Time series analysis of Nordic spot

electricity market data.

Bachelor thesis
School of mathematical sciences

Queen Mary University of London

Nikola Mihailova
May 7, 2021

Chapter 1
Introduction

The behaviour of financial time series is the subject of quite large number of
studies (Johnson et al. [2003]). Due to their complexity linear stochastic models
are not able to capture the properties of these series. This confirms that financial
markets are nonlinear stochastic, chaotic or a combination of both (Brock et al.
[1991],0Osborne [1959]).

The Nordic electricity market, known as Nord Pool (http:/ /www.nordpool.no)
was created in 1993 and is owned by the two national grid companies, Stat-
nett SF in Norway (50%) and Affarverket Svensa Kraftnat in Sweden (50%).
The market was established as a consequence of the decision in 1991 by the
Norwegian parliament to deregulate the market for power trading. Therefore,
between 1992 and 1995 only Norway contributed to the market, in 1996 a joint
Norwegian-Swedish power exchange was started-up and the power exchange
was renamed Nord Pool ASA. Finland started a power exchange market of its
own, EL-EX, in 1996 and joined Nord Pool in 1997. Beginning of 15th June
1998, Finland became an independent price area on the Nord Pool Exchange.
The western part of Denmark (Jutland and Funen) has been part of the Nordic
electric power market since 1 July 1999, whereas the eastern part of Denmark
entered after 1st October 2000.

The spot market operated by Nord Pool is an exchange market where partici-

pants trade power contracts for physical delivery the next day. The spot market
is based on an auction with bids for purchase and sale of power contracts of one
hour duration covering the 24 hours of the following day. At the deadline for
the collection of all buy and sell orders the information is gathered into overall
supply and demand curves for each power-delivery hour. From these supply
and demand curves the equilibrium spot prices are calculated.

We analyze the timeseries, which represents energy spot prices of the Nord Pool
spot market. The data set consists of 70752 data points with hourly prices being
expressed in EUR/MWh and covers the range from 1st January 1999 to 26th
January 2007. Our goal is to analyse basic properties of the timeseries, like evo-
lution of mean and variance with respect of time and try to see, if there are
seasonal effects or global trends, which can be extracted and quantified. We
also focus on fitting the distribution of the returns. The code, used for analysis

is also presented.

Chapter 2
Basic analysis

We start with plotting the daily average prices, as the trends we want to analyse
are on the daily scale. As one can see the averaged daily spot price is quite
irregular with occasional spikes. The most noticeable one being in the late 2002
and beginning of 2003. This is attributed to dry and warm summer and autumn
of 2002, which resulted in substantial lower hydro power generation in Sweden
and Norway (Flatabo et al. [2003],Wang [2006]). Due to the low hydro power
generation rate, more expensive types of power generation plant were taken
into service to meet the public demands thus leading to historically high prices.
It might also be affected to the transition to the deregulated market, happening
at the same time, but the actual reasons for the price spikes are out of the scope

of this work.

For a given set of data (xy, ..., x,) be mean we denote

S|

X = i Xj.

i=1

The running mean is presented on the Figure 2.1. As we can see from late of 1999
the prices have been steadily increasing. One can notice, that the mean is not
affected by the spikes as much, as one would have thought. This is explained
by the fact, that metric as the timespan expands becomes less sensitive to the

spikes, which suggests using moving averages, which we will do latter.

