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Abstract

Chaotic motion shows two characteristic features, sensitive depen-
dence on initial conditions (sometimes referred to as the butterfly
effect) and a decay of correlations, despite of its deterministic char-
acter. Surprisingly, it is quite difficult to establish a relation between
the two quantities which characterise these two behaviours, namely
the Lyapunov exponent and the decorrelation rate. Based on a study
by Badii et al. published in Physical Review A [1], we explore such a
relation for the simple case of piecewise linear full branch maps.
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1 Introduction

The main purpose of this project is to establish a relationship between the
Lyapunov exponent and the Correlation decay rate. The motivation for doing
this project was primarily an interest in dynamical systems from the Mas-
ters course and also to undertake a challenging project in an interesting area
of research. The opportunity to gain a deeper understanding of dynamical
systems not covered in lectures was appealing.

Dynamics can be either ”simple” or complicated. In the case of ”simple”,
we can have something which is periodic, for example, a clock. This has
very simple dynamics since if the clock differs slightly from the actual time,
this difference does not increase over time i.e. the next day the mismatch
is similar, provided it has not stopped. There is no sensitive dependence on
initial conditions and if we compare what the clock shows now with what it
will show in 12 hours the results are pretty much the same and we see that
the outcomes are correlated.

Complicated dynamics is just the opposite, it is chaotic. It normally shows
sensitive dependence on initial conditions, for example the so called butterfly
effect, where a small change at one place in a non linear system can result
in large differences to a later state. Another example would be the decay of
correlations, for instance, the correlation decay observed in weather forecast-
ing. If you make the simplest possible prediction, say tomorrows weather is
the same as today’s, you may have a 70% success rate but that rate drops
drastically if the following days are predicted in the same way i.e. the corre-
lation decays.

The purpose of the study is to relate these two phenomena, and to establish
a relation between the two characteristic quantities, the Lyapunov exponent
and the correlation decay rate. We will study one dimensional expanding
maps, specifically the Bernoulli shift map to derive an inequality between
the decay rate and the Lyapunov exponent for this particular model.

In Chapter 2 we give a brief overview of Markov maps on which we would
base our analysis. The following two Chapters introduces the map and dis-
cusses the computation of the Lyapunov exponent and the correlation decay.
Finally in Chapter 5 we will establish the inequality and see that it is related
to the concept of convex functions.
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2 General Piecewise Linear Markov maps and

Markov Partitions

This Chapter will be mostly a revision of textbook material from reference[2],
that is useful in the subsequent development.

The term ”Markov” means ”memoryless”. In other words the probability
of each outcome conditioned on all previous history is equal to conditioning
on only the current state; no previous history is necessary.

2.1 Partition of an interval

This subsection is appropriate here to introduce some notation.

Let I = [a, b] be a closed interval. |I| = |x2 − x1| denotes the size of the
interval, and int(I) = (a, b) the interior of I.

A collection of closed intervals I0, I1, ..., IN − 1 is called partition of I if
I = ∪N−1

k=0 Ik, and int(Ik) ∩ int(Il) = ∅ if k 6= l.

Example 2.1. Consider the following two partitions of the interval
I = [−1, 1].

1. I0 = [−1,−1
3
], I1 = [−1

3
, 2

3
], I2 = [2

3
, 1], so [I0, I1, I2] is a partition be-

cause the union of I0, I1, I2 gives the interval I and all the intersections
between I0, I1, I2 gives the empty set.

2. I0 = [−1, 1
2
], I1 = [1

4
, 1]. This is not a partition because the intervals

overlap in more than their end points.

2.2 General Piecewise Linear Markov maps andMarkov
Partitions

The General Piecewise Linear1 Markov maps are one-dimensional chaotic
systems which are amenable to analysis. They are defined as follows:

1A piecewise linear function is a piecewise-defined function whose pieces are linear. For
example, since the graph of a linear function is a line, the graph of a piecewise linear
function consists of line segments and rays.
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A map f : I → I in R, is called a Markov map if there exists a partition
{I0, I1, ..., IN−1}, (a Markov partition) such that for all k, l = 0, ..., N − 1:

1. either int(Il) ∩ f(int(Ik)) = ∅

2. or int(Il) ⊆ f(int(Ik)).

We will now consider the Bernoulli Shift map (also called Shift map, doubling
map, dyadic transformation), and show that it is an example of a Piecewise
Linear Markov map.

Example 2.2. Bernoulli Shift map with two branches.

f(x) =

{
2x+ 1 if − 1 ≤ x < 0,

2x− 1 if 0 ≤ x < 1,
(1)

Using the interval I = [−1, 1] we split it into two partitions I0 = [−1, 0] and
I1 = [0, 1], and get f(int(Ik)) for k = 0, 1.

int(I0) = (−1, 0) → f(int(I0)) = (−1, 1)

int(I1) = (0, 1) → f(int(I1)) = (−1, 1)

Now using the statement for a Markov map, we check whether the Bernoulli
Shift map satisfies either of the conditions.

1. int(I0) ⊆ f(int(I0)) X

2. int(I0) ⊆ f(int(I1)) X

3. int(I1) ⊆ f(int(I0)) X

4. int(I1) ⊆ f(int(I1)) X

All of these cases satifies the condition, so we conclude that the Bernoulli
Shift map is a Markov map.

