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Abstract

In this paper, we discuss a non-trivial piece of mathematics which has foun-
dations in complex analysis and applications in engineering. We develop a
tool to find the number of roots of nice (i.e. differentiable) complex functions
without actually solving them. This tool is called the Argument Principle.
First, we will look at some definitions that will give us the background knowl-
edge required to understand the project. Then, there are some examples
which have been solved both numerically(using integration) and using analy-
sis. We continue to develop the method of finding the number of zeroes until
we are in a position to apply it to the proof of the Fundamental Theorem
of Algebra(FTA). The FTA states a polynomial of degree n with complex
coefficients, has n roots (zeroes) in the complex plane which are counted with
multiplicity. A more general case is presented afterwards: Rouché’s Theo-
rem. Finally, we close the project with an application in engineering which
uses the Argument Principle to ensure a system is stable. For example, tem-
perature control on a fridge. Note, Rouché’s Theorem guarantees stability
for small changes in the system.
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1 Introduction

This project on the Argument Principle develops a tool which is used to find
the number of roots of a complex function f(z) which is nice (i.e. analytic),
without actually solving the equation f(z) = 0. Solving the equation can
sometimes be very difficult. For example, one can easily solve f(z) = z2+ 1

2
=

0 and see that there are two zeroes, but how about f(z) = z2+cos(z)+e
z
2 = 0?

One may now notice the need for the Argument Principle, to simplify and
reach a solution more easily and efficiently. We can use integration in the
complex plane or a method of proof which is analytical. Meaning, we do not
use numerical integration but rather we observe the real part of a function and
keep algebra to a minimum while drawing various conclusions. Both methods
are shown in the examples section and the complex integral is defined in the
background section. Though, in most cases it is best to use the analytical
method since solving complicated integrals by hand can be time consuming
and one can make errors.

We also look at a very important theorem in complex analysis, the Funda-
mental Theorem of Algebra and prove it using the Argument Principle. The
reason that the Fundamental Theorem of Algebra is so important is because
it tells us that a field of complex numbers is algebraically closed. Meaning,
a polynomial that has complex coefficients, has complex solutions. We know
that 1 + j is a complex number and it may not be obvious but so is 5 (i.e.
5 + 0i). This is an important fact because it tells us that any polynomial,
say p(x),with real coefficients, has all of the solutions of p(x) = 0 in the set
of complex numbers. In other words, the set of real numbers is included
in the set of complex numbers. We will see later that this is important in
understanding the Fundamental Theorem of Algebra and its proof. All these
tools combined will then help us to prove Rouché’s Theorem which tells us
that we can find the number of zeroes of a function in the complex plane by
splitting it into two parts.

At the end of the project we may wish to explore the real life applications
of the Argument Principal. The last section on stability problems provides a
non-trivial application to practical questions such as, why does a rocket not
fall out of the sky once airbourne? Just in case the reader is interested, the
project follows in conjunction to a Year 2 module at Queen Mary, UoL titled
Complex Variables.
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2 Background

In this section, I will list and define some important terms which are useful
to understand and keep in mind when reading the project. First, we start
by looking at Figure 1 below which serves as a reminder of the notion of the
argument of a complex function.

Figure 1: The modulus and argument of a complex function z = x + iy.
Note, z 6= 0, 0 ≤ θ ≤ 2π and θ occurs in multiples of 2π.

Also, we will often see a complex number z written as z = R(cos θ+i sin θ)
which is called the polar form of a complex number z = x + iy, where
x = R cos θ and y = R sin θ. To make things more compact, we will use the
exponential form which is written as z = Reiθ. These are standard identities
in the study of complex numbers.

In this project, complex integration is done as usual. For a complex
valued function w(t), (t ∈ R),

w(t) = u(t) + iv(t)

where u and v are both real valued, the definite integral of w(t) over an
interval a ≤ t ≤ b is defined as∫ b

a

w(t) =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt

provided both integrals on the right exist [2].
The next few definitions are taken verbatim from [1].

Definition 1. A function f which is differentiable at every point of an open
set S ⊆ C is called holomorphic or analytic on S.
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Definition 2. We say a curve is simple if there exists a parameterisation γ of
C which is injective. We say C is a simple, closed curve if it is parameterised
by γ : [a, b] 7→ C with γ(a) = γ(b) but γ(t1) 6= γ(t2) for all other t1, t2 ∈ [a, b]
with t1 6= t2.

Remark 1. In this project we only consider circles which are simple and closed
by definition.

Figure 2: Illustration of simple and closed curves.

Definition 3. A contour is a piecewise-smooth curve, that is a finite union
of smooth curves, joined end-to-end.

Definition 4. Let A be an annulus centered at zo with inner radius R1 and
outer radius R2, 0 ≤ R1 ≤ R2 ≤ ∞: A = {z ∈ C : R1 < |z − z0| < R2}.

We can visualise an annulus using Mathematica. In figure 3 we can also
see the code which one can use to produce an annulus.