3

[28]:

The plot below also contains running standard deviation, which for dataset
(x1,...,%,) is defined as

Note, that the standard deviation is somewhat stable in regions between 1999
to 2002 and 2003 to 2007.

from numpy import loadtxt

arr = loadtxt("TimeSeries2.txt") # load the data
import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import warnings
warnings.filterwarnings('ignore')
plt.close("all")

create a panda series with data sampled daily

y = arr[np.arange(0, len(arr), 1)]

date = pd.to_datetime("1st of January, 1999")

date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
ts = pd.Series(y, index = date2)

series = ts.resample('24H') .sum()

plot the datly price with mean and standard deviation

plt.figure(figsize=([30, 10]))

series.plot(label=r'Daily price',linewidth=3, clip_on=False)

series.expanding() .mean() .plot(label=r'Running cumulative mean',
~linewidth=3, clip_on=False)

series.expanding() .std() .plot(label=r'Running cumulative standard,
—~deviation',linewidth=3, clip_on=False)

plt.xlabel('t [years]')

plt.legend(loc='upper left', fontsize=22)

plt.xticks(fontsize=22)
plt.yticks(fontsize=22)
plt.show()

—— Daily price
2500 Running cumulative mean
—— Running cumulative standard deviation

2000
1500
1000

500
FAN

0
1999 2000 2001 2002 2003 2004 2005 2006 2007
tiyears)

Figure 2.1: Daily returns with cumulative mean and standard deviation

We see, that the mean price increases, which leads us to believe, that no station-
arity is present.

As we have seen, the simple average is not the best way, to track the mean as
they put equal weights for all observations. The better way to track the mean is
to use Exponential moving average (EMA), which is defined for a window size
M as

EMA(n) = (1—a)-EMA(n—1) 4+« - x,
EMA(1) = x,
where & = ﬁ is the decay parameter and quantifies how quickly the effect
of the particular datapoint is “forgotten”. We choose M = 100, as it is a usual
choice in finance for long term strategies, using moving averages. We also add
the 95% confidence interval, which seems to capture the price changes very
well.
[29]: plt.figure(figsize=([30, 10]))
ts = pd.Series(y, index = date2)

series = ts.resample('24H') .sum()

series.plot(label=r'Daily price',linewidth=3, clip_on=False)
series.ewm(span=100,adjust=True) .mean() .plot(label=r'Exponential,

—moving average ($M=100$)', linewidth=3, clip_on=False)

plot the 95/ confidence interval

upper = series.ewm(span=100,adjust=True) .mean()+1.96*series.
—ewm(span=100,adjust=True) .std();

lower = series.ewm(span=100,adjust=True) .mean()-1.96*series.
—ewm(span=100,adjust=True) .std();

plt.fill_between(series.index, upper, lower, color='b', alpha=.2)

plt.xlabel('t [years]')

plt.legend(loc="upper left', fontsize=22)

plt.xticks(fontsize=22)

plt.yticks(fontsize=22)

plt.show()

3000

—— Daily price
—— Exponential moving average (M = 100)

2500

2000

1500

1000

500

1999 2000 2001 2002 2003 2004 2005 2006 2007
tiyears)

We do the same plot as above, but using resampled data on a weekly basis.
This plot suggests a weak increasing trend. Again a huge increase around 2003,
though this can be explained by the climatic factors.

[37]: plt.figure(figsize=([30, 10]))
ts = pd.Series(y, index = date2)

series = ts.resample('1W') .sum()

series.plot(label=r'Weekly price',linewidth=3, clip_on=False)
series.ewm(span=4,adjust=True) .mean() .plot(label=r'Exponential,

—moving average ($M=4$)', linewidth=3, clip_on=False)

plot the 95/ confidence interval

upper = series.ewm(span=4,adjust=True) .mean()+1.96%*series.
—ewm(span=100,adjust=True) .std();

lower = series.ewm(span=4,adjust=True) .mean()-1.96%*series.
—ewm(span=100,adjust=True) .std();

plt.fill_between(series.index, upper, lower, color='b', alpha=.2)

plt.xlabel('t [years]')

plt.legend(loc="'upper left', fontsize=22)

plt.xticks(fontsize=22)

plt.yticks(fontsize=22)

plt.show()

—— Weekly price
20000 Exponential moving average (M = 4)

