting applications of mathematics comes from the iconic population 

estimator problem that came about during WWII and has since been called “The German Tank 

Problem”. This famous statistical problem and its approach has influenced history and has given 

further support to using mathematics creatively to solve complex, real-world problems.  

 

A population size estimate problem is a statistical problem that uses statistical methods and 

instruments to figure out the total size of a population based on a sample from the population. 

“The German Tank Problem” was given its name because of the nature of the problem it 

addresses. In this historical case, during World War II the Allies used mathematics to estimate 

the total number of German tanks from a small sample (serial numbers obtained from captured, 

destroyed or observed tanks).  

 

There are two statistical approaches for this type of problem, one using the frequentist approach 

and the other using the Bayesian approach. The difference between Bayesian and frequentist is 

that frequentists “use probability only to model certain processes broadly described as 

"sampling." Bayesians use probability more widely to model both sampling and other kinds of 

uncertainty.” [1]. For this paper, I will focus on the frequentist approach. For a population size 

estimation problem such as this one, the frequentist approach, essentially, assumes that the total 

population size is a fixed number, 𝑁, in contrast to the Bayesian approach which assumes that 

𝑁 is a random variable.  

 

In this paper I will cover the context of “The German Tank Problem” with its historical 

applications. I will then go into the motivation for the structure of the analytics of the problem. I 

will then discuss the frequentist approach in more detail and will construct the mathematical 

formulas used to solve the problem using this specific statistical approach. Lastly, I will go over 

a few simulations conducted in order to show how actual calculations work.  

 

Note that I will use serial number and value to mean the same thing throughout the paper.  

 

Section 1.2: The History – “The German Tank Problem” 
 

During WWII the Allies had to be clever and find new advanced solutions to get an advantage 

over their opponent. The Allies were very shrewd in their methods to outwit the Germans and 

mathematics was a vital part of the Allies’ strategy. It is widely known that mathematics was 

used by the Allies in cracking the Enigma code, but they also used mathematics to face another 

important question about German defence production. It was important for the Allies to know 

what they were up against in order to know what they needed to match or outdo the German side. 

So, the Allies wanted to know how many tanks the German army was producing each month. 

There were two different strategies used to get this information.  
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The first way was the traditional intelligence gathering route, in which, an estimate would be 

made solely based on intelligence gathered from spies.  

 

The other way was more revolutionary. Traditional means of intelligence were more respected, 

and nothing had challenged it before. However, mathematics and statistics had made great leaps 

and were beginning to look like they could be used as well. The use of statistics in this way 

would later influence future problems of this nature. The approach to this problem was one of the 

greatest achievements of mathematicians during WWII. 

 

The method worked like this: The Allies were lucky in that the Germans were, by nature, 

organised even in war. Consequently, the Germans had thoroughly labelled tanks and their parts 

in consecutive order from 1 to some unknown value. The Allies used the serial numbers on 

captured or destroyed tanks to get a sample and, from the sample they collected, they made a 

statistical inference about how many tanks the Germans were making each month.  

 

This was essential to their strategy for winning battles and even helped the Allies better 

understand their opponent. “Estimating production was not the only use of this serial-number 

analysis. It was also used to understand German production more generally, including number of 

factories, relative importance of factories, length of supply chain (based on lag between 

production and use), changes in production, and use of resources such as rubber.” [3] 

 

In the end, the estimations made using the statistical methods proved to be more accurate than 

the conventional intelligence. Evident in the following chart. [3] 

 
 

“The German Tank Problem” was revolutionary in that it helped provide evidence that using 

statistics in problems such as this one was more effective than using traditional means of 

intelligence gathering.  

 

This method was used for other military equipment during WWII as well. Similar methods have 

since been used in getting an edge in wars, including the Korean War.  

 

It is important to note, however, that since, there have been efforts made to make it more difficult 

to gather the original sample data from serial numbers that have been replaced using 

cryptography.  

 

 

Section 1.3: Motivation 
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To get an understanding for the problem and gain some intuition around it, I will motivate the 

mathematics I will eventually use. 

 

For this example, assume the Allies have observed and recorded serial numbers from a 

population of wrecked tanks, labelled with positive integer valued serial numbers in consecutive 

order. (Positive integer values because they were labelled starting with serial number 1 and 

increasing in value from there). 

 

Suppose that an Ally scientist is given a sample of serial numbers, let’s say, 

 

{23,99,56,131} 

 

Intuitively, most people that make a guess will most likely make the assumption that the sample 

is most likely somewhat equally distributed and so the total value must be a similar distance 

away from the maximal value in the set. From that assumption, the naïve approach might be to 

assume the formula for finding 𝑁, the total number of tanks produced in a particular month, 

looks something like: 

𝑁 = 𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑎𝑥

1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 

(Where 𝑥𝑚𝑎𝑥 is the value of the maximum serial number from the sample)  

 

There isn’t any formal mathematical support for this formula, but it somehow intuitively makes 

sense. So for the given example, I see there are 4 integers in the sample, I assume they are all 

equally distributed so that must mean that the maximum value of the sample, 131, is 80% of the 

total population, 𝑁, which would mean I need to add 20% more to that maximum value to find 

the 𝑁. 