Figure 3: Illustration of an annulus with inner radius 1 and outer radius 2.

Now we have a theorem which is not used directly in the project, but it
is helpful to understand the intuition behind it if one wants to understand
the general context.
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Theorem 1 (Poles). Suppose that

(a) two functions p and q are analytic at a point z0;

(b) p(z0) 6= 0 and q has a zero of order m at z0.

Then the quotient p(z)
q(z)

has a pole of order m at z0.

Remark 2. We take this verbatim from [2]. Once again, we will not consider
poles in this project, but I have included this here as it is mentioned in the
application in engineering.

Definition 5. A function f is said to be meromorphic in a domain D if it
is analytic throughout D except for poles[2].

Remark 3. In this project, we only consider holomorphic functions - I have
only included this definition for completeness of the topic.

Now I define the geometric series and the reverse triangle inequality which
are both used later on in the proof of the Fundamental Theorem of Algebra[2,
3].

Lemma 1. To find the sum of a finite geometric series we have

n∑
k=1

rk =
r(1− rn)

1− r

where r 6= 1, n is the number of terms in the series, and r is the common
ratio of the series.

In this project, R is the radius of a circle and thus R > 0.

Lemma 2. The reverse triangle inequality states

||z1| − |z2|| ≤ |z1 + z2| .

In the section on the application of the Argument Principle, I mention a
mapping from the s-plane to the w-plane. This is simply a mapping where
s = z and w = f(z). Let z = x+iy and w = u+iv, then w = u(x, y)+iv(x, y).
Now, we move on to the Argument Principle itself.
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3 The Argument Principle

This theorem is taken from [2].

Theorem 2 (The Argument Principle for Meromorphic Functions). Let C
denote a positively oriented simple closed contour, and suppose that

(a) a function f(z) is meromorphic in the domain interior to C;

(b) f(z) is analytic and nonzero on C;

(c) counting multiplicities, Z is the number of zeroes and P is the number of
poles of f(z) inside C.

Then,
1

2πi

∫
C

f ′(z)

f(z)
dz = Z − P.

Remark 4. As stated in the previous section, a function f is meromorphic in a
domain if it is analytic throughout the domain, except for poles. When using
the Argument Principle, we will suppose f is meromorphic in the domain
interior to a positively oriented (anti-clockwise in direction), simple closed
contour C and that it is analytic and nonzero on C.

It is not immediately obvious how the integral is related to the argument
of a complex function. So where does the idea of f ′(z)

f(z)
come from? The

integral of f ′(z)
f(z)

over a contour C measures change in ln f(z) along C and
is a multiple of 2πi. The integrand is essentially measuring the change in
argument, which is also a multiple of 2πi.

Before we look at some examples, let us take a moment to understand
the Argument Principle for Meromorphic functions geometrically. If we have
n more zeroes than poles contained in the area of a closed contour, there will
be a corresponding plot which is the map of the image of the contour under
a function f . The image winds around the origin n times. We can tell the
relative difference between the number of poles and zeroes inside a contour
by how many times a plot circles the origin, and what direction: clockwise
is a zero, anti-clockwise is a pole.

It is worth highlighting, in this project we will only consider functions
which have no poles, thus the number of winds around the origin will tell us
the number of zeroes of the contour. Note, we only consider circles in this
project which are simple and closed by definition. The Argument Principle
then becomes as below[1].
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Theorem 3 (The Argument Principle for Circles). If f is holomorphic on and
inside a simple closed positively oriented circle C and has a finite number of
zeroes inside C, and if Nf denotes the number of zeroes of f inside C, counted
with multiplicity, then

Nf =
1

2πi

∫
C

f ′(z)

f(z)
dz

Remark 5. In this special case for holomorphic functions, we can say that
Nf is the same as saying Z which is the winding number. In other words, it
measures how many times the image of the circle C under the map f encircles
the origin. The images in figure 5 provide an illustration.
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It may be difficult to convince yourself of what you see in the following
images. Unfortunately, I can only provide static illustrations but I have
provided a screenshot of the code, should you wish to replicate this example
to see the dynamics.

Figure 4: Screenshot of Mathematica code used to produce a dynamic illus-
tration.
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On the left we have a contour which is a circle of radius 2 (i.e. 2 cos[at] +
2i sin[at]) and on the right we take the image of the function f(z) = z3 under
the contour. The results are as we would expect, the image of f(z) winds
around the origin three times. In other words, the function f(z) = z3 has
three zeroes. Note, we do not know anything regarding the location of the
zeroes.

(a) The image encircles around the origin once. (b) The image encircles the origin twice.

(c) The image encircles around the origin
thrice.

Figure 5: The figures show the change in argument of the function f(z) = z3,
the image of f(z) encircles the origin three times under a circle of radius 2,
so f(z) = z3 has 3 roots.
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4 Examples

In all of these examples, geometrically, we are mapping a distinct function
f(z) over a circle of radius R. If one requires a visual aid, feel free to alter the
Mathematica code provided above by changing the first parametric plot to a
circle of radius R and the second parametric plot to the respective functions
in each of the examples in this section.