An important property of Markov maps is that many of their statistics
(which we call correlation statistics) can be calculated in closed form. The
broad definition of correlation statistics makes them potentially applicable in
a number of chaotic data analysis. Applications will be presented throughout
the next Chapters of this Project.

The statistics of a chaotic system depend on its Frobenius-Perron equation
and it will be shown next.

5



3 Frobenius-Perron Equation and Lyapunov

Exponents

This Chapter will explain the Frobenius-Perron equation and the Lyapunov
Exponent. For convinience we are going to consider our maps on the interval
[−1, 1]. Bernoulli Shift maps are going to be used. They are often considered
on the interval [0, 1], but here for our purpose the interval [−1, 1] is more
adequate. Two examples will be explained in each subsection. The first
example we will consider equal slopes, whereas the second example will show
different slopes.

3.1 Frobenius-Perron Equation

In a dynamical system, we are often interested in the overall behavior of the
map, in other words, the evolution of an ensemble of initial conditions. The
Frobenius-Perron equation is used to describe this evolution.

Let f : I → I be a (continuous) map and h(x) be an integrable function
such that h : I → R. The non-negative integrable function ρ : I → R is
called Invariant density if: ∫

I

ρ(x)dx = 1, and (2)

∫
I

h(x)ρ(x)dx =

∫
I

h(f(x))ρ(x)dx for any function. (3)

The Frobenius-Perron equation acts on probability densities of dynamical
systems, these are non-negative real functions whose integral over the whole
phase space is unity. The image of a density represents it’s time-evolution
under the dynamics, which is obtained by summing the density over all pre-
images of the point being considered. Each summand is weighted by the
reciprocal of the absolute value of the derivative of the map. A fixed-point
of the Frobenius-Perron equation is an invariant density. If the system is
ergodic (in other words, it can not be decomposed into two invariant set of
positive measures), the integral of an observable with respect to an invariant
density gives the time average of the observable (integrable function). For
more details the reader may consult references [3, 6].
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Let f : I → I denote a (piecewise) smooth map with invariant density
ρ. Then the density obeys the so called Frobenius-Perron equation:

ρ?(x) =
∑

y∈f−1(x)

1

|f ′(y)|
ρ?(y) (4)

Example 3.1. Consider the Bernoulli Shift map with same slopes as we have
shown in equation (1):

!1.0 !0.5 0.0 0.5 1.0
!1.0

!0.5

0.0

0.5

1.0

Figure 1: Bernoulli Shift map with same slopes.

f(x) =

{
2x+ 1 if − 1 ≤ x < 0,

2x− 1 if 0 ≤ x < 1,

This is a map defined on the interval [−1, 1], which has two branches, each
branch having slope 2. We call the two branches f0 and f1, and the inverses
of these branches are denoted by f−1

0 and f−1
1 .

f−1(x) =
{
f−1

0 (x), f−1
1 (x)

}
The explicity formulas for these branches are given by:

f0(x) = y = 2x+ 1 f−1
0 (x) =

x− 1

2

f1(x) = y = 2x− 1 f−1
1 (x) =

x+ 1

2
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Finally, if we have a point x, the two pre images are given by:

f−1(x) =

{
x− 1

2
,
x+ 1

2

}

Now let f−1(x) = Φ(x)

Then |Φ′0(x)| =
1

2

and |Φ′1(x)| =
1

2

Now we will use equation (4), which is the Frobenius-Perron equation, stated
earlier.

ρ?(x) =
∑

y∈f−1(x)

1

|f ′(y)|
ρ?(y)

To explain in a simple way the meaning of ρ? , it is a density function that
describes the distribution of all points. This is an equation which is difficult
to solve, but let’s try for the solution:

First we substitute |Φ′(x)| and ρ? for the two branches, as follows:

ρ?(x) =
∑
y∈Φ(x)

|Φ′(x)|ρ?(y), where Φ(x) =

{
x− 1

2
,
x+ 1

2

}
(5)

= Φ′0(x)ρ?(Φ0(x)) + Φ′1(x)ρ?(Φ1(x))

=
1

2
ρ?

(
x− 1

2

)
︸ ︷︷ ︸

1
2

+
1

2
ρ?

(
x+ 1

2

)
︸ ︷︷ ︸

1
2

=
1

2
· 1

2
+

1

2
· 1

2

ρ?(x) =
1

2

So we can see here that the equation solves and is even normalised, in other
words it’s an Invariant density.
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Example 3.2. The Bernoulli Shift map with different slopes.
The map is given by:

f(x) =

{
γ0(x+ 1)− 1 if − 1 ≤ x ≤ −1 + 2

γ0
,

γ1(x− 1) + 1 if − 1 + 2
γ0
≤ x ≤ 1,

(6)

�
I0 �

2

Γ0
I1 �

2

Γ1

Γ0 Γ1

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

Figure 2: Bernoulli Shift map with different slopes.