 

I will later refer back to this ‘intuition formula’.  

 

Chapter 2 - Overview of Frequentist Approach for “The German 

Tank Problem” 

 
Section 2.1: Introduction to the frequentist approach  

 
The frequentist approach to this type of population size estimator problem assumes the value for 

the total number of tanks produced in a month, 𝑁, is a fixed value. “In a frequentist approach to 

inference, unknown parameters are often […] treated as having fixed but unknown values that 

are not capable of being treated as random variates in any sense, and hence there is no way that 

probabilities can be associated with them.” [4] 

 

The frequentist approach is useful because it can be more intuitive to work with yet still yield 

reliable results. It is a less abstract way of working with statistical instruments.  

 

https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Random_variate
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This approach will use statistical instruments such as binomial coefficients, a probability mass 

function and expectation in order to get a precise estimate for the total number of tanks, 

𝑁, produced in a particular month. 

 

With this approach, we are considering samples of certain sizes, 𝑚, so we will count the number 

of serial numbers (values) that we can choose from the total population using a binomial 

coefficient to mathematically represent this process. From there, it will become evident that we 

are interested in whether the probability of the maximal value of the sample is equal to some 

particular value. This is where the need for a probability mass function comes in and will make a 

contribution to the results. The probability mass function will be used to calculate the 

expectation of what the maximal value is. From the expression for the expectation (of the 

maximal value), we will be able to derive an expression for 𝑁 after introducing another random 

variable, 𝑌, dependent on the random variable of the maximal value.  

  

The most important serial number is the maximal value of the sample. Since the maximal value 

implies the value for 𝑁 is definitely greater than or equal to the maximal value of the sample. 𝑁 

is clearly greater than the smaller values so theses simply provide information on the size of the 

sample. The maximal value in the sample will therefore play a key role in the subsequent 

calculations.  

 

Section 2.1.1: The Analytics  

 
In this section I will discuss and layout the necessary tools I will use for this population size 

estimate using the Frequentist approach. 
 

Notation: 

Let N denote the parameter for the actual size of the population, i.e., total number of tanks  

Let 𝑚 denote the sample size. 

Let 𝑥𝑚 denote the last value in the sequence of value in the sample  

Let 𝑋𝑖 denote the random variable for the values in position for 𝑖 = 1,2, … , 𝑚 

Let 𝑋𝑀 denote the random variable for maximal value, i.e., 𝑋𝑀 = 𝑚𝑎𝑥 {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} 

 

Remarks: 

In order to find the value for 𝑁, I will start by laying out the random variable 𝑋𝑀 which I will 

eventually use to estimate 𝑁. 

 

As a frequentist, I will assume that the total number of tanks being produced in a particular 

month, 𝑁, is a fixed value, as previously discussed. For this section I will assume that the 

fixed value of 𝑵 is known. 

 

Given sample with size 𝑚, I have a collection of random variables to represent the randomness 

of the value the sample can take at each position. 𝑋1 will be the corresponding random variable 

for the values in the first position of the set, 𝑥1, and so on until 𝑋𝑚 is the random variable in the 

last position of the set. Since the list is not necessarily in increasing order, note that 𝑋𝑚 is not 

necessarily the largest value in the set so I designated this as 𝑋𝑀 under the ‘Notation’ heading 
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above. In other words, 𝑋𝑀 = 𝑚𝑎𝑥 {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} while 𝑋𝑚 refers to the random variable 

that represents the value in the last position of the set/sample). 

 

 

 

𝑋1, 𝑋2 , 𝑋3 , … , 𝑋𝑚    

 

{𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑚,} 

 

 

i. {2, 55, 123, 134} 
 

ii. {15, 25, 99, 27} 
 

iii. {2, 134, 123, 55} 
 

The values are as follows: 

 

i. 𝑥1 = 2, 𝑥2 = 55 , 𝑥3 = 123, 𝑥4, = 134  
 

Here 𝑚 = 4, which implies 𝑥𝑚, = 𝑥4 = 𝑋𝑚 = 𝑋4   𝑥4 = 𝑋4 = 134 and 𝑋𝑀 = 134  

 

ii. 𝑥1 = 15, 𝑥2 = 25 , 𝑥3 = 99, 𝑥4 = 27 
 

Here 𝑚 = 4, which implies (again)  𝑥𝑚, = 𝑥4 = 𝑋𝑚 = 𝑋4 𝑠𝑜 𝑥4 = 𝑋4 = 27 and 𝑋𝑀 = 99 =  𝑥3 

𝑋𝑀 = 𝑋3 since the largest in the 𝑥3 position 

 

iii. 𝑥1 = 2, 𝑥2 = 134 , 𝑥3 = 123, 𝑥4 = 55 
 

Here 𝑚 = 4, which implies (again)  𝑥𝑚, = 𝑥4 = 𝑋𝑚 = 𝑋4 𝑠𝑜 𝑥4 = 𝑋4 = 27 and 𝑋𝑀 = 99 =  𝑥2 

𝑋𝑀 = 𝑋2 since the largest in the 𝑥2 position 

 

 

Section 2.1.2 – Binomial Coefficients and The Probability Mass Function  

 
The probability mass function, pmf, is defined by Ρ(𝑋𝑀 = ℓ), i.e. the probability that the random 

variable, 𝑋𝑀, which represents the maximum value of the sample, will be some value ℓ. For any 

value of ℓ I can therefore work out the probability the maximum is equal to this value, ℓ. By 

inputting some value for ℓ, my output will be a probability.  