150001

10000 // ,/\
5000 /,l* ™ A '/L»'/“ \“’,\ f\/‘\’,,\:‘ /u_/‘!\.\/_,»\/\/‘

- A ,,_A-" \'N\"“'vfﬂ ‘\—\,\,;\
{“ S~ \\‘/\-’\f

0

1999 2000 2001 2002 2003 2004 2005 2006 2007
tiyears)

Before we move forward, lets do the same analysis as above, but for specific
days of the week. It doesn’t seem, that a specific day affects in some way the
spot prices in terms of trends. We show them on separate plots and on an ag-
gregate plot as well. Though we can see, that Sunday spot prices are in general
lower, than the weekdays one, which suggests a possibility for separate analysis

of returns for the weekends

[31: vy

X

arr [np.arange(0, len(arr), 1)]

np.arange(0, len(y))
date = pd.to_datetime("1st of January, 1999")
date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
ts = pd.Series(y, index = date2)
series = ts.resample('24H') .sum()
s = pd.date_range('1999-01-01', '2007-01-26', freq='D"').
~to_series()
weekDaysArray = s.dt.dayofweek.array
sWeeks = pd.date_range('1999-01-01', '2007-01-26', fregq='W').
~to_series()
values = series.array
fig, ax = plt.subplots(7, sharex=True, figsize=(30,25))
colours = (['r','g','b','m','y','k"',"'c'])
for j,i in enumerate(['Monday', 'Tuesday',
—'Wednesday', 'Thursday', 'Friday', 'Saturday','Sunday']):
arr0 = values[weekDaysArray == j]
tsO = pd.Series(arrO[np.arange(len(sWeeks.array))], index =
—sWeeks)
ax[j] .plot(tsO, marker='.', linestyle='-', linewidth=0.5,,
~label=i, color = colours[j])

plt.ylabel('Daily return')

plt.show()

[4]:

0
om0 .
i ‘e
0 P
~ I~ e,
1000 1 aaY o, R
LA P A N N i g [M
A s, " . - ~ Y y
@0 e NN et S e P o
.
00
00
0 .]
. P -
1000 r ’J' W o ot ol o
8 e, . i P Yo
w0 " ol o B P " e O e N W
e A Pt e
.
0 i
el
00 |
I n
1500 A PN
pem
w0 ' ' N A, = VSRS Y,
2l \ R e Al P, :
w0 . NN o’ R, v
e N o ieed AN e et
.
a0
00
1500 f 2 “'\.
1000 / < o s
00 A AT it Vx—“(et
NI SR .
a0
200
0
o
w
a0 i
\
00 o)
fi I
500 [*] S,
o Al o
v, A, g el v
= T e Ly g N e has
e TN
.
a0
o
5
§ 10
) ~, . -
%0 S o bt e bt Sl s R e - e
X e e

1959 00 01 w02 203 004 2005 205

y = arr[np.arange(0, len(arr), 1)]

x = np.arange(0, len(y))

date = pd.to_datetime("1st of January, 1999")

date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')

ts = pd.Series(y, index = date2)

series = ts.resample('24H') .sum()

s = pd.date_range('1999-01-01', '2007-01-26', freq='D').
~to_series()

weekDaysArray = s.dt.dayofweek.array

sWeeks = pd.date_range('1999-01-01', '2007-01-26', freq='W').

~to_series()

values = series.array

fig, ax = plt.subplots(l,1, sharex=True, figsize=(35,7))
([lrl,lgl,lbl,Iml,lyl,lkl,lcl])

for j,i in enumerate(['Monday', 'Tuesday',

Il

colours

~'Wednesday', 'Thursday', 'Friday', 'Saturday','Sunday']):
arrO = values[weekDaysArray == j]
tsO = pd.Series(arrO[np.arange(len(sWeeks.array))], index =,
—sWeeks)
ax.plot(tsO, marker='.', linestyle='-', linewidth=0.5,
—~label=i, color = colours[j])
plt.ylabel('Daily return')
plt.legend(loc='upper left', fontsize=22)
plt.xlabel('t [years]')
plt.ylabel('Daily return')

plt.show()

We have considered the time series x; as well as the corresponding returns over
the time horizon §, defined as

re =In(x(f)) — In(x(t —1)).