This is again a map defined on the interval [−1, 1], with two branches, each
branch having different slopes. The branches are called f0 and f1, and the
inverses are denoted by f−1

0 and f−1
1 .

f−1(x) =
{
f−1

0 (x), f−1
1 (x)

}
Observing the graph, we note that:

2

γ0

+
2

γ1

= 2 → 1

γ0

+
1

γ1

= 1 (7)

Multiplying out the equations in both branches and relabling the constants we
get:

f0(x) = y = γ0x+ γ0 − 1︸ ︷︷ ︸
a0

f−1
0 (x) =

1

γ0

x+
1

γ0

− 1︸ ︷︷ ︸
b0

f1(x) = y = γ1x+ 1− γ1︸ ︷︷ ︸
a1

f−1
1 (x) =

1

γ1

x+ 1− 1

γ1︸ ︷︷ ︸
b1
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Note that a0, a1, b0 and b1 are all constants.
Finally, if we have a point x, the two pre images are given by:

f−1(x) =

{
1

γ0

x+ b0 ,
1

γ1

x+ b1

}

Let f−1(x) = Φ(x)

Then |Φ′0(x)| =
1

γ0

and |Φ′1(x)| =
1

γ1

Now using the Frobenius-Perron equation (4), stated earlier, we substitute
|Φ′(x)|and ρ?, for the two branches, as follows:

ρ?(x) =
∑
y∈Φ(x)

|Φ′(x)|ρ?(y), where Φ(x) =

{
1

γ0

x+ b0 ,
1

γ1

x+ b1

}

= Φ′0(x)ρ?(Φ0(x)) + Φ′1(x)ρ?(Φ1(x))

=
1

γ0

ρ?

(
1

γ0

x+ b0

)
︸ ︷︷ ︸

1
2

+
1

γ1

ρ?

(
1

γ1

x+ b1

)
︸ ︷︷ ︸

1
2

=
1

γ0

· 1

2
+

1

γ1

· 1

2

=
1

2
· ( 1

γ0

+
1

γ1

)

=
1

2
· (1)

ρ?(x) =
1

2

As the previous example (3.1), the equation solves again here for the map
with different slopes, and is normalised, in other words it’s an Invariant den-
sity.

3.2 Lyapunov Exponent

Consider two nearby initial conditions x0, x
′
0 and the corresponding orbits

(x0, x1, x2, ...), (x′0, x
′
1, x
′
2, ...). Then f(x′k) ≈ f(xk) + f ′(xk)(x

′
k − xk) and,
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|x′1 − x1| = |f(x′0)− f(x0)| ≈ |f ′(x0)||x′0 − x0|
|x′1 − x1| ≈ |f ′(x1)||x′1 − x1| ≈ |f ′(x1)||f ′(x0)||x′0 − x0|
|x′n − xn| ≈ |f ′(xn−1)||f ′(xn−2)|...|f ′(x0)||x′0 − x0|

= e
∑n−1
k=0 ln|f

′(xk)||x′0 − x0| = enΛ|x′0 − x0|

Thus the distance grows at an exponential rate

Λ =
1

n

n−1∑
k=0

ln |f ′(xk)|, (n� 1) (8)

Let f : I → I be a piecewise smooth map and let (x0, x1, x2, ...) denote
the orbit with initial condition x0. If the limit exists, the value Λ is called
Lyapunov exponent of the orbit.

Λ = lim
n→∞

1

n

n−1∑
k=0

ln |f ′(xk)|, (Λ = Λ(x0)) (9)

Important:

1. If ρ(x) denotes an Invariant density then (choose h(x) = ln |f ′(x)|):

Λ = lim
n→∞

1

n

n−1∑
k=0

ln |f ′(xk)| =
∫
I

ln |f ′(x)|ρ(x)dx (10)

2. If f : I → I is a piecewise linear Markov map with slopes γl then:∫
I

ln |f ′(x)|
∑
l

ρlχl(x)dx =
∑
l

ln |γl|ρl|Il| (11)

3. Λ also measures the average loss of information about the position of
a point in [-1,1] after one iteration.

4. Λ measures sensitivity!

For more details the reader may consult reference [2].

Example 3.3. Considering the Bernoulli Shift map with the same slopes as
we have shown in equation (1), we will show the Lyapunov exponent:

f(x) =

{
2x+ 1 if − 1 ≤ x < 0,

2x− 1 if 0 ≤ x < 1,
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We find that the derivative is given by: |f ′(x)| = 2

Substituting |f ′(x)| and ρ?(x) on the equation (10) we get:

Λ =

∫ 1

−1

ln 2 · 1

2
dx

=
[x

2
ln 2
]1

−1

=

(
1

2
ln 2

)
−
(
−1

2
ln 2

)
Λ = ln 2 > 0

The Lyapunov exponent is positive, therefore the map is chaotic.