 

It is clear that the probability mass function will have a 0 probability for any value less than 𝑚 or 

for any value greater than 𝑁. I know this because it is impossible to get a value less than 𝑚  

considering I have 𝑚 values in my sample. It is also impossible to get a value greater than 𝑁 

because I cannot get a value larger than the total population (I have assumed 𝑁 is known). To 

further illustrate this point, say I am given a sample with size 𝑚 = 5. I know Ρ(𝑋𝑀 = 1) = 0 

The Random Variables: 

The corresponding values in 

the sample: 

For example, here I have 

several random samples  

with sample size 4 (i.e. 

𝑚 = 4)   
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because if  𝑚 = 5 it is impossible for the maximum of a sample to be the integer 1 by the 

previous assumptions I have made (that the tanks are labelled with integers, greater than zero, in 

increasing order) . I also know that Ρ(𝑋𝑀 = 𝑁 + 1) = 0, by similar logic. Therefore, I can 

deduce there is a range of values of ℓ for which I will get a nonzero probability, ℓ = 𝑚, 𝑚 +
1, … , 𝑁.  

 

From the setup of the problem I can deduce what I already know in order to help me further set 

the stage. I know from the basis of my problem that since I get a sample of serial numbers from 

𝑁 total tanks, I also know this sample is definitely selected at random since my sample is coming 

from randomly destroyed or captured tanks. To translate this into mathematical terms, I choose 

𝑚 numbers at random from a population with size 𝑁, therefore I know I must have the binomial 

coefficient (𝑁
𝑚

) , “𝑁 choose 𝑚”, somewhere in my pmf. Since a pmf is giving me the probability 

of something happening, it will be a fraction of something and also recall that probability is 

always some value between zero and one. It is apparent that the binomial coefficient (𝑁
𝑚

) gives 

me the number of all possibilities so it is clear that this is my denominator.  

 

I am trying to work out the number of choices we can have in which we have a set of 𝑚 serial 

numbers that are chosen from 𝑁 total serial numbers and the set has the maximal serial number is 

ℓ. In order to understand a bit more and see how to set up the pmf, I will go into an example. 

 

Example 

Let 𝑚 = 5 (i.e. samples with size 5) 

Suppose ℓ = 143, (i.e. the maximal value of the set is 143) then I take all my random samples 

and choose the samples with the maximal value 143 in sets with 𝑚 = 5: 

 
{15, 25, 48, 27, 143} 

 

{12,45,23,143,65} 

 

… 

 

Since I only really care about the maximal integer, ℓ = 143, the other 4 entries can be any other 

value as long as they are less than 143, so I only can choose ℓ − 1 or 143 − 1 = 142 entries for 

the remaining spots of the sample, i.e. in 𝑚 − 1 or 5 − 1 = 4 spots. Therefore, I end up with the 

binomial coefficient (142
4

). 

 

 

Comment 

From this example I see ( ℓ−1
𝑚−1

) will be in the numerator of the pmf. Therefore, the general pmf 

for when the maximum is ℓ looks like: 

 

Ρ(𝑋𝑀 = ℓ) =
( ℓ−1

𝑚−1
)

(𝑁
𝑚

)
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Recall that Ρ(𝑋𝑀 = ℓ) = 0 𝑖𝑓 ℓ < 𝑚 and if ℓ > 𝑁 for reasons previously stated.  

 

 

Section 2.1.3 – The Expectation  

 
Now I want to use what I have done to work out a formula for the Expectation value because I 

will need it to calculate 𝑁.  The Expectation of the random variable 𝑋𝑀 is, essentially, just the 

average observation for the maximal value of the samples. To compute 𝐸(𝑋𝑀), using the 

definition of expectation:  

 

𝐸(𝑋𝑀) =  ∑ ℓ

𝑁

ℓ=𝑚

𝑃(𝑋𝑀 = ℓ) = ∑ ℓ

𝑁

ℓ=𝑚

( ℓ−1
𝑚−1

)

(𝑁
𝑚

)
 

 

 

 

Remark Note that the sum has ℓ starting at 𝑚 because ℓ cannot be less than 𝑚 (the binomial 

coefficient would be undefined if you had ℓ choose 𝑚 with ℓ < 𝑚) 

 

There are a few identities of binomial coefficients that I will use in order to eventually solve for 

𝑁. The following proposition is my first relevant identity.  

 

Proposition 2.1 Let ℓ and 𝑚 be natural numbers. For binomial coefficients, the following 

identity holds: 

 

(
ℓ

𝑚
) =

ℓ

𝑚
(

ℓ − 1

𝑚 − 1
) 

 

 

Proof: I claim that the left-hand side is equal to the right-hand side. In order to prove this, I will 

expand side independently from one another using the definition of Binomial Coefficients. 

Firstly, the right-hand side is, by definition, 

 

(
ℓ

𝑚
) =

ℓ!

𝑚! (𝑚 − ℓ)!
 