Note, that here x; stands fr the averaged hourly spot prices within a day t. We
also plot the 100 day EMA and a 95% confidence interval as well. The following
plot suggests, that the expectation should be around zero and we might expect

a univariate distribution for the returns, though heavier tails and skew are ex-

10

[21]:

pected, as we observe large deviations for returns and a slight skew towards

negative side.

plt.figure(figsize=([30, 15]))

L = len(series)

#transform the prices to the returns

z = np.log(series.array[np.arange(1, L, 1)]) - np.log(series.

—array[np.arange(0, L-1, 1)])

date3 = date + pd.to_timedelta(np.arange(L), 'D')

ks = pd.Series(z, index = date3[np.arange(l, L, 1)1)

ks.plot()

ks.ewm(span=100,adjust=True) .mean() .plot (label=r'Exponential,
—moving average ($M=100$)', linewidth=3, clip_on=False)

upper = ks.ewm(span=100,adjust=True) .mean()+1.96%ks.
—ewm(span=100,adjust=True) .std();

lower = ks.ewm(span=100,adjust=True) .mean()-1.96%*ks.
—ewm(span=100,adjust=True) .std () ;

plt.fill_between(ks.index, upper, lower, color='b', alpha=.2)

plt.xlabel('t [years]')
plt.ylabel('Daily return')

plt.show()

11

xxxxxxxx

Now we analyse the mean, median and variance for the returns. We estimate
them for each day separately and then for the all of them combined. The results

are summarised in the Table below.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Week

Mean 0.00137 0.00155 0.00168 0.00189 0.00138 0.00105 0.00101 0.0001
Median -0.00371 0.00235 -0.00516 -0.00376 0.00566 0.00323 0.00308 -0.0058
Variance 0.18276 0.13589 0.13067 0.13056 0.13897 0.12089 0.14525 0.0948

As we have expected, there is a slight negative skew for the complete data and

a slight decrease in the mean during the weekends.

[24] : import statistics
y = arr[np.arange(0, len(arr), 1)]
date = pd.to_datetime("1st of January, 1999")
date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
ts = pd.Series(y, index = date2)
series = ts.resample('24H') .sum()

L = len(series)

12

z = np.log(series.array[np.arange(1, L, 1)]) - np.log(series.
—array[np.arange(0, L-1, 1)])

s = pd.date_range('1999-01-01', '2007-01-26', freq='D"').
~to_series()

weekDaysArray = s.dt.dayofweek.array

values = series.array

plt.figure(figsize=([40, 101))

for j,i in enumerate(['Monday', 'Tuesday',
—'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']):
arr0 = values[weekDaysArray == j]

L = len(values)

z = np.log(values[np.arange(l, L, 1)]) - np.log(values[np.
—arange (0, L-1, 1)])

plt.subplot(2, 4, j+1)

plt.hist(z, bins= int(np.ceil(1+ 3.322*np.log(len(z)))),,
—~alpha=0.5, density = True, label=r'Week')

L

V4

len(arr0)

np.log(arrO[np.arange(1, L, 1)]) - np.log(arrO[np.
~arange(0, L-1, 1)1)

plt.hist(z, bins= int(np.ceil(l+ 3.322*np.log(len(z)))),
—~alpha=0.5, density = True, label=i)

plt.legend(loc='upper right', fontsize=22)

plt.grid()

plt.show()

5
20
i
:
E

Week “ Week
Wednesday ‘ Thursday

Week Week
Friday s Saturday

L=

5 5
2o | &
5

13

[7]:

Now let’s resample the data that we have for every hour. We estimate the mean
and the variance and plot histograms for the density of the returns. Now we
see, that the returns are higher in the mornings, which does agree with the ex-
pectation. Moreover, increase in expectation in this case will cause the increase

in variance as well, as we are dealing with the spot prices.

from numpy import loadtxt

arr = loadtxt("TimeSeries2.txt")
import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import statistics

plt.close("all")

y = arr[np.arange(0, len(arr), 1)]

date = pd.to_datetime("1st of January, 1999")

date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
ts = pd.Series(y, index = date2)

series = ts.resample('24H') .sum()

L = len(series)

hourofDayArray = date2.hour.array

select a given hour of the day between 0 and 23
m=[]
v=[]
plt.figure(figsize=([45, 51))
for hourNum in range(0, 24):
arrN = y[hourofDayArray == hourNum]
L2 = len(arrN)
z = np.log(arrN[np.arange(1l, L2, 1)]) - np.log(arrN[np.
—~arange(0, L2-1, 1)])

14

m.append(statistics.mean(z))
v.append(statistics.variance(z))
if hourNum % 9 == 0:
plt.subplot(1,3,3)
plt.hist(z, bins= int(np.ceil(1+ 3.322*np.log(len(z)))),

—~alpha=0.5, density = True, label='Hour = s data' % hourNum)

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt
plt

legend(loc="'upper right', fontsize='x-large')
grid()

subplot(1,3,1)

plot(range(0, 24),m, label=r'Hourly mean')
legend(loc="'upper right', fontsize='x-large')
grid()

subplot(1,3,2)

.plot(range(0, 24),v,label=r'Hourly variance')

.legend(loc="'upper right', fontsize='x-large')

plt.
plt.

grid()
show ()

2.0.1 Kernel density approximation

Kernel density estimation is the method for estimating density function using
a kernel function K(x). Histograms, we have used previously essentially count
number of datapoints in a region, which is influenced by the data range and
number of bins, which is specified by the user. On the other hand a kernel
density estimate is a function defined as the sum of a kernel function on every

data point. The kernel function K(x) usually satisfies the following properties:

15

1. Symmetricity: K(x) = K(—x) 2. Normalization: [K(x) dx = 1 3. Non-
negativity: K(x) > 0, Vx 4. Nonincresing for x > 0 (and nondecreasing for
x <0)
There are several types of kernels, which satisfy these criteria, among the most
popular being (with symbol o« meaning that there is a normalisation constant,
such that [K(x,h) dx = 1) 1. gaussian: K(x,h) o exp(—%) 2. tophat:
K(x,h) <1, —h < x < h 3. epanechnikov: K(x,h) o 1 — i—i 4. exponential:
h

x
K(x,h) o exp(—x/h) 5. linear: K(x,h) «« 1 —x/h, if 0 < x < h 6. cosine:
K(x,h) o< cos(G),if 0 < x < h.

The parameter & is called a bandwidth. The forms of the kernels above is pre-
sented on a Figure below.

Now given the kernel form K(x) and a bandwidth £, the estimate of the density

f(x) at a point x given observation y1, ..., Yy is of the form:

2.1)

I
&
/N
~
|
&
~
N—
.
+
&=
N
e
~
|
—
N—
™

. 2
As one can see the MSE has been decomposed into two errors: 1. <1E f—f) —

. 2
squared bias error; 2. [E {(f—Ef) } — Monte Carlo variance.

The Monte Carlo variance is proportional to N~'1~1 as

Now as
\Y (f) <Ef?~h,
we have that the variance based on N observations with kernel bandwith % is

proportional to —-.

Nh
Now for the bias we can, using Taylors decomposition, quite easily see that

%/K(x;y) f(x)dx — f(y) :/K(x)f(y—hx)dX—f(]/)

= F) [KE@F@dx+hf' () [K@) f)dx+ 12 [2K (x)f(x)dx +o(h?) = £(y)
< ch® +o(h?),

where c is the constant depending on the choice of kernel and the second order
derivative of the underlying density. Now we can see, that the choice of band-
width h is quite important, as there is a bias-variance tradeoff. Whenever we

increase h. we increase bias and decrease variance and vice versa.