4.1 Linear Function

In the first example, I will use the Argument Principle to show the total
change in argument of f(z) = z + 1

2
. I will consider two separate cases:

1. R > 1
2
;

2. R < 1
2
.

It is also worth noting that this example will be illustrated analytically rather
than using integration. This method of reaching our answer analytically will
be further developed in subsequent examples.

To find the change in argument of f(z) I will use the exponential polar
form z = Reiθ where R = |z| and arg(z) = θ. Using this definition of z, we
can re-write f(z):

f(z) = f(Reiθ) = Reiθ +
1

2
= %eiψ

where % =
∣∣f(Reiθ)

∣∣.
Note, Reiθ + 1

2
≈ Reiθ for very large R. Intuitively, as R becomes very

large, the 1
2

does not really affect f(Reiθ), so we can neglect it. Now, we
must find ψ by equating coefficients of %eiψ and Reiθ and we can say ψ = θ.
This means ψ(2π)−ψ(0) = 2π which we can write as 2π(Nf ) where Nf = 1.

We are now in a position to consider case 1.
By factoring out the dominant term Reiθ, we write

%eiψ = Reiθ(1 +
1

2R
e−iθ).

Let (1 + 1
2R
e−iθ) = reiα = ζ where α is a function of θ. By rearranging our

condition R > 1
2

we get 0 < 1
2R
< 1.
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Now, we are interested in the real part of ζ for further analysis. Here, and
in further arguments, we observe Re(ζ) > 0 which implies −π

2
≤ α(θ) ≤ π

2
.

This can be seen in figure 6.

Figure 6: The image of the circle with radius R under the function f(z) =
z + 1

2
.

We have shown above that −π
2
≤ α(θ) ≤ π

2
which proves α(2π)−α(0) = 0

and thus α(2π) = α(0). In other words, the change in argument comes from
the term θ in the equation ψ(θ) = θ+α(θ). Now, we must find a lower bound
for Re(ζ) (by computation) because Re(ζ) > 0 implies that −π

2
≤ α(θ) ≤ π

2
.

Re-writing f(Reiθ),

Re(ζ) = 1 +
1

2R
cos θ.

We consider the minimum values of cosine and the term 1
2R

in order to
find the lower bound for the expression 1

2R
cos(θ). Using −1 ≤ cos θ ≤ 1 and

1
2R

> 0 we have, Re(ζ) > 1 + 0(−1) = 1. Finally, we can conclude the total
change in argument of f(z) along the curve is 2π, so we only have one zero
for the case R > 1

2
, by the Argument Principle. This is because the number

of zeroes is given by 2πn, here n = 1.

Now, we will consider case 2:
Firstly, we will re-write %eiψ in a different form, %eiψ = 1

2
(1 + 2Reiθ).

Let (1 + 2Reiθ) = reiβ = ζ where β is a function of θ. Since we already
know R < 1

2
we can rearrange this to get 0 ≤ 2R < 1. Once again, we are

interested in considering Re(ζ) at the minimum values of R and θ. Using
0 ≤ 2R < 1 and cosθ ≥ −1 we have 2R cos θ > −1 which give us Re(ζ) >
1 + 2R cos θ > 1 + (1)(−1) = 0.
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Thus, for the case R < 1
2

we can conclude the total change of argument
of f(z) is ψ(2π) − ψ(0) = 0(2π) = 0. In other words, using the Argument
Principle and considering the change in argument, we can see there are no
zeroes for this case. Geometrically, this is when the zero(s) of f(z) lie outside
of the circle.

4.2 Quadratic Equations

Example 1

We will use the statement of the Argument Principle to show the number of
zeroes of the function f(z) = z2. We expect to obtain a result showing there
are two zeroes; this will be illustrated using integration. Recall, in school we
were always taught: “...the number of roots of a function is identical to its’
highest power.”

In order to use the Argument Principle, we must know or calculate the
first derivative, which in this example is f ′(z) = 2z. Now, we are in a position
to use the statement of the principle. In the integral below, C is a circle with
radius R.

1

2πi

∫
C

f ′(z)

f(z)
dz =

1

2πi

∫
C

2z

z2
dz

=
1

2πi

∫ 2π

0

2eiθ

e2iθ
(ieiθ)dθ (1)

To obtain (1), we have used z = eiθ and dz = ieiθ to perform a change of
variables from z to θ.

1

2πi

∫ 2π

0

2ie2iθ

e2iθ
dθ =

1

2πi

∫ 2π

0

2idθ

=
1

2πi
[2iθ]

∣∣∣∣2π
0

=
1

2πi
(4πi− 0)

=
4πi

2πi
= 2.
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The total change of argument is 4π. The result confirms that the function
has two zeroes (i.e. 2πn where n = 2). This is exactly what we expected.