 

I want to expand the left-hand side enough using what I know in order to end up with something 

that looks like the above.  

Secondly, for the left-hand side using the definition I get, 

 
ℓ

𝑚
(

ℓ − 1

𝑚 − 1
) =

ℓ

𝑚
∙

(ℓ − 1)!

(𝑚 − 1)! ((ℓ − 1) − (𝑚 − 1))!
 

 

=
ℓ

𝑚
∙

(ℓ − 1)!

(𝑚 − 1)! (ℓ − 𝑚)!
 

(1) 

By definition 

Combining ((ℓ − 1) − (𝑚 − 1))! We 

get (ℓ − 1 − 𝑚 + 1) so the 1’s cancel 

By the comment above 



 9 

 

=
ℓ ∙ (ℓ − 1)!

𝑚 ∙ (𝑚 − 1)! (ℓ − 𝑚)!
 

 

I will use the fact that ℓ(ℓ − 1)! = ℓ!  In order to simplify in the numerator and denominator, so 

I end up with the following for the equation of the left-hand side: 

 

=
ℓ!

𝑚! (ℓ − 𝑚)!
 

 

Therefore, it is clear that both sides are the same: 

 

(
ℓ

𝑚
) =

ℓ!

𝑚! (𝑚 − ℓ)!
=

ℓ

𝑚
(

ℓ − 1

𝑚 − 1
) 

 

 

 

∎ 

 

 

I will now use this identity in the formula previously given for 𝐸(𝑋𝑀). However, I want the 

identity to fit in easily. So, my first step is to manipulate 𝐸(𝑋𝑀) so that it looks similar to (1). I 

will do this by multiplying by a ‘special one’, 
𝑚

𝑚
: 

 

𝐸(𝑋𝑀) = ∑ ℓ

𝑁

ℓ=𝑚

( ℓ−1
𝑚−1

)

(𝑁
𝑚

)
∙

𝑚

𝑚
= 𝑚 ∙ ∑

ℓ

𝑚
∙

𝑁

ℓ=𝑚

( ℓ−1
𝑚−1

)

(𝑁
𝑚

)
 

 

 

 

Now 𝐸(𝑋𝑀) looks similar to (1). So, when I apply the identity from (1) to the formula for 

𝐸(𝑋𝑀): 

 

 

𝐸(𝑋𝑀) =
𝑚 ∙ ∑ ( ℓ

𝑚
)𝑁

ℓ=𝑚

(𝑁
𝑚

)
 

 

 

I will introduce the next identity in order to manipulate the numerator in (*) further. 

 

Proposition 2.2 Let 𝑘 and 𝑚 be natural numbers. For binomial coefficients, the following 

identity holds: 

 

(
𝑘

𝑚
) = (

𝑘 + 1

𝑚 + 1
) − (

𝑘

𝑚 + 1
) (2) 

(*) 
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Proof: Similar to Proposition 2.1, to work out that both sides equal each other and, therefore, 

proving the proposition, I will work out each side independently from one another using the 

definition of Binomial Coefficients.  

Let 0 ≤ 𝑚 ≤ 𝑘. I know that, by definition,  

 

The right-hand side is: 

 

(
𝑘

𝑚
) =

𝑘!

𝑚! (𝑛 − 𝑘)!
 

 

 

To expand the left-hand side: 

 

(
𝑘 + 1

𝑚 + 1
) − (

𝑘

𝑚 + 1
) =

(𝑘 + 1)!

(𝑚 + 1)! ((𝑘 + 1) − (𝑚 + 1))!
−

𝑘!

(𝑚 + 1)! (𝑘 − (𝑚 + 1))!
 

 

=
(𝑘 + 1)!

(𝑚 + 1)! (𝑘 + 1)!
−

𝑘!

(𝑚 + 1)! (𝑘 − 𝑚 − 1)!
 

 

I will pull out the common factor in the denominator, (𝑚 + 1)!: 
 

=
1

(𝑚 + 1)!
∙ {

(𝑘 + 1)!

(𝑘 − 𝑚)!
−

𝑘!

(𝑘 − 𝑚 − 1)!
} 

 

Note that (𝑘 + 1)! = (𝑘 + 1)𝑘!, so I can now pull out a common factor in the numerator:  

 

=
𝑘!

(𝑚 + 1)!
∙ {

𝑘 + 1

(𝑘 − 𝑚)!
−

1

(𝑘 − 𝑚 − 1)!
} 

 

I see that (𝑘 − 𝑚)! = (𝑘 − 𝑚)(𝑘 − 𝑚 − 1)! In order to pull out another common factor: 

 

=
𝑘!

(𝑚 + 1)! (𝑘 − 𝑚 − 1)!
∙ {

𝑘 + 1

𝑘 − 𝑚
− 1} 

 

Taking the portion in brackets, I will simplify further, {
𝑘+1

𝑘−𝑚
− 1} =

𝑘+1−(𝑘−𝑚)

𝑘−𝑚
=

𝑚+1

𝑘−𝑚
 and so I 

now I have a single term: 

 

=
𝑘!

(𝑚 + 1)! (𝑘 − 𝑚 − 1)!
∙

𝑚 + 1

𝑘 − 𝑚
 

 

Recognize the common factor between in the denominator: 
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=
𝑘!

