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1.0 Introduction 

Time plays important role in the life of living things. The individual and social behavior 

of living things are determined and governed by cycles of different periods. In biological life, 

these cycles are a mechanism for survival and require precise timing. The occurrence of these 

cycles is hard to understand and can be only described as synchronization of individual actions in 

a population. Some of these cycles occur systematically while some occur spontaneously. 

Heartbeat is an example of synchronized activity and this can be felt when listening to 

instrumental music where your heartbeat tends to follow the music rhythm that is heartbeats can 

accelerate or decelerate because of music rhythm (Menen, 2004). The applause of people in a 

hall tends to be incoherent at the beginning and transformed into coherent applause, that is 

synchronized applause. Fireflies is also a display a natural synchronous flashing during the night, 

one firefly starts to emit a flash of light and suddenly many fireflies start to flash. The incoherent 

flashing at the start ends up being uniform among the swarm of fireflies over some time 

(Acebrón et al., 2005). The understanding of the synchronization phenomena is inevitable to 

know how nature and manmade things operate.  

The paper structure is as follows. Section two describes the Kuramoto model that will be 

used to show the synchronization of the coupled oscillators and some empirical findings of the 

model were discussed. Section 3 provides the analysis of the differential equations of the model. 

The fourth section examines the linear stability of the model equation and the last section 

provides a summary and conclusion of the findings.  
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2.0 The Concept of Synchronization 

The concept of synchronization in the dynamic systems of coupled oscillators is an 

important aspect considered when dealing with nonlinear and complex systems. By nonlinear 

systems in mathematics, we are referring to the mathematical models whose change in output 

does not reflect the exact change in input. The nonlinear equations are very interesting and found 

in almost every field like engineering, biology, physics, mathematics, and social sciences. The 

area of synchronization of phase coupled oscillators has a wide scope and its applications in 

many fields have drawn the attention of many researchers trying to understand and simplify the 

phenomenon that most people find difficult to understand. Grosu et al. (2016) used to phase in-

plane and proposed a new general method of designing coupling between oscillators that exhibit 

phase synchronization. Their numerical results suggested that for Lorenz systems, the phase 

synchronization equals antiphase synchronization depending on the conditions in place when 

designing the model. Therefore, they developed a new Lorenz phase synchronized system using 

the new network designed.  

Definition of coupling between oscillators in-phase coupled oscillators model is very 

important for one to understand the general concept of synchronization. Synchronization is a 

phenomenon in which a group of moving things try to relate or match. The synchronization 

behavior was first observed and recorded by Christian Huygens who observed the two pendulum 

clocks' motion in early 1665 (Huygens, 1967). Huygens stated that the moving pendulum clocks 

tend to adjust their time to be the same by trying to move at the same speed and pattern. Since 

then many kinds of research have been conducted with the main objective of determining when 

the moving array of systems tend to stabilize. According to Scafetta et al. (2016), coupled 

oscillations happen where two or more objects moving in rhythmic motions are related such that 
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motion energy can be exchanged between them. The coupled oscillation objects occur naturally 

like the moon and earth that orbit each other and some coupled oscillators are man-made for 

example pacemakers.  

Therefore, the main objective of this paper was to examine the synchronization of phase-

coupled oscillators using the Kuramoto model. We examined the Kuramoto synchronization 

model and carried out an analysis on the two oscillators to show when the systems are stabilized 

and when the systems are unstable.  

3.0 The General Kuramoto Model 

Yoshiki Kuramoto a Japanese nonlinear dynamics physician proposed the Kuramoto 

model in 1975. The Kuramoto model is a mathematical model developed to explain the 

synchronization phenomenon. The model specifically describes the behavior of repetitive 

movements or coupled oscillators over time (Wang, 2020).  Yoshiki Kuramoto's motivation was 

how biological and chemical oscillators behave when in the group. He later learned that the 

Josephson junctions followed his model principle. Josephson junctions are a system of coupled 

arrays through which current continuous flow without any voltage being applied. The physical 

system consists of two or more superconductors coupled by a weak link.  