Example 2

Now, we will use the method of analysis developed in section 4.1 on linear
functions, proving analytically that the function f(z) = z2 + z + 1

2
has two

zeroes. Let us consider a circle of radius R, then using the exponential
and polar form of a complex number,we have z = Reiθ where R = |z| and
arg(z) = θ. We first find the radius of the outer circle of an annulus, and
then the radius of the inner circle. Recall, annulus was defined in definition
4.

We are able to re-write f(z) as f(Reiθ) = R2e2iθ +Reiθ + 1
2

= %eiψ where
% =

∣∣f(Reiθ)
∣∣. For very large R (R→∞) we say,

R2e2iθ +Reiθ +
1

2
≈ R2e2iθ.

Equating the indicies of %eiψ and R2e2iθ we get ψ = 2θ which means ψ(2π)−
ψ(0) = Nf2θ.

Let us re-write f(Reiθ) in a different form by factoring out the dominant
term(term with the highest power):

%eiψ = R2e2iθ
(

1 +
1

R
e−iθ +

1

2R2
e−2iθ

)
.

Let
(
1 + 1

R
e−iθ + 1

2R2 e
−2iθ) = reiα = ζ, this allows for simpler notation. In

order to make any further conclusions, we analyse the real part of ζ, Re(ζ):

Re(ζ) = 1 +
1

R
cos(θ) +

1

2R2
cos(2θ).

For Re(ζ) > 0, it is implied −π
2
≤ α(θ) ≤ π

2
which can be seen in figure 7.
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Figure 7: The image of the circle C with radius R under the function f(z) =
z2 + z + 1

2
.

Also, ψ(θ) = 2θ+α(θ) where the change in argument comes from the term
2θ because α(2π)−α(0) = 0 when computing ψ(2π)−ψ(0) + (α(2π)−α(0))
and thus α(θ) does not contribute to the change in argument.

Using the properties of cosine: −1 ≤ cos(θ) ≤ 1, we know cos(θ) ≥ −1
and cos(2θ) ≥ −1. When cos(θ) ≥ −1 and cos(2θ) ≥ −1, we say

Re(ζ) ≥ 1− 1

2R
− 1

2R2
> 0. (2)

As stated previously, Re(ζ) > 0 implies −π
2
≤ α(θ) ≤ π

2
so we need to

compute a lower bound for Re(ζ). Below, we try to find an appropriate R
which gives us Re(ζ) > 0.

Table 1: This table shows the value of Re(ζ) at different values of R which
are substituted into equation 2.

R > n Re(ζ) > m

n = 5 m = 22
25

n = 4 m = 27
32

n = 3 m = 7
9

n = 2 m = 5
8

n = 1 m = 0

From the table 1, we see for R > 2, ψ = 2θ + α(θ) because m > 0 (i.e.
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Re(ζ) > 0). By proving −π
2
≤ α(θ) ≤ π

2
in figure 7, we have shown that

α(2π) = α(0) and thus α(2π)− α(0) = 0.
Thus for R > 2 we conclude the total change in argument of f(z) along

the curve is 4π, so we have two zeroes of the function.

Now, we can also look at a different case,

%eiψ =
1

2
(1 + 2Reiθ + 2R2e2iθ).

In this part, we are finding the radius of the inner circle of an annulus. Here,
we take ζ = 1 + 2Reiθ + 2R2e2iθ and are interested in Re(ζ) to make further
conclusions and find a value for R.

Re(ζ) = 1 + 2Rcos(θ) + 2R2cos(2θ)

When Re(ζ) > 0, we see that −π
2
≤ α(θ) ≤ π

2
. This fact is illustrated in

figure 7. As in the case for R > 2, we have here that ψ = 2θ+α(θ). Using the
property of cosine being bound by (−1, 1), we have Re(ζ) ≥ 1−2R−2R2 > 0.
Now, there are different ways to find an appropriate value of R, but I choose
to solve to the quadratic 1− 2R− 2R2 = 0 by using the quadratic formula.

Remark 6. The quadratic formula states that a quadratic function of the
form ax2 + bx+ c = 0 has solutions x1,2 = −b±

√
b2−4ac
2a

.

Using the formula as defined, we have

R1, R2 ≈
2±

√
4− (1)(4)(−2)

(−2)(2)

=
2± 2

√
3

−4
.

Simplifying 2±2
√
3

−4 gives us R1 ≈ −1.366 and R2 ≈ 0.366. In this context,
R must be a positive number since it represents the radius of a circle, thus,
R ≈ 0.36. Note, we want Re(ζ) > 0 so we take R < 0.366 because R > 0.366
gives us Re(ζ) < 0.

In the previous part, we found R > 2, this is the radius of the outer
circle(R = 2). The inner circle has radius R = 0.366 To illustrate this, I have
provided an illustration of the annulus, made in Mathematica.
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Figure 8: An annulus with inner radius 0.366 and outer radius 2.