(𝑚 + 1)! (𝑘 − 𝑚)!
∙ (𝑚 + 1) 

 

I cancel two terms and also use the fact that (𝑚 + 1)! = (𝑚 + 1)𝑚!, 
 

=
𝑘!

𝑚! (𝑘 − 𝑚)!
 

Which is equivalent to: 

= (
𝑘

𝑚
) 

 

Therefore, it is clear that both sides are equivalent:  

 

(
𝑘

𝑚
) =

𝑘!

𝑚! (𝑛 − 𝑘)!
= (

𝑘 + 1

𝑚 + 1
) − (

𝑘

𝑚 + 1
) 

 

 

As required. 

 

 

∎ 

 

 

 

Now I will use (2) to work out the expectation. Recall the formula I determined for the 

expectation is as follows:  

 

𝐸(𝑋𝑀) =
𝑚 ∙ ∑ ( ℓ

𝑚
)𝑁

ℓ=𝑚

(𝑁
𝑚

)
 

 

Let’s try working out a few terms. I will begin by working out the sum in part of the numerator,  

 

∑ (
ℓ

𝑚
)

𝑁

ℓ=𝑚

= (
𝑚

𝑚
) + (

𝑚 + 1

𝑚
) + (

𝑚 + 2

𝑚
) + (

𝑚 + 3

𝑚
) + ⋯ + (

𝑁 − 1

𝑚
) + (

𝑁

𝑚
) 

 

Note that I can use my identity from (2) for this sum so that it will be easier to work with:   

 

∑ (
ℓ

𝑚
)

𝑁

ℓ=𝑚

=  ∑ {(
ℓ + 1

𝑚 + 1
) − (

ℓ

𝑚 + 1
)}

𝑁

ℓ=𝑚

 

 

 

By replacing each term by the corresponding value, as laid out above (and in (2)) I can see that 

this is, in fact, a telescoping sum.: 
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= (
𝑚

𝑚
) + (

𝑚 + 2

𝑚 + 1
) − (

𝑚 + 1

𝑚 + 1
) + (

𝑚 + 3

𝑚 + 1
) − (

𝑚 + 2

𝑚 + 1
) + (

𝑚 + 4

𝑚 + 1
) − (

𝑚 + 3

𝑚 + 1
) + ⋯ + (

𝑁

𝑚 + 1
) − (

𝑁 − 1

𝑚 + 1
) + (

𝑁 + 1

𝑚 + 1
) − (

𝑁

𝑚 + 1
) 

 

Once I’ve cancelled the terms I am left with (for the sum in the numerator):  

 

∑ (
ℓ

𝑚
)

𝑁

ℓ=𝑚

= (
𝑁 + 1

𝑚 + 1
) 

 

Therefore, once I plug this term back into the formula, replacing the sum with the above value 

the expectation of 𝑋𝑀 is: 

 

𝐸(𝑋𝑀) =
𝑚 ∙ (𝑁+1

𝑚+1
)

(𝑁
𝑚

)
 

 

Using the identity (1), I have that (𝑁+1
𝑚+1

) =
𝑁+1

𝑚+1
∙ (𝑁

𝑚
) and when I plug that into the formula, I get: 

 

𝐸(𝑋𝑀) =
𝑚 ∙

𝑁 + 1
𝑚 + 1 (𝑁

𝑚
)

(𝑁
𝑚

)
 

 

So, when I cancel the binomial coefficient from the numerator and denominator I am left with: 

 

𝐸(𝑋𝑀) =
𝑚 ∙ (𝑁 + 1)

𝑚 + 1
 

 

I now have a function that has 𝑁 in it, so after rearranging we have a formula for 𝑁 instead: 

 

𝑁 =
𝑚 + 1

𝑚
𝐸(𝑋𝑀) − 1 

 

 

Section 2.1.4 – Estimating N 

 
I know 𝑋𝑀 but I do not know 𝐸(𝑋𝑀) for certain, therefore I will introduce 𝑌, a random variable 

that is dependent on the random variable 𝑋𝑀.  

 

Formula used to estimate 𝑁: 

𝑌 =
𝑚 + 1

𝑚
𝑋𝑀 − 1 

 

So, the expectation of 𝑌 should give 𝑁: 

 

𝐸(𝑌) = 𝑁 
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Remarks on Section 2.1 – Comparing to the naïve estimator 

The naïve formula (the ‘intuitive formula’): 

 

𝑁 = 𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑎𝑥

1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 

The frequentist formula: 

 

𝒀 = (𝟏 +
𝟏

𝒎
) 𝑿𝑴 − 𝟏 = 𝑿𝑴 + 𝑿𝑴

𝟏

𝒎
− 𝟏,      𝑬(𝒀) = 𝑵  

   
When I compare the two formulas, we see that the mathematical supported formula differs by 

one which implies that the naïve estimate overestimates, but somehow still gives a good 

approximation. Which helps to make sense of the mathematical approach because it so closely 

resembles our intuition. However, after reflecting on the intuition, taking away one from this 

formula and then taking the expectation of that formula was unexpected.  

 

So, the frequentist formula differs in that it encompasses a mathematical tool, expectation, so 

essentially, just taking the average of the formula.  