Example 3.4. In this example we will consider the Bernoulli Shift map with
different slopes, in other words the equation (6), that was introduced on the
example (3.2), to find the Lyapunov exponent:

The equation (6), is given by:

f(x) =

{
γ0(x+ 1)− 1 if − 1 ≤ x ≤ −1 + 2

γ0
,

γ1(x− 1) + 1 if − 1 + 2
γ0
≤ x ≤ 1,

Observing the graph, Figure (2), we have shown equations (7), and we can
also note that the intervals I0, I1 are given by:

I0 = −1 +
2

γ0

− (−1) =
2

γ0

I1 = 1− (−1 +
2

γ0

) = 2− 2

γ0

The derivatives are as follows:

f ′(x) = γk

{
γ0 = f ′0(x)

γ1 = f ′1(x)
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Using the formula for the Lyapunov exponent, given by equation (11):

Λ =
n=1∑
k=0

ρk ln |γk||Ik|

=
1

2
(ln γ0) ·

(
2

γ0

)
+

1

2
(ln γ1) ·

(
2− 2

γ0

)
︸ ︷︷ ︸

2
γ1

=
1

2

[
2

γ0

ln γ0 +
2

γ1

ln γ1

]

Λ =
1

γ0

ln γ0 +
1

γ1

ln γ1 > 0 (12)

γ0 > 0, γ1 > 0 and ln γ0 > 0, ln γ1 > 0

The Lyapunov exponent is positive, therefore the map is chaotic.

If you check the graph, Figure (2), we can see how the Lyapunov exponent
depends on the slope γ0 or 1

γ0
.

Using 1
γ0

gives the advantage that it is always between [0, 1] and γ0 is between

[1,∞], the maximum approximately 2 when plotted as a function of the slope.
It becomes smaller as the slope goes to 1 and also becomes smaller as the
other slope goes to ∞.

4 Correlation functions

Given a time series the mean value tells you the time average of the quantity
h. The Correlation function tells you how, on average, the value xn after n
time steps depends on the value x0. The main purpose of the Chapter is the
computation of a Correlation function in the particular case, ”The Bernoulli
Shift map with different slopes”. This map was introduced in example (3.2),
equation (6).

The Correlation function C(m) for a Bernoulli Shift map is defined by:

C(m) = lim
n→∞

1

n

n−1∑
k=0

x̂kx̂k+m (13)

where

x̂k = fk(x0)− x̄ ; x̄ = lim
n→∞

1

n

n−1∑
k=0

fk(x0) (14)
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The arguments follow the lines of reference [2, 4].

From this definition, it follows that C(m) yields another measure for the
irregularity of the sequence of iterates x0, f(x0), f 2(x0), ... It tells us how
much the deviations of the iterates from their average value, x̂k = xk − x̄
that are m steps apart (i.e., x̂k+m and x̂k) ”know” about each other, on the
average.

The computation of mean values is given by:

〈h(x)〉 =

∫
h(x)ρ(x)d(x) (15)

If the invariant density ρ(x) for the Bernoulli map with different slopes is
known, C(m) can be written in the form:

C(m) =

∫ 1

−1

f (m)(x) x ρ(x)dx−
[∫ 1

−1

x ρ(x)dx

]2

(16)

Where m is the mth iterate.

Note that only the first integral for C(m) is going to be useful, because
the other two are equal to zero, as shown:∫ 1

−1

x ρ(x)dx = ρ(x)

∫ 1

−1

x dx = ρ(x)

[
x2

2

]1

−1

= ρ(x) · 0 = 0 (17)

The commutative property of iterates is used:

xk+m = fk+m(x0) = fkfm(x0) = fmfk(x0) (18)

In the next subsections we are going to work out the Correlation function
for three examples, by considering the cases when m = 1, m = 2, and m = 3.
We will notice that using an inductive argument we can show that there is a
General Formula for C(m).

4.1 Computation of C(1)

Next we will compute the Correlation function for the Bernoulli Shift map
with different slopes, when m = 1 and I=[-1,1], example (3.2). See figure (2).
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The map given by equation (6):

f(x) =

{
γ0(x+ 1)− 1 if − 1 ≤ x ≤ −1 + 2

γ0
,

γ1(x− 1) + 1 if − 1 + 2
γ0
≤ x ≤ 1,

The map has two branches, f0 defined on the interval I0, and f1 defined on
the interval I1.

Using the Correlation function equation (16) we have:

C(1) =

∫ 1

−1

f (1)(x) x ρ(x)dx −
∫ 1

−1

x ρ(x)dx

∫ 1

−1

x ρ(x)dx︸ ︷︷ ︸
0

(19)

The first iterative is derived as:

f0(x) = y = γ0x+ a0 → defined on the interval I0 =

[
1,−1 +

2

γ0

]
.

f−1
0 (x) =

1

γ0

x+ b0

f1(x) = y = γ1x+ a1 → defined on the interval I1 =

[
− 1 +

2

γ0

, 1

]
.

f−1
1 (x) =

1

γ1

x+ b1

Note that f0(I0) = I and f1(I1) = I.

Differentiating this gives:

dy

dx
= f ′0(x) = γ0

dy

dx
= f ′1(x) = γ1

dx =
dy

γ0

dx =
dy

γ1

We split the range of integration into two intervals, such that I0, I1, is a
partition of I = [−1, 1]. Substituting these into the equation (19) we get:

=

∫
I0

f0(x) x
1

2
dx︸ ︷︷ ︸

f0(x)=y , I , dx.f ′0(x)︸ ︷︷ ︸
γ0

=dy

+

∫
I1

f1(x) x
1

2
dx︸ ︷︷ ︸

f1(x)=y , I , dx.f ′1(x)︸ ︷︷ ︸
γ1

=dy
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When we replace the x values for y values the integration takes over the
whole interval I = [−1, 1].

