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Abstract

The purpose of this thesis is to analyse the daily returns of spot price market data. In particular,

we will explore the area of financial risk associated with the data. This thesis will discuss a mixture of

economic and mathematical stances on the subject. The data that we will look at is from the Nord Pool

market. The time series of this data shows the spot price taken every hour from 00:00 on January 1st

1999 to 23:00 on January 26th 2007. We will first take a brief look at the time series of prices itself.

Later discuss some comparisons between our hourly and daily returns. We then discuss the daily returns

themselves in greater detail and apply a few financial risk measures to these results in order to evaluate

the worthiness of Nord Pool electricity as an investment.
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Chapter 1

Introduction

1.1 What is risk?

The Oxford English dictionary defines risk as ”a situation involving exposure to danger” [17]. Every day

we are subject to some kind of risk and as humans we have a natural instinct to avoid it. In general, our

brains are quite good at assessing the environment we are in and warning us of any incoming risks so

that we can escape them. For example, we see a car coming and step out of the road or we see some pink

chicken and decide not to eat it. These simple examples are every day things. They are things that, as

we age and learn, become natural to avoid. In this context, risk is seen as an immediate danger to us,

but then we may ask how risk is defined across different situations.

In general risk is ”a possibility of loss or injury” [14]. According to Hasbro, risk is ”is a strategy board

game of diplomacy, conflict and conquest for two to six players” [22]. In a workplace risk is defined mainly

by the health and safety precautions put in place by a company. In this thesis we will examine financial

risk.

”Financial risk is the possibility that shareholders or other financial stakeholders will lose money

when they invest in a company that has debt if the company’s cash flow proves inadequate to meet its

financial obligations.” [3]. In this thesis, we will look at the risk associated with the Nord Pool data. In

particular, we will look at different risk measures used within the financial sector and will apply these

measures to the data. The main object of this thesis is to look at the risk related to the daily returns of

the spot prices, however we will also explore the differences between daily returns compared with hourly

returns.

1.2 What are the different measures of risk?

In finance there are several methods used to measure risk. In general these methods are used on a

portfolio of assets however in this thesis we will be applying them to Nord Pool and analysing the

results.

The most basic measures of risk are the mean and variance of the price of an asset. The mean is an

average of the stock price. This is calculated as 1
n

∑n
i=1 xi where n is the number of data points and xi

is the ith data point.The variance is a measure of the spread of data. It is calculated as 1
n

∑n
i=1(xi− x̄)2

where the meanings of n and xi are as above and x̄ refers to the mean.This is a suitable calculation for the

population variance, however, we do not have the entire population of Nord Pool spot prices. Although
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our value of n is especially high it still only represents a sample of the data available. This population

variance is then ”biased by a factor of n−1
n .” [24]. Thus, it would be better to use the formula for the

sample variance. The formula for sample variance is similar to that of the population variance except

it is divided by a factor of n-1 rather than n itself. Hence, the formula is given by 1
n−1

∑n
i=1(xi − x̄)2.

”The use of the term n-1 is called Bessel’s correction” [24]. In an ideal world and investor would wish for

the mean (or expected value) of an asset’s price to be high and it’s variance to be low. The use of mean

and variance as a risk measure comes together under The Mean-Variance Portfolio Theory or Modern

Portfolio Theory which we will discuss later.

Another highly used measure of risk is Value at Risk (or VaR).VaR is ”a statistic that measures and

quantifies the level of financial risk in a firm, portfolio or position over a specific time.” [7]. Mathemati-

cally, VaR is defined as ”the smallest number y such that the probability that Y:=-X does not exceed y

is at least 1− α.” [23]

V aRα(X) = F−1Y (1− α)

[ [23]. Here, α is the confidence level, which lies between 0 and 1, and FY is the cumulative distribution

function of the random variable Y. For this thesis we will take two values for the VaR. Firstly, we will

look at the VaR where we assume that our returns are distributed according to a normal distribution.

Mathematically, we will take the mean and standard deviation of our returns and will use these to

calculate the inverse of the CDF of the Normal distribution. Mathematically, we will be looking for r

such that

1
σ
√
2π

∫ r
−∞ e

−(x−µ)2

2σ2 = (1− α)

here µ and σ are the mean and standard deviation of our returns, respectively. α is our confidence level

and r will be our VaR. Secondly, we will look at the historical VaR for our data. For historical VaR we

count the number, N, of data points we have, we work out (1− α)% of N, we then find the point which

corresponds to this % and this will be our historical VaR.