The general Kuramoto model consists of a population of N coupled phase oscillators, 

each oscillator believed to have its intrinsic natural frequency that is the oscillations are 

independent of other frequencies but coupling tries to be coherent or synchronize the oscillators 

to form a stable movement pattern. The Kuramoto model is stated as  

1

sin( )
N

i i j i

j

K

N
   



    Where i = 1,…,N  …… ….. (1) 
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The equation one above can be transformed to an array of phase oscillators with zero 

means of its natural frequencies by making a perfect choice of rotating frame θi → θi − Ωt where 

Ω is the first moment of g(ω). The transformed equation natural frequencies of oscillators are 

characterized with zero means where the linked system will be stable. The phase coupled 

oscillator’s exhibit incoherent movement when the coupling is weak enough but the 

synchronization occurs beyond a certain threshold in coupling.  

K is a coupling that has been used in various models for coupling like random long-range 

coupling, hierarchical coupling, nearest-neighbor coupling, and dependent interactions state. 

This section of the paper introduces the Kuramoto model that has mean-field coupling among its 

phase oscillators. Kuramoto model with mean-field coupled oscillators is the simplest model 

used to explain the synchronization phenomenon in both natural and manmade systems. The 

synchronization in the Kuramoto model is simply measured by parameter order. The number of 

oscillators in the coupled system can be up to infinite, that is N = ∞, the maximum displacement 

of the order of parameter diminishes as the oscillators move out of synchrony and the order 

parameter of oscillators is positive in synchronized states. The partial synchronization of phased 

coupled oscillators and bifurcation from incoherence systems is calculated on the closed interval 

between –π and π with the same probability. Then analyze the stability of incoherence using the 

limit N = ∞. In the case of coupling constants a critical value of coupling is used, for example, k 

< kc. Since the spectrum of its linear stability falls on the imaginary axis, incoherence is said to 

be neutrally stable.  

 According to Strogatz et al. (1992), the displacement movement from incoherence 

oscillators diminishes similarly to the Landau damping in plasmas. Landau damping is a 

phenomenon observed in plasma where exponential decay in the oscillations of the density 
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electrons of plasma achieves a stable state in a certain area in phase space. A positive eigenvalue 

is observed from the spectrum in situations where unimodal natural frequency distribution and K 

> Kc are considered. In the case of K = Kc, the partially synchronized state bifurcates is 

observed from incoherence oscillators, there are no proofs that stability exists. The major 

assumption made in the Kuramoto model is that coupling strength K is positive in relation to the 

interaction between the oscillators.  

Gushchin et al. (2015) carried out a study on the synchronization of the system of 

homogeneous phase-coupled with plastic coupling strength and arbitrary underlying topology. 

They pointed out that the phase difference between oscillators determines the coupling strength 

between two moving oscillators. In their work they show that two oscillating systems are 

gradient and always achieve synchronization in their frequency. Furthermore, sufficient stability 

and instability states are based on algebraic graph theory. Using the topology tree, they 

formulated stability for equilibria. Finally, they illustrated differences in the behavior of systems 

that has constant and plastic coupling strengths.  

Acebrón et al. (2005) explained the synchronization phenomena in large populations of 

interacting objects that are subjected to intense research efforts in different fields. The fields 

identified to exhibit such researches include biology, chemical, physical and social systems. The 

study suggests that the best approach to synchronization problems is population modeling as a 

phase oscillator and the Kuramoto model is a useful model in analyzing the synchronization in 

coupled phase oscillators. The research analyzed the Kuramoto model and concluded that the 

model is applicable in different contexts. 

Moioli et al. (2010) investigated the neural dynamics of simulation used in robots that 

perform cognitive tasks. The researchers employed the Kuramoto model of coupled oscillators as 
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the nervous system of the automated robots. The main purpose of their study was to give an 

understanding of the new application of neuronal synchronization and generation towards 

cognitive technology. The study investigated the concept of restricting robot movements to a 

certain area, and the way robots adopt both scenarios by approaching their tasks in both inverted 

and normal. The researchers used community behaviors as benchmarks in the development and 

evolution of robots to adapt human behavior. Using the Kuramoto model they concluded that 

robots are embodied with cognitive behaviors.  

3.1 Kuramoto Model with two Coupled Oscillators  

The Kuramoto model with two oscillators refers to a system of two linked objects in 

movement. The best example that will be used in this paper is two clocks that are linked (Moioli 

et al., 2010). The similarity between the system of two coupled oscillators and an overdamped 

particle is that there exist two possibilities in their life namely synchronized state and 

unsynchronized phase. In the synchronized state, the particle is zero, and if the particle drifts 

then the system is said to be unsynchronized. To state the Kuramoto model for two coupled 

oscillators we start from the general model where the population is N.  