=

∫
I

y

(
1

γ0

y + b0

)
1

2

dy

γ0

+

∫
I

y

(
1

γ1

y + b1

)
1

2

dy

γ1

Multiplying out the brackets and collecting the terms together we get:

=

∫ 1

−1

y2

(
1

γ0

)2
1

2
dy +

∫ 1

−1

y b0
1

2

(
1

γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1

)2
1

2
dy +

∫ 1

−1

y b1
1

2

(
1

γ1

)
dy︸ ︷︷ ︸

0

Canceling down all the zero terms and factorizing it gives:

=

{(
1

γ0

)2

+

(
1

γ1

)2
}

1

2

∫ 1

−1

y2 dy

=

{(
1

γ0

)2

+

(
1

γ1

)2
}

1

2
· 2

3

Finally, simplifying we have:

C(1) =

{(
1

γ0

)2

+

(
1

γ1

)2
}

1

3
(20)

This is the Correlation function for m = 1.

4.2 Computation of C(2)

Next we will compute the Correlation function for the Bernoulli Shift map
with different slopes, when m = 2 and I=[-1,1], example (3.2), equation (6).
This map has 4 branches.

Observing Figure (3) we know that:

2

γ0γ0

+
2

γ0γ1

+
2

γ1γ0

+
2

γ1γ1

= 2
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Figure 3: Bernoulli Shift map with different slopes and m = 2.

Now, when m = 2 we have four intervals, such that I00, I01, I10, I11, is a
partition of I = [−1, 1].

f 2
00(x) = f0(f0(x)) = γ0 (γ0x+ a0) + a0 → I00 =

[
− 1,−1 +

2

γ0γ0

]
.

f 2
01(x) = f0(f1(x)) = γ0 (γ1x+ a1) + a0 → I01 =

[
− 1 +

2

γ0γ0,
,

2

γ0γ1

]
.

f 2
10(x) = f1(f0(x)) = γ1 (γ0x+ a0) + a1 → I10 =

[
2

γ0γ1

, 1− 2

γ0γ1

]
.

f 2
11(x) = f1(f1(x)) = γ1 (γ1x+ a1) + a1 → I11 =

[
1− 2

γ1γ0

, 1

]
.

and the derivatives are given by:

f 2′

00(x) = γ0
2 = γ0γ0

f 2′

01(x) = γ0γ1

f 2′

10(x) = γ1γ0

f 2′

11(x) = γ1
2 = γ1γ1

Using the Correlation function equation (16) we get:

C(2) =

∫ 1

−1

f (2)(x) x ρ(x)dx −
∫ 1

−1

x ρ(x)dx

∫ 1

−1

x ρ(x)dx︸ ︷︷ ︸
0

(21)
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The second iterative is derived as:

y = f 2
00(x) = γ0

2x+ γ0a0 + a0

x =
y

γ0
2
− a0

γ0
2
− a0

γ0︸ ︷︷ ︸
b1

x =
y

γ0
2
− b1

Differentiating this gives:

dy

dx
= f 2′

00(x) = γ0
2

dx =
dy

γ0
2

Using the same method we can get the second iterative of the intervals
f 2

01(x), f 2
10(x), f 2

11(x). Note that the derivatives of the intervals were given
on the previous page.

We split the range of integration into the four intervals. Substituting these
into the equation (21) we have:

=

∫
I00

f 2
00(x) x

1

2
dx +

∫
I01

f 2
01(x) x

1

2
dx

+

∫
I10

f 2
10(x) x

1

2
dx +

∫
I11

f 2
11(x) x

1

2
dx

When we replace the x values for y values the integration takes over the
whole interval I = [−1, 1].

=

∫
I

y

(
1

γ0γ0

− b1

)
1

2

dy

γ0γ0

+

∫
I

y

(
1

γ0γ1

− b1

)
1

2

dy

γ0γ1

+

∫
I

y

(
1

γ1γ0

− b1

)
1

2

dy

γ1γ0

+

∫
I

y

(
1

γ1γ1

− b1

)
1

2

dy

γ1γ1

Multiplying out the brackets and collecting the terms together we get:

=

∫ 1

−1

y2

(
1

γ0γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ0

)
dy︸ ︷︷ ︸

0

+

18



+

∫ 1

−1

y2

(
1

γ0γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ1

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ1

)
dy︸ ︷︷ ︸

0

Canceling down all the zero terms gives:

=
1

3(γ0γ0)2
+

1

3(γ0γ1)2
+

1

3(γ1γ0)2
+

1

3(γ1γ1)2

Then we put the term 1
3

in evidence:

=
1

3

[
1

(γ0γ0)2
+

1

(γ0γ1)2
+

1

(γ1γ0)2
+

1

(γ1γ1)2

]

Factorizing it gives:

C(2) =

{(
1

γ0

)2

+

(
1

γ1

)2
}2

1

3
(22)

This is the Correlation function for m = 2.