 

 

Section 2.2.1 – The Variance  

 
Variance is used to measure the fluctuations between the different values of 𝑌 across the average 

value of 𝑌, i.e. 𝐸(𝑌). The variance is quantifying the distance of these fluctuations.  

 

Visualization: 

 

 

 

 

It’s ideal for the top line to be small that would mean the variance is small. When the variance is 

big it means the 𝐸(𝑌) is pretty much useless since 𝑌 isn’t precise. To have a small variance 

means the value is likely accurate. Smaller variances are usually a result of having a larger 

sample size.  

 

From the previous section, I know that 𝐸(𝑌) = 𝑁 so I want the variance to be small in order to 

have the most accurate representation of the total number, 𝑁. (Which would mean we want a 

large 𝑚.) 

 

 

Section 2.2.1 – Calculation of Variance  
 

Using the definition of variance, as stated below: 

 

This line represents the distance between the values of Y 

Y 
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𝑉𝑎𝑟(𝑌) = 𝐸(𝑌2) − (𝐸(𝑌))2 

From the variance I can work out the accuracy of 𝑁.  

 

Recall from the previous section, after rearranging, that the formula for the random variable 𝑌 is 

the following:  
 

𝑌 =
𝑚 + 1

𝑚
𝑋𝑀 − 1 

 

So, plugging this into the equation for variance: 

 

𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟(
𝑚 + 1

𝑚
𝑋𝑀 − 1) 

 

So now the variance includes the random value 𝑋𝑀. I will use the following theorem to help me 

break this down.  

 

Theorem 2.1 Let 𝑋 be a random variable and 𝑎, 𝑏 be real numbers. 

 

𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2𝑉𝑎𝑟(𝑋) 

 

Proof: Using the definition of variance, 

 

𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝐸((𝑎𝑋 + 𝑏)2) − (𝐸(𝑎𝑋 + 𝑏))2 

 

Using rules of expectation, I can work out, 

 

= 𝐸(𝑎2𝑋2 + 2𝑎𝑏𝑋 + 𝑏2) − (𝑎𝐸(𝑋) + 𝑏)2 

 

= 𝑎2𝐸(𝑋2) + 2𝑎𝑏𝐸(𝑋) + 𝑏 − (𝑎2(𝐸(𝑋))
2

+ 2𝑎𝑏𝐸(𝑋) + 𝑏2) 

 

= 𝑎2(𝐸(𝑋2) − (𝐸(𝑋))
2

) 

 

= 𝑎2𝑉𝑎𝑟(𝑋) 

 

∎ 

 

 

 

So, using both the definition of variance and the theorem, (letting 𝑎, 𝑏 be the obvious terms) I get 

that I am looking for, 

 

𝑽𝒂𝒓(𝒀) = (
𝒎 + 𝟏

𝒎
)𝟐𝑽𝒂𝒓(𝑿𝑴) 
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So, once I know the variance of 𝑋𝑀 I can determine the variance of 𝑌 from there. I know that, by 

the definition of variance:  

 

𝑉𝑎𝑟(𝑋𝑀) = 𝐸(𝑋𝑀
2) − (𝐸(𝑋𝑀))2 

 

From the previous sections, I already know what 𝐸(𝑋𝑀) is, so I just need to consider how to find 

𝐸(𝑋𝑀
2). 

 

*Key Observation: It is “easy” to compute E(XM(XM + 1))* 

Writing this out completely: 

 

 

𝐸(𝑋𝑀(𝑋𝑀 + 1)) = 𝐸(𝑋𝑀
2 + 𝑋𝑀) = 𝐸(𝑋𝑀

2) + 𝐸(𝑋𝑀) 

 

So, to summarize, 

 

𝐸(𝑋𝑀
2) = 𝐸(𝑋𝑀(𝑋𝑀 + 1)) − 𝐸(𝑋𝑀) 

 

Replacing 𝐸(𝑋𝑀
2) in the previously stated 𝑉𝑎𝑟(𝑋𝑀) equation. We get this useful formula:  

 

𝑉𝑎𝑟(𝑋𝑀) = 𝐸(𝑋𝑀(𝑋𝑀 + 1)) − 𝐸(𝑋𝑀) − (𝐸(𝑋𝑀))
2
 

 

Here I just need to work out what 𝐸(𝑋𝑀(𝑋𝑀 + 1)) is. By definition (as previously stated in 

Section 2.1.3): 

 

𝐸(𝑋𝑀) =  ∑ ℓ

𝑁

ℓ=𝑚

𝑃(𝑋𝑀 = ℓ) 

 

Therefore, 

 

𝐸(𝑋𝑀(𝑋𝑀 + 1)) = ∑ (ℓ(ℓ + 1))

𝑁

ℓ=𝑚

𝑃(𝑋𝑀 = ℓ) = ∑ (ℓ(ℓ + 1))

𝑁

ℓ=𝑚

( ℓ−1
𝑚−1

)

(𝑁
𝑚

)
 

 

Recalling Proposition 2.1: 

 

𝐸(𝑋𝑀(𝑋𝑀 + 1)) =
1

(𝑁
𝑚

)
∑ (ℓ(ℓ + 1))

𝑁

ℓ=𝑚

(
ℓ − 1

𝑚 − 1
) 

 

 

 

Now taking a quick break in to think about what’s in the sum, ℓ(ℓ + 1)( ℓ−1
𝑚−1

) in more detail. It 

would be nice to find an identity for: 

(3) 
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ℓ(ℓ + 1)

𝑚(𝑚 + 1)
(

ℓ − 1

𝑚 − 1
) 

 

=
ℓ(ℓ + 1)

𝑚(𝑚 + 1)
∙

(ℓ − 1)!