Another measure of risk used within finance is the expected shortfall. Expected shortfall is also known

as the conditional VaR. At the α% level ”expected shortfall is the expected return on the portfolio in

the worst α% of cases” [19]. Mathematically, we can define it as

E(Sα) = − 1
α

∫ α
0
V aRγ(x)dγ

where V aRγ is defined as above and α is the confidence level.
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Chapter 2

Background of the Data

2.1 The Nord Pool Market

2.1.1 History of Nord Pool

Nord Pool runs the largest electricity market in Europe.”More than 80% of the total consumption of

electrical energy in the nordic market is traded through Nord Pool.” [21]. Nord Pool provide day-ahead

and intraday markets, which we discuss is sections 2.1.3 and 2.1.4, respectively. Both of these markets

are important because they allow Nord Pool to stabilise the delivery of power and ensure that it is always

available. Nord pool is the first ever multinational exchange for trading in electricity. Nord Pool trades

across the Nordic region (Norway, Denmark, Finland and Sweden), the Baltic states (Estonia, Lithuania

and Lativa), Germany and the UK.

2.1.2 The Electricity Market

A financial market is a market which is used to trade financial products such as stocks, bonds, com-

modities and derivatives. In general, when people think about ”the market” the first thing we think of

is the stock market. However, when looking at the Nord Pool data we are looking at trades made on

the electricity market. The electricity market is a particularly interesting one. When a trader buys or

sells a share on the stock market the thing that is actually being bought or sold is a share certificate.

This is similar for a bond, and for a derivative it is a contract that is being bought or sold. Realistically

none of these things are really considered tangible. The difficulty in understanding electricity trading is

that it it neither traded as an equity nor a commodity, it is somewhere in between. Although electricity

itself is not a tangible commodity like wheat or livestock, it is still delivered and made use of unlike a

share certificate. The main difference between energy and other commodities is that it is used as it is

produced. When trading wheat, tonnes and tonnes of the wheat itself can be stored, similarly with corn,

livestock, oil and any other commodity. Electricity, on the other hand, cannot be stored at a wholesale

level. The nature of electricity can therefore make it a very volatile thing to trade. We will see this later

when we look at the Nord Pool data in 2.2.

2.1.3 The Day-Ahead Market

The day-ahead market requires a company (the buyer) to assess the amount of power it believes it will

need the next day. Once the buyer has figured this out they then decide how much they are willing to
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pay for this power hour-by-hour. At the same time the company that produces the power- for example,

a nuclear power plant- will assess how much energy they believe that they can produce for the next day

and how much they are willing to sell it for hour-by-hour. Both the buyers and sellers make bids on the

day-ahead market for how much they are willing to buy or sell the power for, respectively. The deadline

for bids is 12:00 CET. A computer then calculates the exact price of the power and then the trades are

settled. Power delivery begins at 00:00 CET the next day and is delivered hour by hour for the agreed

price. The agreed price is set where the sell price and buy price meet. [16] This can be seen in figure 2.1.

Figure 2.1: This graph shows where the curves of supply and demand meet. This is where the price of the power
is set. [16]

2.1.4 The Intraday Market

The intraday market is a continuous market, meaning that trades can be made around the clock and

buyers and sellers can trade volumes close to real time. Trades here are made up to an hour before

delivery and the best prices are given to those who are first in line to trade. The intraday market is

important because power is unreliable. If a power plant cannot deliver the amount of power promised,

or, if it manages to produce more than expected, then the prices need to be adjusted accordingly.This

is particularly important between 12:00, when the bids on the day-ahead market close, and 00:00, when

the power is actually delivered. [15]

2.2 The Nord Pool Data

The data that we will use in this thesis is a set of spot prices. These spot prices are taken every hour

from the 1st January 1999 to the 26th January 2007. Using Microsoft Excel I have sorted the data and

created a time series of the spot prices. This is shown below in figure 2.2. In section 2.1.2 we found that

the nature of electricity makes it a volatile thing to trade. This is seen quite obviously in figure 2.2. We

see clear spikes where the price has quite drastically risen and then quickly fallen again. The presence of

these spikes suggests that the variance in the prices may be quite high. We will explore what this later

in 3.
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Figure 2.2: Time series of Nord Pool spot prices

2.2.1 The Hourly Returns

The Nord Pool data is given in raw spot prices, in order to compare the current price with the price

from the previous hour we can calculate the hourly returns for the data. Hourly returns are given by

rh = ln( xn
xn−1

)

here rh is the hourly return, xn and xn−1 are the nth and (n-1)th spot prices, respectively. I have used

Microsoft Excel to calculate and graph the hourly returns, the graph is shown below.