[25] : from scipy.stats import norm
from sklearn.neighbors import KernelDensity

from sklearn.utils.fixes import parse_version

Plot exxzample of kernels
X_plot = np.linspace(-3, 3, 1000)[:, Nonel
X_src = np.zeros((1, 1))

plt.figure(figsize=([8, 8]))

for i, k in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):
log_dens = KernelDensity(kernel=k).fit(X_src).
—score_samples(X_plot)

plt.plot(X_plot[:, O], np.exp(log_dens), label=k, linewidth=5)

17

[25] :

plt.xticks(np.arange(-3,4,1), ['-3h',
<—>'—2h|,'—h','O','h','2h','3h'])
plt.legend(loc='upper right', fontsize='x-large')

<matplotlib.legend.Legend at Oxlaee2b7fac0>

10 m— gaussian
mes tophat
s epanechnikov
m— exponential

081 e |inear
s COSINE

0.6

0.4

02

0.0 4

3h 2h 5 0 h oh 3h

Each optimal bandwidth value is unique to the choice of kernel. So for each
kernel we run a grid search algorithm. Essentially for 4000 log-equidistantly
spaced values of bandwidth between 10~2 and 10°> we compute the goodness
of fit and choose the best one. Need to rerun the simulations on the finer grid

18

[9]:

Monday Tuesday Wednesday | Thursday | Friday Saturday

Gaussian 0.06400318 | 0.06519339 | 0.05664848 | 0.05037042 | 0.07910876 | 0.04376836
Tophat 0.16722678 | 0.30294957 | 0.21248674 | 0.15463127 | 0.49822367 | 0.08774771
Epanechnikov | 0.17510995 | 0.30434827 | 0.21445335 | 0.16080575 | 0.49937248 | 0.10262492
Exponential | 0.04267343 | 0.04247731 | 0.03829533 | 0.03412976 | 0.04520264 | 0.03381678
Linear 0.17836631 | 0.30505004 | 0.21544347 | 0.16266826 | 0.49937248 | 0.10895805
Cosine 0.17632406 | 0.30434827 | 0.21445335 | 0.16154818 | 0.49937248 | 0.10309873
though

standalone script for estimating the optimal bandwidths

from sklearn.neighbors import KernelDensity
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import Leave(One(Qut
import numpy as np
import matplotlib.pyplot as plt

import pandas as pd

from numpy import loadtxt
arr = loadtxt("TimeSeries2.txt")

y = arr[np.arange(0, len(arr), 1)]

date = pd.to_datetime("1st of January, 1999")

date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
date2)

ts.resample('24H') .sum()

ts = pd.Series(y, index =
series =

L = len(series)

z = np.log(series.array[np.arange(1, L, 1)]) - np.log(series

—array[np.arange(0, L-1, 1)])

s = pd.date_range('1999-01-01', '2007-01-26', freq='D"').
~to_series()

weekDaysArray = s.dt.dayofweek.array

values = series.array

optimal_params=np.zeros((6,7))

19

bandwidths = 10 ** np.linspace(-2, 2, 4000)

print(bandwidths)
for j, k in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):
for i in range(0,7):
arr0 = values[weekDaysArray == i]

L = len(arr0)

z = np.log(arrO[np.arange(l, L, 1)]) - np.log(arrO[np.
—arange(0, L-1, 1)1)

z1 = np.array(z[:])

grid = GridSearchCV(KernelDensity(kernel=k),
{'bandwidth': bandwidths})

grid.fit(z1[:, None])
optimal_params[j,i] = float(grid.

—~best_params_['bandwidth'])

print (optimal_params)

[1.00000000e-02 1.00230582e-02 1.00461695e-02 ...