(𝑚 − 1)! ((ℓ − 1) − (𝑚 − 1))!
 

 

=
ℓ(ℓ + 1)

𝑚(𝑚 + 1)
∙

(ℓ − 1)!

(𝑚 − 1)! (ℓ − 𝑚)!
 

 

=
ℓ(ℓ + 1)(ℓ − 1)!

𝑚(𝑚 + 1)(𝑚 − 1)! (ℓ − 𝑚)!
 

 

=
(ℓ + 1)!

(𝑚 + 1)! (ℓ − 𝑚)!
 

 

=
(ℓ + 1)!

(𝑚 + 1)! ((ℓ + 1)(𝑚 + 1))!
 

 

= (
ℓ + 1

𝑚 + 1
) 

 

Which gives me the nice identity: (4) 

 
ℓ(ℓ + 1)

𝑚(𝑚 + 1)
(

ℓ − 1

𝑚 − 1
) = (

ℓ + 1

𝑚 + 1
) 

 

When I multiply by the denominator I get: 

 

ℓ(ℓ + 1) (
ℓ − 1

𝑚 − 1
) = (

ℓ + 1

𝑚 + 1
) 𝑚(𝑚 + 1) 

 

 

 

Now going back to my calculation of 𝐸(𝑋𝑀(𝑋𝑀 + 1)), I can now replace ℓ(ℓ + 1)( ℓ−1
𝑚−1

) with 

my identity: 

 

𝐸(𝑋𝑀(𝑋𝑀 + 1)) =
1

(𝑁
𝑚

)
∑ (

ℓ + 1

𝑚 + 1
) 𝑚(𝑚 + 1)

𝑁

ℓ=𝑚

 

 

=
𝑚(𝑚 + 1)

(𝑁
𝑚

)
∑ (

ℓ + 1

𝑚 + 1
)

𝑁

ℓ=𝑚
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Taking another break here, I will use proposition 2.2,  

 

∑ (
ℓ

𝑚
) = (

𝑁 + 1

𝑚 + 1
)

𝑁

ℓ=𝑚

 

 

Now going to look at the sum I am interested in again, 

 

∑ (
ℓ + 1

𝑚 + 1
)

𝑁

ℓ=𝑚

 

 

I will let 𝑘 =  ℓ + 1, so I get the following, 

 

∑ (
𝑘

𝑚 + 1
) = (

𝑁 + 2

𝑚 + 2
)

𝑁+1

𝑘=𝑚+1

 

 

 

Now again resuming my calculation of 𝐸(𝑋𝑀(𝑋𝑀 + 1)), 

 

 

𝐸(𝑋𝑀(𝑋𝑀 + 1)) =
𝑚(𝑚 + 1)

(𝑁
𝑚

)
∙ (

𝑁 + 2

𝑚 + 2
) 

 

 

When I simplify this value: 

 

=
𝑚(𝑚 + 1)

𝑁!
𝑚! (𝑁 − 𝑚)!

∙
(𝑁 + 2)!

(𝑚 + 2)! ((𝑁 + 2) − (𝑚 + 2))!
 

 

=
(𝑚(𝑚 + 1))(𝑚! (𝑁 − 𝑚)!)

𝑁!
∙

(𝑁 + 2)!

(𝑚 + 2)! (𝑁 − 𝑚)!
 

 

=
𝑚

𝑁!
∙

(𝑁 + 2)!

𝑚 + 2
 

 

= 𝑚 ∙
(𝑁 + 2)(𝑁 + 1)

𝑚 + 2
 

 

=
𝑚

𝑚 + 2
(𝑁 + 2)(𝑁 + 1) 

 

 

Now using my useful variance formula, I can work out the following: 
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𝑉𝑎𝑟(𝑋𝑀) = 𝐸(𝑋𝑀(𝑋𝑀 + 1)) − 𝐸(𝑋𝑀) − (𝐸(𝑋𝑀))
2
 

 

 

=
𝑚

𝑚 + 2
(𝑁 + 2)(𝑁 + 1) − (

𝑚(𝑁 + 1)

𝑚 + 1
) − (

𝑚(𝑁 + 1)

𝑚 + 1
)

2

 

 

=
𝑚

𝑚 + 2
(𝑁 + 2)(𝑁 + 1) −

𝑚(𝑁 + 1)

𝑚 + 1
(1 +

𝑚(𝑁 + 1)

𝑚 + 1
) 

 

=
𝑚

𝑚 + 2
(𝑁 + 2)(𝑁 + 1) −

𝑚(𝑁 + 1)(𝑚 + 1 + 𝑚(𝑁 + 1))

(𝑚 + 1)(𝑚 + 1)
 

 