4.3 Computation of C(3)

Next we will compute the Correlation function for the Bernoulli Shift map
with different slopes, when m = 3 and I=[-1,1], example (3.2), equation (6).
This map has 8 branches.

Observing Figure (4) we know that:

2

γ0γ0γ0

+
2

γ0γ0γ1

+
2

γ0γ1γ0

+
2

γ0γ1γ1

+
2

γ1γ0γ0

+
2

γ1γ1γ0

+
2

γ1γ0γ1

+
2

γ1γ1γ1

= 2
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Figure 4: Bernoulli Shift map with different slopes and m = 3.

Now, when m = 3 we have eight intervals, such that I000, I001, I010, I011, I100,
I110, I101, I111, is a partition of I = [−1, 1].

f 3
000(x) = f0(f0(f0(x))) = γ0 (γ0 (γ0x+ a0) + a0) + a0 → I000 =

[
− 1,−1 +

2

γ0γ0γ0

]
,

f 3
001(x) = f0(f0(f1(x))) = γ0 (γ0 (γ1x+ a1) + a0) + a0 → I001 =

[
− 1 +

2

γ0γ0γ0

,
2

γ0γ0γ1

]
,

f 3
010(x) = f0(f1(f0(x))) = γ0 (γ1 (γ0x+ a0) + a1) + a0 → I010 =

[
2

γ0γ0γ1

,
2

γ0γ1γ0

]
,

f 3
011(x) = f0(f1(f1(x))) = γ0 (γ1 (γ1x+ a1) + a1) + a0 → I011 =

[
2

γ0γ1γ0

,
2

γ0γ1γ1

]
,

f 3
100(x) = f1(f0(f0(x))) = γ1 (γ0 (γ0x+ a0) + a0) + a1 → I100 =

[
2

γ0γ1γ1

,
2

γ1γ0γ0

]
,

f 3
110(x) = f1(f1(f0(x))) = γ1 (γ1 (γ0x+ a0) + a1) + a1 → I110 =

[
2

γ1γ0γ0

,
2

γ1γ0γ1

]
,

f 3
101(x) = f1(f0(f1(x))) = γ1 (γ0 (γ1x+ a1) + a0) + a1 → I101 =

[
2

γ1γ0γ1

, 1− 2

γ1γ1γ1

]
,

f 3
111(x) = f1(f1(f1(x))) = γ1 (γ1 (γ1x+ a1) + a1) + a1 → I111 =

[
1− 2

γ1γ1γ1

, 1

]
.

and the derivatives are given by:

f 3′

000(x) = γ0γ0γ0 f 3′

100(x) = γ1γ0γ0

f 3′

001(x) = γ0γ0γ1 f 3′

110(x) = γ1γ1γ0

f 3′

010(x) = γ0γ1γ0 f 3′

101(x) = γ1γ0γ1

f 3′

011(x) = γ0γ1γ1 f 3′

111(x) = γ1γ1γ1

Using the Correlation function equation (16) we get:
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C(3) =

∫ 1

−1

f (3)(x) x ρ(x)dx −
∫ 1

−1

x ρ(x)dx

∫ 1

−1

x ρ(x)dx︸ ︷︷ ︸
0

(23)

The third iterative is defined as:

y = f 3
000(x) = γ0

3x+ γ0
2a0 + γ0a0 + a0

x =
y

γ0
3
− a0

γ0

− a0

γ0
2
− a0

γ0
3︸ ︷︷ ︸

= b1

x =
y

γ0
3
− b1

Differentiating this gives:

dy

dx
= f 3′

000(x) = γ0
3

dx =
dy

γ0
3

Using the same method we can get the third iterative of the intervals f 3
001(x),

f 3
010(x), f 3

011(x), f 3
100(x), f 3

110(x), f 3
101(x), f 3

111(x). Note that the derivatives of
the intervals were given on the previous page.

We split the range of integration into four intervals. Substituting these into
the equation (23) we get:

=

∫
I000

f 3
000(x) x

1

2
dx +

∫
I001

f 3
001(x) x

1

2
dx

+

∫
I010

f 3
010(x) x

1

2
dx+

∫
I011

f 3
011(x) x

1

2
dx

+

∫
I100

f 3
100(x) x

1

2
dx+

∫
I110

f 3
110(x) x

1

2
dx

+

∫
I101

f 3
101(x) x

1

2
dx+

∫
I111

f 3
111(x) x

1

2
dx
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When we replace the x values for y values the integration takes over the
whole interval I = [−1, 1].