General N model  

1

sin( )
N

i i j i

j

K

N
   



  
 ……… …… … …… ……………… (1) 

Where, i = 1,…,N 

For a two coupled oscillator model N = 2 and equations of the Kuramoto model are given 

as  

1
1 2 1sin( ( ) ( ) )

2

d K
t t a

dt


      … ……………. (2) 
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2

2 1 2sin( ( ) ( ) )
2

d K
t t a

dt


      … …………… … (3) 

Equations (2) and (3) are the Kuramoto model with N = 2, the model can be used to 

explore and explain the concept of synchronization between two oscillating objects. To explain 

the parameters of the model we illustrated by using two clocks denote as A and B. 

The parameters of our model are ω, K and α where ω is the frequency, K refers to the 

coupling and α is the phase shift or drift between the two clocks. Neutral frequency (ω) is also 

known as Eigen frequency is the frequency at which a system oscillates in absence of external 

force induced on the system. Frequency is measured as the number of occurrences of repeated 

events per unit of time. For the two oscillators’ model, ω1 is the frequency of clock A and ω2 is 

the frequency of clock B. The frequencies of the clocks show the speed at which each clock is 

moving and the angle θ increases with time. This means that if the clock moves at a higher speed 

then its angle increases faster. K is an important parameter known as coupling. Coupling refers 

to the interaction between two objects that can be induced by electromagnetic forces. Therefore, 

in this study when we talk about coupling we mean force resulting from the interaction between 

clock A and clock B. Naturally, some objects do not interact hence in such cases coupling will be 

equal to zero (K = 0). Some interactions may have negative or positive interactions meaning that 

K can be either negative or positive. Simply K lies between negative infinite and positive 

infinite.  Finally, we have α, which is phase drift and it shows unintended frequency due to the 

speed of interaction between clocks. 

3.2 Analysis of Kuramoto Model without Coupling 

As we discussed earlier, coupling in the Kuramoto model represents the force that results 

from the interaction between objects in the system. This force of interaction may not exist 

between two objects which naturally possible. Some systems either natural or manmade can 
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interact and synchronize without generating energy between them. In such cases coupling is 

equal to zero, that is, K = 0. If k = 0 then the Kuramoto model is given as  

1
1

d

dt


 ……… …………. (4) 

2

2

d

dt


  ……… ………...... (5) 

Equations 4 and 5 show that the oscillators have only frequencies ω1 and ω2, which are 

constants.  In the model without coupling, it means that the only factors affecting the angle θ of 

the clocks are the time and frequency ω of the clock. It is simple to tell if the system 

synchronizes in the Kuramoto model without coupling because we just take the difference 

between two equations (4) and (5)  then compare the frequencies. For example, if ω1 = ω2 then it 

is said that the system synchronizes and when ω1 ≠ ω2 then system do not synchronize. When ω1 

= ω2 then the clocks move at the same rate and show the same time implying that they have 

synchronized. If ω1 ≠ ω2 simply means that one clock is moving at a higher frequency than the 

other is hence displays a different time depending on the angle θ of the clock.  

3.3 Kuramoto Model with Coupling 

According to Simonović (2013), the coupling coefficient in the system of oscillators 

because synchronization of the system depends on coupling. He examined the effect of coupling 

on the phase coupled oscillators and concluded that the coefficient of coupling determines if the 

synchronization is high or low.  To examine the effect of coupling on synchronization we 

adopted the Kuramoto model with coupling takes the general model format. This model shows 

that the interaction between the two clocks or systems results in a force that triggers 

synchronization. The model with coupling analyses how external interaction between oscillators 

can lead to coherent activity between interacting objects. The synchronization occurs due to 
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internal or external stimuli. Some of the examples include synchronization between heartbeat 

and music rhythm, the fireflies flashing synchronization, brain cells synchronization, and 

applause. The external forces can either be negative or positive but not zero, meaning that k ≠ 0. 