9.97699489e+01 1.00000000e+02]

[[o.
0.
[0.
0.
[0.
0.
[0.

0

06400318 0.06519339 0.05664848 0.05037042
08132565]
16722678 0.30294957 0.21248674 0.15463127
45437492]
17510995 0.30434827 0.21445335 0.16080575
45647275]
04267343 0.04247731 0.03829533 0.03412976

.04657652]
[0.
0.
[0.
0.

17836631 0.30505004 0.21544347 0.16266826
45647275]

17632406 0.30434827 0.21445335 0.16154818
4564727511

20

9.95404271e+01

.07910876 0.04376836

.49822367 0.08774771

.49937248 0.10262492

.04520264 0.03381678

.49937248 0.10895805

.49937248 0.10309873

[10]:

Now we will plot the results on the datasets and see, how good do the choice
of parameters fit the distribution of the returns for each day of the week. As we
can see, the kernels approximate the data set with a various degree of success.
We will stick to the exponential kernel from now on.

from sklearn.neighbors import KernelDensity

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from numpy import loadtxt

arr = loadtxt("TimeSeries2.txt")

y = arr[np.arange(0, len(arr), 1)]

date = pd.to_datetime("1st of January, 1999")

date2 = date + pd.to_timedelta(np.arange(len(y)), 'H')
ts = pd.Series(y, index = date2)

series = ts.resample('24H') .sum()

z = np.log(series.array[np.arange(1, L, 1)]) - np.log(series.
—array[np.arange(0, L-1, 1)])
plt.figure(figsize=([45, 10]))
s = pd.date_range('1999-01-01', '2007-01-26', freq='D"').
~to_series()
weekDaysArray = s.dt.dayofweek.array
values = series.array
for j,i in enumerate(['Monday', 'Tuesday',
—'Wednesday', 'Thursday', 'Friday', 'Saturday','Sunday']):
plt.subplot(1l, 7, j+1)
arrO = values[weekDaysArray == j]
L = len(arr0)
np.log(arrO[np.arange(1, L, 1)]) - np.log(arrO[np.
~arange(0, L-1, 1)1)

Z

z1l = np.array(z[:])

21

plt.hist(z, bins= int(np.ceil(l+ 3.322*np.log(len(z)))),,
—~alpha=0.5, density = True, label=i)
for 1, k in enumerate(['gaussian', 'tophat',,
—'epanechnikov', 'exponential', 'linear', 'cosine']):
kde = KernelDensity(kernel=k,
—bandwidth=optimal_params[1,j]).fit(z1[:, np.newaxis])
X_plot = np.linspace(min(zl), max(z1l), 1000)[:, np.
~newaxis]
log_dens = kde.score_samples(X_plot)
plt.plot(X_plot[:, 0], np.exp(log_dens), lw=3,

~linestyle='-', label=k)
plt.legend(loc='upper right', fontsize=8)
plt.grid()
plt.show()

22

Bibliography

William A Brock, David Arthur Hsieh, Blake Dean LeBaron, William E Brock,
et al. Nonlinear dynamics, chaos, and instability: statistical theory and economic
evidence. MIT press, 1991.

N. Flatabo, G. Doorman, O.S. Grande, H. Randen, and I. Wangensteen. Expe-
rience with the nord pool design and implementation. IEEE Transactions on
Power Systems, 18(2):541-547, 2003. doi: 10.1109/TPWRS.2003.810694.

Neil F Johnson, Paul Jefferies, Pak Ming Hui, et al. Financial market complexity.
OUP Catalogue, 2003.

Maury FM Osborne. Brownian motion in the stock market. Operations research,
7(2):145-173, 1959.

Yan Wang. Renewable electricity in sweden: an analysis of policy and regula-
tions. Energy policy, 34(10):1209-1220, 2006.

23

	Introduction
	Basic analysis
	Kernel density approximation