4.3 Monomial of Order N

In this example, we find the number of zeroes of the function f(z) = zn.
From previous mathematical knowledge, we expect the function f(z) = zn

to have n zeroes. Here, the first derivative is f ′(z) = nzn−1 where n is any
natural number. Also, let z = eiθ and dz = ieiθ which we will use to perform
a change of variables from z to θ.

1

2πi

∫
C

f ′(z)

f(z)
dz =

1

2πi

∫
C

nzn−1

zn
dz

=
1

2πi

∫ 2π

0

neiθ(n−1)

eniθ
(ieiθ)dθ

=
1

2πi

∫ 2π

0

nieniθe−iθeiθ

eniθ
dθ

=
1

2πi

∫ 2π

0

nidθ

= n.

Thus, we can conclude the change in argument of f(z) is 2πn and by the
Argument Principle, f(z) has n roots.

Remark 7. After looking at these examples, one should deduce that the
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Argument Principle allows us to find the change in argument in the form
2πn which then tells us how many zeroes the function has (n).
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5 The Fundamental Theorem of Algebra

Theorem 4 (The Fundamental Theorem of Algebra[1]). Every polynomial,
p(z) = anz

n + an−1z
n−1 + an−2z

n−2 + ...+ a2z
2 + a1z

1 + a0, of degree n with
real or complex coefficients has exactly n zeroes (counting multiplicities) in
C, (n ≥ 1, aj ∈ C, j = 0, ..., n, an 6= 0).

The method of proof which we have developed in previous examples, will
be used here to prove that there are n zeroes of the Fundamental Theorem
of Algebra,

p(z) = anz
n + an−1z

n−1 + an−2z
n−2 + ...+ a1z

1 + a0

where an 6= 0.
First, we consider a non-rigorous reasoning which gives a taste of the

proof to follow. As usual, we write p(z) using z = Reiθ. Let us consider R to
be so large that we can ignore all of the terms except the one with highest
power.

p(Reiθ) = anR
neinθ + an−1R

n−1e(n−1)iθ + ...+ aReinθ + a0.

We see the complex argument of p(Reiθ) is nθ, which increases by 2πn when
θ goes from 0 to 2π. Hence, Nf = 1

2π
2πn = n. Now, let us make this a

rigorous argument.

Proof. As previously, we will use z = Reiθ where R = |z| and arg(z) = θ.
Then, substituting z with Reiθ gives

p(Reiθ) = anR
neinθ + an−1R

n−1e(n−1)iθ + ...+ aReiθ + a0.

To simplify the problem, we say p(Reiθ) = %eiψ where % =
∣∣p(Reiθ)∣∣. Note,

for sufficiently large R,

anR
neinθ + an−1R

n−1e(n−1)iθ + ...+ aReiθ + a0 ≈ anR
neinθ.

Now, we can re-write %eiψ by factoring out the dominant term Rneniθ:

%eiψ = Rneniθ(an +
an−1e

−iθ

R
+ ...+

a0e
−niθ

Rn
).

Let an + an−1e−iθ

R
+ ... + a0e−niθ

Rn
= reiα = ζ. It is important to note that

ψ(θ) = nθ + α(θ) where α is a function of θ. We also conclude that ψ = nθ
by equating the indices of eiψ and eniθ.
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WhenRe(ζ) > 0, the implication−π
2
≤ α(θ) ≤ π

2
means α(2π)−α(0) = 0.

We can write Re(ζ) as:

Re(ζ) = an +
an−1 cos θ

R
+
an−2 cos 2θ

R2
+ ...+

a1 cos(n− 1)θ

Rn−1 +
a0 cosnθ

Rn
. (3)

From the statement of the Fundamental Theorem of Algebra, we know
an 6= 0, but we do not know if an is positive or negative. Thus, we must
consider two separate cases:

1. an is positive (an > 0)

2. an is negative (an < 0)

We will consider case 1 first and start by using equation 3 from above.

Re(ζ) = an +
an−1 cos θ

R
+
an−2 cos 2θ

R2
+ ...+

a1 cos(n− 1)θ

Rn−1 + (4)

a0 cosnθ

Rn

≥ an −
∣∣∣∣an−1 cos θ

R

∣∣∣∣− ∣∣∣∣an−2 cos 2θ

R2

∣∣∣∣− ...− ∣∣∣∣a1 cos(n− 1)θ

Rn−1

∣∣∣∣− (5)∣∣∣∣a0 cosnθ

Rn

∣∣∣∣
This inequality holds due to the reverse triangle inequality (Lemma 2 from

the background section), which allows us to find a lower bound estimate for
Re(ζ). In the next step, we use a property of the cosine function: cos ≥ −1.