The model is given as  

When K ≠ 0 and α = 0 then, 

1
1 2 1sin( ( ) ( ))

2

d K
t t

dt


     …………… ……… ……….. (6) 

2

2 1 2sin( ( ) ( ))
2

d K
t t

dt


     …… …………… ………… (7) 

Equations (6) and (7) represent the Kuramoto model with coupling. The problem is to 

determine if there is a solution where the two clocks synchronize. To find the solutions of the 

model, the two differential equations (6) and (7) are reduced to one equation as follows  

The difference between equation (6) and (7),  

1 2

1 2 2 1 1 2

1 2

1 2 1 2

( ) ( ) ( sin( ( ) ( )) ( sin( ( ) ( ))
2 2

( )
( ) sin( )

( )
sin( ( ))

d d K K
t t t t

dt dt

d
K

dt

d t
K t

dt

 
     

 
   


 

      


   

 

 

The reduced differential equation is  

( )
sin( ( ))

d t
K t

dt


  

… ……………… ………………… ……… (8) 

Where α (t) represents the difference between angles of the oscillators, δ is the difference 

between frequencies of clock A and B and K is the force resulting from the interaction between 

the two clocks. The reduced equation (8) shows the interaction model between the two clocks A 
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and B. The equation (8) was analyzed in two different approaches by considering values of K. 

First we analyzed the reduced equation when K = 0 and second section K ≠ 0 

When K = 0 

The reduced differential is  

( )
0sin( ( ))

d t
t

dt


  

 

( )d t

dt


  …… …………………………… …………. (9) 

( ) . (0)t t    …………… ………………….. (10) 

If δ = 0 from equation (10), then  

( ) (0)t   

This shows that if δ = 0 the difference between angles of oscillators is constant at the time 

(t). The constant difference between angles implies that the two oscillators will be moving at 

equal frequencies, that is ω1 = ω2. As we discussed earlier if the system is moving at equal 

frequency then the system is at a synchronized solution. The comparison between frequencies is 

only applicable in a situation system that has no forces resulting from their interaction and only 

time and frequency determine the angle difference of the two oscillators.  

The second part is the analysis of the reduced differential equation (8) when δ ≠ 0. The δ 

quantity is the difference between frequencies of oscillators and if the quantity is not equal to 

zero then the two clocks are moving at a different speed. The solution when K = 0 and δ ≠ 0 is 

not constant and is given as  

( ) . (0)t t     
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The solution shows that the difference between two-oscillator angles depends on the 

function of time that is the frequencies of two oscillators vary with time. Since the difference in 

frequency depends on time, then the system is unsynchronized. 

When K ≠ 0, then when we assume that the two-phased oscillators will be at a 

synchronized state when the solution for equation (8) is a constant. Therefore, we need to solve 

for the constant solution of  

( )
sin( ( ))

d t
K t

dt


  

 

Such that α (t) = α (0) a constant.  

0 sin( )cK    

sin( )

sin( )

c

c

K

K

 







……… …… …………… (12) 

The solution for equation (12) exists only if the absolute value of |δ/K| ≤ 1. If the ratio is 

greater than one the solution lies in the imaginary part of the system meaning that solution does 

not exist. The results show that coupling parameter K has a significant impact on the 

synchronization of the system compared to the difference between the frequencies. For example, 

given any value for frequency difference, the system can still synchronize as long as the coupling 

is greater than the difference in frequencies that is |δ| ≤ |K| for the synchronization point to 

existing.  
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4.0 Fixed Points and Linear Stability Analysis 

4.1 Fixed Points  

Fixed points refer to the points where the differential equation is constant that is its 

derivative equals zero. At fixed points in our case, the clocks move towards each other or away 

from each other at a constant speed. These points sometimes are referred to as stagnation points 

(Strogatz et al., 1992). In a stable state, the solution for the equation is  

sin( )

sin( )

c

c

K

K

 







 

Now the task is to determine the two exact points where the solution is linear stable. The 

exact values for α that the system will be stable are  

1

2 1

arcsin( )
K




  



 
…… ……………… ……………….. (13) 

At α1 and α2 the two clocks synchronize that is, the clocks have an equal angle and at 

other points, the system does not synchronize. The two points are the fixed points only if |δ| ≤ 

|K|. 