= 𝑚(𝑁 + 1) (
𝑁 + 2

𝑚 + 2
−

𝑚 + 1 + 𝑚(𝑁 + 1)

(𝑚 + 1)(𝑚 + 1)
) 

 

 

= 𝑚(𝑁 + 1) (
𝑁 + 2

𝑚 + 2
−

𝑚(𝑁 + 2) + 1

(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
(𝑚 + 1)2(𝑁 + 2) − (𝑚(𝑁 + 2) + 1)(𝑚 + 2)

(𝑚 + 2)(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
(𝑚 + 1)2(𝑁 + 2) − 𝑚(𝑁 + 2)(𝑚 + 2) − (𝑚 + 2)

(𝑚 + 2)(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
(𝑁 + 2)((𝑚 + 1)2 − 𝑚(𝑚 + 2)) − (𝑚 + 2)

(𝑚 + 2)(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
(𝑁 + 2)(1) − (𝑚 + 2)

(𝑚 + 2)(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
(𝑁 + 2)(1) − (𝑚 + 2)

(𝑚 + 2)(𝑚 + 1)2
) 

 

 

= 𝑚(𝑁 + 1) (
𝑁 − 𝑚

(𝑚 + 2)(𝑚 + 1)2
) 
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So now I have what I need to calculate the variance of 𝑌. Using the formula, I mentioned at the 

beginning of the section:  

 

𝑉𝑎𝑟(𝑌) = (
𝑚 + 1

𝑚
)2𝑉𝑎𝑟(𝑋𝑀) 

 

= (
𝑚 + 1

𝑚
)2 ∙ (

𝑁 − 𝑚

(𝑚 + 2)(𝑚 + 1)2
)𝑚(𝑁 + 1) 

 

And after cancelling some terms and further simplifying, I am left with: 

 

=
1

𝑚
(

𝑁 − 𝑚

(𝑚 + 2)
) (𝑁 + 1) =

𝑁 + 1

𝑚
(
𝑁 − 𝑚

𝑚 + 2
) 

 

So, the variance of 𝑌 is: 

 

𝑽𝒂𝒓(𝒀) =
𝑵 + 𝟏

𝒎
(
𝑵 − 𝒎

𝒎 + 𝟐
) 

 

 

Which makes sense because as the sample size, 𝑚, gets larger the better (smaller) the variance.  

 

 

Chapter 3 – The Analysis Through Simulation 

 
Section 3.1: Simulations in R  

 
The simulations were performed in R. The following is my input values, followed by an 

explanation of the layout of the code and the output for the code.  

 

Input: 

floor(runif(50,1,251))  

I used this command to generate my sample of size 50 from a total of 250 integers starting at 1. 

The floor function ensures that my values are integers.  

 

max(floor(runif(50,1,251)))  

I used this code to find 𝑋𝑀 I will use the max function in front of the previous. 

 

So, to generate values for 𝑋𝑀 , 𝑌, and standard deviation (the square root of the variance) my 

code looks like: 

 

xm<-replicate(10,max(floor(runif(50,1,251)))) 

xm 

             ((50+1)/50)*xm-1 
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sqrt(((250+1)/50)*((250-50)/(50+2))) 

 

 

Output: 

[1] 248 250 249 250 250 246 244 250 245 249 

 [1] 251.96 254.00 252.98 254.00 254.00 249.92 247.88 254.00 248.90 252.98 

[1] 4.394052 

 

Summary of Key points 

 
• “The German Tank Problem” was a population estimator problem used by the Western 

Allies during WWII that aimed to use statistical methods to find a precise estimate of 
monthly tank production by the Germans based on a sample of serial numbers from 
captured or destroyed tanks. 
 

• The Frequentist approach to this problem was to assume there is a fixed number of 
tanks produced in a particular month, 𝑁, and construct a probability mass function 
(pmf) using a random variable to denote the maximal value of the sample set. 

 

• The general pmf for when the maximum is some value ℓ, 𝑚 ≤ ℓ ≤ 𝑁, looks like: 
 

Ρ(𝑋𝑀 = ℓ) =
( ℓ−1

𝑚−1
)

(𝑁
𝑚

)
 

 

• The pmf is used and manipulated using binomial coefficient identities to produce the 
expectation of the maximal value: 

𝐸(𝑋𝑀) =
𝑚 ∙ (𝑁 + 1)

𝑚 + 1
 

 

• After some carefully rearranging, an equation with a new random variable, 𝑌, 
dependent on 𝑋𝑀 is used to solve for an estimation of the total number of tanks: 
 
 

𝑌 =
𝑚 + 1

𝑚
𝑋𝑀 − 1, 𝐸(𝑌) = 𝑁 

 

• Variance is used to measure the fluctuations between the different values of 𝑌 across 
the average value of 𝑌, i.e. 𝐸(𝑌). The variance quantifies the distance. The variance 
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gives a picture of how accurate the estimate is. The formula for variance for this 
problem is given by: 

𝑉𝑎𝑟(𝑌) =
𝑁 + 1

𝑚
(
𝑁 − 𝑚

𝑚 + 2
) 

 

• “The German Tank Problem” has been hugely influential in regard to the power of 
Mathematics, application of statistics, wartime tactics and the end of WWII. 
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