Re(ζ)≥ an−
∣∣∣∣an−1 cos θ

R

∣∣∣∣− ∣∣∣∣an−2 cos 2θ

R2

∣∣∣∣− ...− ∣∣∣∣a1 cos(n− 1)θ

Rn−1

∣∣∣∣− ∣∣∣∣a0 cosnθ

Rn

∣∣∣∣
≥ an − |−1|

∣∣∣an−1
R

∣∣∣− |−1|
∣∣∣an−2
R2

∣∣∣− ...− |−1|
∣∣∣ a1
Rn−1

∣∣∣− |−1|
∣∣∣ a0
Rn

∣∣∣
≥ an −

∣∣∣an−1
R

∣∣∣− ∣∣∣an−2
R2

∣∣∣− ...− ∣∣∣ a1
Rn−1

∣∣∣− ∣∣∣ a0
Rn

∣∣∣
= an −

|an−1|
R
− |an−2|

R2
− ...− |a1|

Rn−1 −
|a0|
Rn

.

The final equality holds because we know that R > 0 due to the context of
the problem, R is the radius so it must be larger than 0.

We now introduce a constant α = max{|ak|} where 0 ≤ k ≤ n − 1. In
other words, α is the largest coefficient. This means |an−1| ≤ α, |an−2| ≤
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α,..., |a0| ≤ α. Thus, we can use geometric series to find the desired value
of R; keeping in mind that the aim of this part of the proof is to show
an + ...+ a0 > 0. So,

an −
(
|an−1|
R
− |an−2|

R2
− ...− |a1|

Rn−1 −
|a0|
Rn

)
≥ an −

(α
R
− α

R2
− ...− α

Rn−1 −
α

Rn

)
= an − α

(
1

R
+

1

R2
+ ...+

1

Rn−1 +
1

Rn

)
= an −

α

R

(
1 +

1

R
+

1

R2
+ ...+

1

Rn−1

)
.

In the steps above, we have first factored out α and then factored out α
R

.
From the last equality, we are now in a position to make use of the geometric
series which was defined earlier.

Using the definition of geometric series,

an −
α

R

(
1 +

1

R
+

1

R2
+ ...+

1

Rn−1

)
= an −

α

R

(
1− 1

R

n

1− 1
R

)
(6)

We can expand 6 to give

an −
α

R

(
1

1− 1
R

)
+
α

R

( 1
Rn

1− 1
R

)
.

We know that
α

R

( 1
Rn

1− 1
R

)
> 0

since we assume that R > 1, by the definition of geometric series.
Then, we can say

Re(ζ) ≥ an −
α

R

(
1

1− 1
R

)
= an −

α

R− 1
> 0

where an > 0 and R > 1. Now, we find a range for R in which we can
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guarantee Re(ζ) > 0:

an −
α

R− 1
> 0

an >
α

R− 1

an(R− 1) > α

R− 1 >
α

an

R >
α

an
− 1.

Thus,

R > max

(
α

−an
− 1, 1

)
.

Finally, for the case where an > 0, we can conclude that ψ(2π)− ψ(0) =
2πn. The polynomial p(z) has a change in argument of 2πn and thus we
have n zeroes. We have now proved case 1 for positive an of the Fundamen-
tal Theorem of Algebra, using the Argument Principle.

We will consider case 2 now and start from re-writing equation 3 by fac-
toring out −1.

Reζ = −
(
−an −

an−1 cos θ

R
− an−2 cos 2θ

R2
− ...− a1 cos(n− 1)θ

Rn−1 − a0 cosnθ

Rn

)
By the expression

−an −
an−1 cos θ

R
− an−2 cos 2θ

R2
− ...− a1 cos(n− 1)θ

Rn−1 − a0 cosnθ

Rn

we can say that −an > 0 which is the same as saying an < 0. Thus we can
use case 1 to show case 2.

Note, the previous case an > 0 tells us

Re(ζ) = −an−
an−1 cos θ

R
− an−2 cos 2θ

R2
− ...− a1 cos(n− 1)θ

Rn−1 − a0 cosnθ

Rn
> 0

if R > max
(
α
an
− 1, 1

)
where α = max{|−ak|} for 0 ≤ k ≤ n− 1.
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Thus we can deduce

Reζ = −
(
−an −

an−1 cos θ

R
− an−2 cos 2θ

R2
− ...− a1 cos(n− 1)θ

Rn−1 − a0 cosnθ

Rn

)
< 0.

For the case where an < 0, we can say the term α(2π) − α(0) = 0 and thus
ψ(2π) − ψ(0) = 2πn. The change in argument of p(z) is 2πn so by the
Argument Principle, we have n zeroes.

Using the Argument Principle, we have proved the Fundamental Theorem
of Algebra has n zeroes by considering two cases: an < 0 and an > 0.
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6 Special Case of Rouché’s Theorem

Theorem 5 (Rouché’s Theorem for Circles). If f and g are holomorphic on
and inside a circle C with radius R and |f(z)| > |g(z)| for all z on C, then

Nf+g = Nf

where Nf denotes the number of zeroes of f inside C, counted with multiplic-
ity.

A more general Rouché’s Theorem can be found in [1] and [2].

Remark 8. The theorem above is essentially telling us that the change in
argument of |f(z)| is 2πNf , which we get by evaluating ψ(2π) − ψ(0) with
ψ(θ) being the argument of the function f(Reiθ) in polar representation. I
will reiterate this in the proof below - for context.