=

∫
I

y

(
1

γ0γ0γ0

− b1

)
1

2

dy

γ0γ0γ0

+

∫
I

y

(
1

γ0γ0γ1

− b1

)
1

2

dy

γ0γ0γ1

+

∫
I

y

(
1

γ0γ1γ0

− b1

)
1

2

dy

γ0γ1γ0

+

∫
I

y

(
1

γ0γ1γ1

− b1

)
1

2

dy

γ0γ1γ1

+

∫
I

y

(
1

γ1γ0γ0

− b1

)
1

2

dy

γ1γ0γ0

+

∫
I

y

(
1

γ1γ1γ0

− b1

)
1

2

dy

γ1γ1γ0

+

∫
I

y

(
1

γ1γ0γ1

− b1

)
1

2

dy

γ1γ0γ1

+

∫
I

y

(
1

γ1γ1γ1

− b1

)
1

2

dy

γ1γ1γ1

Multiplying out the brackets and collecting the terms together we get:

=

∫ 1

−1

y2

(
1

γ0γ0γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ0γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ0γ0γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ0γ1

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ0γ1γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ1γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ0γ1γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ0γ1γ1

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1γ0γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ0γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1γ1γ0

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ1γ0

)
dy︸ ︷︷ ︸

0

+

∫ 1

−1

y2

(
1

γ1γ0γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ0γ1

)
dy︸ ︷︷ ︸

0
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+

∫ 1

−1

y2

(
1

γ1γ1γ1

)2
1

2
dy −

∫ 1

−1

y b1
1

2

(
1

γ1γ1γ1

)
dy︸ ︷︷ ︸

0

Canceling down all the zero terms gives:

=
1

3(γ0γ0γ0)2
+

1

3(γ0γ0γ1)2
+

1

3(γ0γ1γ0)2
+

1

3(γ0γ1γ1)2

1

3(γ1γ0γ0)2
+

1

3(γ1γ1γ0)2
+

1

3(γ1γ0γ1)2
+

1

3(γ1γ1γ1)2

Then we simplify and put the term 1
3

in evidence:

=
1

3

[
1

(γ0γ0γ0)2
+

1

(γ0γ0γ1)2
+

1

(γ0γ0γ1)2
+

1

(γ0γ0γ1)2

+
1

(γ0γ0γ1)2
+

1

(γ0γ0γ1)2
+

1

(γ0γ0γ1)2
+

1

(γ0γ0γ1)2

]
Factorizing it gives:

C(3) =

{(
1

γ0

)2

+

(
1

γ1

)2
}3

1

3
(24)

This is the Correlation function for m = 3.

4.4 Correlation Decay rate

Therefore we demonstrated (on the last subsection) by induction that there
exists a General Formula, given by:

C(m) =

{(
1

γ0

)2

+

(
1

γ1

)2
}m

1

3
(25)

The General Formula for C(m).

From equation (25), we apply the property of the logarithm, to get:

=
1

3
e

ln
{

1
γ0

2 + 1
γ1

2

}m
(26)
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Next, we bring the power m down:

=
1

3
e
−m

(
−ln

(
1
γ0

2 + 1
γ1

2

))
(27)

Let α be:

α = −ln
(

1

γ0
2

+
1

γ1
2

)
(28)

Finally the correlation function is shown as:

C(m) =
1

3
e−mα (29)

Here α is the rate of decay, in other words, how fast the correlation will decay.
Note that, for a general one-dimensional map a sequence x0, f(x0), ..., fk(x0), ...
can be characterized by:

1. a Lyapunov exponent, which tells us how adjacent points become sep-
areted under the action of f ;

2. the Invariant density, which serves as a measure of how the iterates
become distributed over the unit interval; and

3. the Correlation function C(m), which measures the correlation between
iterates that are m steps apart. For more details the reader may consult
reference [4].

5 Relation between Sensitivity and Correla-

tion decay

We want to show that there’s an inequality between the quantity α, (that is
the Correlation decay), from equation (28); and the Sensitivity (that is the
Lyapunov exponent), from equation (12).

α ≤ Λ (30)

− ln

(
1

γ0
2

+
1

γ1
2

)
︸ ︷︷ ︸

rate of decay

≤ 1

γ0

ln γ0 +
1

γ1

ln γ1︸ ︷︷ ︸
Sensitivity

(31)

We are going to prove it using the convexity argument, however we will
have to prove the Jensen’s Inequality to achieve that.

24



5.1 Remark on Convex functions

We say that f(x) is Convex if the line segment joining any two points on
the graph is never below the graph. A Convex function applied to the ex-
pected value of a random variable is always less than or equal to the expected
value of the convex function of the random variable. This result, is known
as Jensen’s Inequality. Parts of the presentation are taken from reference[5].

l(x)

Γ(x)

l(z)

x1 z x2

Figure 5: Convex function f(x)

More precisely, we can make the following statment:
A function f : Rn → R is called Convex if for any pair of non-equal x1, x2 in
the domain of f (which is assumed to be a closed convex set) and any pair
of real positive numbers (1− t), t, such that (1− t) + t = 1, where t ∈ [0, 1],
one has:

f ((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) (32)

We call the equation (32) the General convexity equation.

Geometrically, it means that on the graph (x, y) ∈ Rn+1 : y = f(x) of f , for
any l(z) lying on the line segment, connecting a pair of chosen points x1

and x2 in the domain of f (where z is a point between x1 and x2 defined as
z = (1− t)x1 + tx2). The point (z, f(z)) lies below the chord,which we will
call l(z), connecting the pair of points (x1, f(x1)) and (x2, f(x2)), for all the
possible choices of the pair x1, x2 (the height being measured in terms of the
y-coordinate).