4.2 Linear Stability Analysis 

Linear stability analysis is a technique used to determine whether the fixed points are 

stable or unstable. Linear stability analysis of linear dynamic equations formulated from 

observed experimental dynamics flow. The linear stability analysis depends on the nature of the 

observed experimental equation. The fixed point αc is stable if f1 (αc) < 0 and the point is unstable 

if f1 (αc) > 0. 

 At fixed point α1 linear stability analysis is 
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1

1

1 1

1

1

1 2

1

2
1

1 2

( ) cos( )

( ) cos( )

( ) cos(arcsin( ))

( ) 1 sin (arcsin( ))

( ) 1

f K

f K

f K
K

f K
K

f K
K

 

 










 

 

 

  

  

 

Where  

f1 (α1) < 0 if K > 0 and  

f1 (α1) > 0 if K < 0 

The stability of the fixed point depends on the quantity of coupling K.  

At fixed point α2 linear stability analysis is 

1

2

1

2

2
1

2 2

( ) cos( arcsin( ))

cos( ) cos

( ) cos(arcsin( ))

( ) 1

f K
K

use

z z

f K
K

f K
K


 









  

  



 

  

Where,  

f1 (α2) < 0 if K < 0 and  

f1 (α2) > 0 if K > 0 

The linear stability analysis shows that the fixed point will only be stable if and only if 

the derivative of equation (8) is less than zero and unstable if the derivative of equation (8) is 

greater than zero. The quantity of derivative depends on the strength of coupling K. Therefore, at 

fixed point α1 the system is stable if K>0, and at fixed point α2 the system is stable if K<0. 
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At fixed point α1 clock A moves clockwise while clock B moves in an anti-clockwise 

direction. 

 

 

  

 

 

At fixed point α2 clock A move in an anti-clockwise direction while clock B move in a 

clockwise direction as shown below 

 

 

 

 

 

 

 

5.0 Summary and Conclusion 

The purpose of this paper was to examine the synchronization in the phase coupled 

oscillators. Synchronization is a phenomenon in which vibrating or moving systems tend to 

move at the same rate due to interaction between them or the time effect. Synchronization occurs 

in either natural or manmade systems like fireflies, heartbeat, applause, and moon and sun 

interaction. These systems tend to interact and tend to move at the same speed. The Kuramoto 

model of Japanese physicist Yoshiki Kuramoto (1975) of order two was used to examine 

Clock A Clock B 

α1 

Clock B 
Clock A 

α2 
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synchronization of phase coupled oscillators. Kuramoto model has two parameters namely 

frequency and coupling. Frequency is the number of movements a system makes per period and 

on the other hand, the coupling is the force that emerges from the interaction between the two 

oscillators. Coupling is in the two oscillators triggers synchronization in most systems. From the 

analysis, we identified that coupling can be absent in some systems that no force originates from 

the interaction between the oscillating clocks. 

 In absence of coupling, the synchronization depends on the frequencies of the two 

oscillating clocks, and the system synchronizes only if the frequencies of the two clocks are 

equal that is ω1 = ω2. It was also noted that in the case in presence of coupling synchronization is 

triggered making it could be either negative or positive; K takes values from -Ꝏ to Ꝏ. In case of 

coupling is not equal to zero (K ≠ 0), the reduced equation (8) was analyzed. Equation (8) was 

obtained by finding the difference between the two differential equations of the system (6) – (7).  

In the analysis of equation (8), it was found that coupling is a significant determinant of 

synchronization in the oscillating system because for the synchronization solution to exist then 

the following condition must hold |δ/K| ≤ 1 or |δ| ≤ |K|. The synchronization point does not exist 

in case |δ/K| > 1. Therefore, the quantity of coupling is very important in the Kuramoto model 

and it should be greater than the frequency of the oscillators. The linear stability analysis of the 

coupling oscillators shows that the synchronization at two fixed points given in equation (13). 

The condition for linear stability analysis that a fixed point if stable if f1 (αc) < 0 and unstable if 

f1 (αc) > 0. Linear stability shows that the system is stable at fixed point α1 if K> 0 and stable at 

point α2 if K< 0 this means that the stability of the system depends on the coupling strength at 

fixed point. Elsewhere the system is unstable.  
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In conclusion, the Kuramoto model is a very effective tool in explaining the 

synchronization phenomena between phase coupling oscillators but the computation of equations 

involved in the model is very cumbersome.   
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