Before we look at the proof, I have given a lemma below which will be
essential to the proof of Rouché’s Theorem.

Lemma 3. If z ∈ C and |z| < 1 then Re(1 + z) > 0.

I omit the proof of the lemma as it is trivial.
We can now prove Rouché’s Theorem.

Proof. We are given |f(z)| > |g(z)| which implies |f(z)| > 0 and |g(z)| ≥ 0.
Using polar representation, we know f(Reiθ) = r(θ)eiψ(θ). We also know
ψ(2π) − ψ(0) = 2πNf from the statement of the theorem. Let us start by
looking at f(Reiθ) + g(Reiθ):

f(Reiθ) + g(Reiθ) = %(θ)eiγ(θ) (7)

= f(Reiθ){1 +
g(Reiθ)

f(Reiθ)
}. (8)

Above, we wrote equation 7 using polar form and factored out f(Reiθ) in
equation 8 because we know that

∣∣f(Reiθ)
∣∣ > 0.

Let 1 + g(Reiθ)
f(Reiθ)

= ζ, then we can re-write f(Reiθ) + g(Reiθ) as

f(Reiθ) + g(Reiθ) = f(Reiθ)ζ (9)

= r(θ)eiψ(θ) |ζ| eiα(θ). (10)
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Here, Re(ζ) > 0, and as seen in previous sections this implies −π
2
≤

α(θ) ≤ π
2

which can be seen in figure 9.

Figure 9: The image of a circle C with radius R under the function f(z).

It follows that α(2π) = α(0), meaning |ζ| e0i = |ζ| e2πi is the same complex
number. By equating the indices of eiγ(θ) and eiψ(θ)eiα(θ) we get that γ(θ) =
ψ(θ) + α(θ).

Finally, we conclude that

2πNf+g = γ(2π)− γ(0)

= ψ(2π)− ψ(0) + (α(2π)− α(0))

= ψ(2π)− ψ(0)

= 2πNf .

Note, α(θ) vanishes when we compute ψ(2π)−ψ(0) because α(2π)−α(0) = 0.
From this result we see that ζ does not contribute to the change in argu-

ment.
In other words, the number of roots of f(z) + g(z) is identical to the

number of roots of f(z). Furthermore,the change in argument is 2πNf and
thus f(z) has Nf roots. We have now proved this special case of Rouché’s
Theorem for circles using the Argument Principle.
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7 Applications of the Argument Principle in

Stability Problems

In engineering, certain feedback control systems need to be stable. Firstly,
what is a feedback control system? Essentially, performance information is
measured and then fed back into the system to ensure it performs correctly.

For example, What happens when a person drinks too much in a given
time period? The kidneys will push urine through to the bladder and after it
has become full to a certain extent, various receptors will trigger a message to
be sent to via nerve strands to the spine. The spine will then send a message
to their brain, letting them know that they should probably pass urine. Once
this control system starts to become unstable (i.e. starts to fail), a person
experiences involuntary urination. This is a biological control system, but
there are also many which are created by engineers.

Let’s take a formula 1 race car, according to regulations set by the
Fédération Internationale de l’Automobile (FIA), they must have a range
of control systems. A specific one we can look at is the medical warning light
control system, it must be fitted to each race car in order to indicate the
severity of an accident. Without this light control system, the rescue team
would not be able to efficiently bring the driver to safety and ensure there
are no life threatening injuries (regulation 8.10 from [5]).

The Argument Principle forms the basis for a stability criterion called
the Nyquist Stability Criterion in the design and analysis of control systems.
This application is very powerful and important in everyday life, also having
the ability to provide relative stability and margins. In this section, we will
not delve too deep in the theory behind the Nyquist Stability Criterion, but
rather show what it is and where the Argument Principle comes into use.

In figures 10 and 11 we can see two different types of systems - open loop
and closed loop. In the open loop system, we have two processes G and H
which receive an input and produce an output, respectively. In everyday life,
we use washing machines which are a great example of an open loop system.
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Figure 10: An open loop system.

In the closed loop system, we have the additional feature of an adjusting
device, which interprets the feedback received from H and adjusts the input
signal for process G. This can be an advantage in everyday life because the
system adjusts its own output. For example, an iron which stops producing
heat after a certain temperature setting is reached and has a sensor which
cuts off the power if it has been left on for too long. We wouldn’t want a
fire, it’s important to ensure the temperature remains stable.

Figure 11: A closed loop feedback control system.

Note, it is not uncommon to say H is identical to 1, then we have a system
which is illustrated in figure 12, called the unity feedback system [4].

Figure 12: A unity feedback control system.

In the interest of building a basic understanding, the signals relevant to
each arrow have been omitted. Usually, we would have to find the Laplace
Transform of each of the signals which are originally time dependent in order
to find T (s), the transfer function. This step is omitted. See table 2 for
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the results. When we say transfer function, we mean a function which maps
points from one plane to another, we will use the s-plane to w-plane. For a
reminder of what this is, you may wish to refer to the background section.