Here we are dealing with the one-dimensional case, assuming that f is de-
fined and bounded on some closed interval [x1, x2]. If in equation (32) one
sets x2 > x1 and z = (1− t)x1 + tx2, then using t = 1 − (1− t), it can be
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rewritten as:

f(x) ≤ x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1

f(x2) = l(x) (33)

Namely, the right hand side is a linear function l(x) of x (given x1, x2, f(x1),
f(x2)), the geometric description above has been made precise.

5.2 Jensen’s Inequality

Now we are going to prove the Jensen’s Inequality. Let’s begin with the
General form of the equation of a line, l(x):

l(x) = y = mx+ c (34)

The gradient is an expression that shows how inclined the line is. It can be
defined as follows:

m =
f(x2) + f(x1)

x2 − x1

(35)

This now gives the following:

y =
f(x2) + f(x1)

x2 − x1

x+ c (36)

Now substituting the point (x1, f(x1)) into the equation (36) and rearranging
to get the constant c :

f(x1) =
f(x2) + f(x1)

x2 − x1

x1 + c, (37)

c = f(x1)− f(x2) + f(x1)

x2 − x1

x1 (38)

Putting in the constant c gives:

l(x) = y =
f(x2) + f(x1)

x2 − x1

x1 + f(x1)− f(x2) + f(x1)

x2 − x1

x1︸ ︷︷ ︸
c

(39)

Remember that we called z a point between x1 and x2, defined as:
z = (1− t)x1 + tx2, where t ∈ [0, 1].

26



Then when we put the fraction in evidence, we get:

l(z) = y =
f(x2) + f(x1)

x2 − x1

(z − x1) + f(x1) (40)

Now we substitute z, and simplify:

l(z) =
f(x2)− f(x1)

x2 − x1

((1− t)x1 + tx2 − x1) + f(x1) (41)

=
f(x2)− f(x1)

x2 − x1

(x1 − x1t+ tx2 − x1) + f(x1)

=
f(x2)− f(x1)

x2 − x1

t(x2 − x1) + f(x1)

= (f(x2)− f(x1)) t+ f(x1)

= tf(x2)− tf(x1) + f(x1)

l(z) = tf(x2) + f(x1)(1− t) (42)

l(z) ≥ f(z)︸︷︷︸
Convexfunction

(43)

Therefore, the Jensen’s Inequality has been proved.

5.3 Upper bound for the Decay rate

In this subsection we will prove that α ≤ Λ, i.e. there’s a relation between
sensitivity and correlation decay.

Starting with the General convexity equation (32), which we proved earlier
we have:

f ((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2)

Now let:
f(x) = Φ(x) = − ln(x) (44)

Since f(x) = − ln(x) is a Convex function, see figure (6), we can apply the
Jensen’s Inequality.
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Now we want to prove that α ≤ Λ, equation (30).

Fisrt of all, we substitute equation (44) into equation (32).

Φ ((1− t)x1 + tx2) ≤ (1− t)Φ(x1) + tΦ(x2) (45)

− ln ((1− t)x1 + tx2) ≤ −(1− t)ln(x1)− tln(x2) (46)

Relabling the constansts x1, x2 and t:
x1 = 1

γ0
, x2 = 1

γ1
, t = 1

γ1
and (1− t) = 1

γ0
.

Substituting the new values, into equation (46):

− ln

(
1

γ0

1

γ0

+
1

γ1

1

γ1

)
≤ − 1

γ0

ln
1

γ0

− 1

γ1

ln
1

γ1

(47)

Using the property of the logarithm on the right hand side, we get:

− ln

(
1

γ0
2

+
1

γ1
2

)
≤ 1

γ0

ln γ0 +
1

γ1

ln γ1

α ≤ Λ

Thus, we have shown that there is an Upper bound for the Correlation decay
rate.

Figure 6: Convex function Φ(x) = − ln(x).
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6 Summary

The first four Chapters were predominantly used to build a foundation of
knowledge to help with the later one. During Chapter 2, we looked at what
a Markov partition and a Markov map is, giving detailed statements and ex-
amples to gain a firm understanding. Moving on to Chapter 3, we explained
explicitly the Frobenius-Perron equation and also derived the Invariant den-
sity, giving examples using the Bernoulli Shift maps with same and different
slopes. The Lyapunov exponent(Sensitivity) was also studied using the same
examples. In Chapter 4, using an inductive argument, we showed the general
formula for a Correlation function with m iterates.

Finally, on Chapter 5, we derived a relation between the Correlation decay
rate and the Lyapunov exponent, i.e. we have shown that for a particu-
lar model, the Bernoulli Shift map with different slopes, where the chaotic
dynamics induces a connection between sensitivity and correlations. It was
done based on a simple piecewise linear Markov map where all computations
can be done explicitly. To show the relation, we explored Jensen’s Inequality,
proving that if a function is convex and we have a line segment joining any
two points on the graph, then the line segment is never below the graph.
Then by using the Jensen’s Inequality, the connection between sensitivity
and correlations was shown.

The result has been derived for a very particular setup. For further study,
one can try to check the matrix representations for the Frobenius-Perron
equation, or even work on the spectra of Markov maps (on Chapter 3). One
could also try to establish a relation for more complicated systems such as
two dimensional maps, or even non-Markov maps where the maps are not
linear.
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