Table 2: Transfer functions for three different types of systems.

Open− Loop Closed− Loop Unity − Feedback

T (s) = G(s)H(s) T (s) = G(s)
1+G(s)H(s)

T (s) = G(s)
1+G(s)

For the open loop system, we need to find the poles of the transfer func-
tion. That is, the values of s which cause T (s) → ∞. If there is a pole in
Re(s) ≥ 0 (i.e. the right half plane), then the open loop system is unstable.

Remark 9. We can refer back to the background section to remind ourselves
what a pole is.

For the closed loop system, we need to find the zeroes of the denominator
of the transfer function which cause T (s) → ∞. If there is a zero of 1 +
G(s)H(s) in Re(s) ≥ 0, then the closed loop system is unstable.

Finally, in the unity feedback system, we need to ensure T (s) does not
have any poles in Re(s) ≥ 0. In other words, we must find the zeroes of
1 +G(s). From here on, we only look at the unity feedback system.

Remark 10. G(s) and T (s) are both rational functions. We assume the de-
nominator of the rational function G(s) has higher order than the numerator.
Also, we assume that there are no poles of G(s) on the imaginary axis [4].
Things would start to get complicated if there were, but in the real world
there are such scenarios. For the purpose of this project, we are not interested
in them.

Now, the question that interests us is: are there any zeroes in Re(s) ≥ 0
of 1 + G(s)? To find out, we can sketch a Nyquist contour, generally we
could use software such as Matlab to produce this. An example sketch can
be seen in [4] on page 10. The Nyquist contour is a semi-circle contained
in the right half plane and runs from [−iR, iR] (the base of the semi-circle)
where R is the radius of the semi-circle. Taking the semi-circle in the right
half plane with very large R ensures that we have contained any zeroes and
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poles in the contour. This is now mapped onto the w-plane as R → ∞ and
the image produced is a Nyquist plot. Here, we use the Argument Principle.

Just as we did previously, we are counting the number of encirclements
of the plot around the origin. As a reminder of what is happening here, we
can refer back to the Mathematica screenshots provided earlier, if needed.
As stated previously, the number of encirclements only tells us how many
more zeroes we have than poles (if the image is clockwise in direction) or
how many more poles than zeroes (if it is anti-clockwise in direction).

The number of encirclements around the origin is called the winding num-
ber, W (f(C), 0) = PG−PT where P is a pole, because the zeroes of 1 +G(s)
are the same as the poles of T (s) [4]. The Nyquist Criterion below is taken
verbatim from source [4].

Theorem 6 (Nyquist Criterion). The unity feedback system is asymptotically
stable if and only if

(a) the Nyquist plot does not pass through zero;

(b) the winding number of the Nyquist plot around zero equals the number
of poles of the open loop system.

In the last section we looked at a handy theorem, Rouché’s Theorem. It
is precisely this which guarantees stability for small deviations of G [4].

8 Conclusion

Throughout the project we have seen examples of the Argument Principle in
action, in helping us find the number of zeroes of a function using analysis.
We also used numerical integration but pointed out that analytical methods
are generally easier. This method is non-trivial and forms the basis of a
very important application in engineering: the Nyquist Stability Criterion.
Without the Argument Principle, engineers would have much difficulty on
determining the stability of a system.

We also looked at the Fundamental Theorem of Algebra which tells us
that a polynomial p(z) = anz

n + an−1z
n−1 + an−2z

n−2 + ...+ a1z
1 + a0 where

an 6= 0 and the coefficients are complex, has n roots in the complex plane,
counted with multiplicity. There are various ways of proving this theorem
but in this project we looked specifically at the proof using the Argument
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Principle. We first used polar representation to re-write p(z) and then ap-
proximated p(Reiθ) for very large values of R. The punch line was, as z
traverses a unit circle in the anti-clockwise direction, p(z) winds around the
origin n times in the anti-clockwise direction. This positive integer is the
number of zeroes of the function.

The proof of Rouché’s Theorem saw the next major application of the
Argument Principle. Rouché’s Theorem says if f and g are holomorphic on
and inside a circle with radius R and |f(z)| > |g(z)| for all z on C, then
Nf+g = Nf where Nf denotes the number of zeroes of f inside C, counted
with multiplicity. Rouché’s Theorem is important because it guarantees the
stability of a unity feedback system.

31



References

[1] Dr Shabnam Beheshti MTH5103 Complex Variables Lecture Notes.
School of Mathematics, Queen Mary University of London, 2016.

[2] James Ward Brown, Ruel V. Churchill Complex Variables and Applica-
tions, Eighth Edition. The McGraw-Hill Companies, Inc. 2009.

[3] Ross L. Finney, George B. Thomas, Jr. Calculus, Second Edition.
Addison-Wesley Publishing Company, Inc. 1990.

[4] Russell W. Howell, Elmar Schrohe (2017) Unpacking Rouché’s Theorem
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