Figure 2.3: Hourly returns for the Nord Pool spot price data

2.2.2 The Daily Returns

In a similar fashion to the hourly returns, we can calculate daily returns using

rd = ln( xn
xn−24

)
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Figure 2.4: Daily returns for the Nord Pool spot price data

here rd is the daily return, xn and xn−24 are the nth and (n-24)th spot prices, respectively. Again I have

used Microsoft Excel to calculate and graph the daily returns. I have included the graph below.
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Chapter 3

The Nord Pool Data and Risk

3.1 Analysing the Spot Price Data

In section 2.2 we saw the time series of the Nord Pool data. In this graph we see a lot of volatility in

the spot prices. There is no apparent pattern and we see large spikes and drops throughout. In 1.2

we discussed the use of mean and variance as risk measures. Using Microsoft Excel I have worked out

the mean and variance of the spot prices to be 27.47552196 and 216.4893081, respectively. We can

see from these numbers that the spread of the data is fairly large while the average price is relatively

low. But what does this mean in terms of financial risk? This can be explained using Modern Portfolio

Theory.

3.1.1 Modern Portfolio Theory

Modern Portfolio Theory is a theory that was proposed by Harry Markowitz in his paper ”Portfolio

Selection” [9]. The theory gives an idea on how to construct a risk-averse portfolio of assets based on

their expected returns and market risk. The theory states that you can construct an efficient frontier

of portfolios which give optimal returns based on a fixed level of risk. Below we see an illustration of the

basic concept of the theory and how the efficient frontier is constructed and used.
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Figure 3.1: The Markowitz efficient frontier [10]

3.1.2 Modern Portfolio Theory and the Nord Pool Data

Clearly this theory requires an entire portfolio of assets and in this thesis we are only analysing the price

of one single asset. Nevertheless, we can look at the image above and get an idea of where the Nord

Pool data would be placed with regards to the Markowitz efficient frontier. Taking the square root of

our above variance we get the standard deviation as 14.71357564. In finance, the standard deviation

of past spot prices is known as Historic Volatility. It is quite difficult to evaluate the significance of

these numbers without any context. As we discussed in 2.1.2 electricity is infamous for it’s high level of

volatility. The easiest way to see this is to compare the volatility of the Nord Pool spot prices with the

historic volatility of various equities and commodities. Below we see a table of different companies and

the historic volatility of their stock prices between the 1st January 1999 and the 26th January 2007.

Figure 3.2: Table of means and historic volatility for 6 companies including Nord Pool. All data was
obtained from Yahoo Finance, 2019. [1]

Using this data and Microsoft Excel we can plot these means and standard deviations along with the

Nord Pool data in order to compare. The plot of this data is shown below.

We can see clearly that in comparison to the other companies Nord Pool is relatively low risk, low

price. In general a person investing in a portfolio of shares would be looking toward the low risk, high

price side of this graph, which is not where Nord Pool falls. Statistically, however, this graph is not the

best measure of comparison between these prices. We have discussed the mean and standard deviation

of the prices themselves which is some sense is fine, but, ”most business and economic time series are
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Figure 3.3: Graph of mean against standard deviation for the above companies

far from stationary when expressed in their original units of measurement” [13]. This means that in

a mathematical sense the mean and standard deviation of the prices themselves are actually not well

defined. In fact, as we saw in 3.1.1 Modern Portfolio Theory uses the expected returns rather than the

mean of the prices themselves and therefore I have taken this analysis even further and I have used Excel

to create an optimal portfolio for these data points. In order to create this optimal portfolio we first

calculate the returns of our data for each of the companies including the Nord Pool data. The returns

are calculated as xi
xi−1

, we then use the average returns of the entire portfolio of assets to calculate the

optimal portfolio. A table of our optimal portfolio results is shown below. The optimal portfolio is the

Figure 3.4: Optimal Portfolio of shares

turning point of the slope, in this graph the slope continues to increase up until the 4th portfolio, after

which it drops. Hence for this combination of shares and commodities the optimal portfolio would consist

of 43% in Apple, 57% in Faroe Petroleum and 0% in the rest of the companies including Nord Pool. This

further supports the idea that Nord Pool electricity is a volatile and risky investment. Using this table

of portfolios I was able to plot the Markowitz efficient frontier for our own data. This is shown below.

This graph shows clearly what we discussed from the table above. After our chosen optimal portfolio we

see the obvious drop in the slope of the efficient frontier. We also see that the Nord Pool data does not

fall on this line. The optimal portfolio for this data was created using Microsoft excel. The method used

on our data was a method found online [11]. Firstly, we work out the returns for each set of prices using

the formula xi
xi−1

. We then use the returns data to build a covariance table, we work out the covariance
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Figure 3.5: Markowitz efficient frontier for our optimal portfolio

of each of the pairs of assets using the excel formula COVARIANCE.S. we then arrange these numbers

into a table, the table also includes the weighting of each of the assets in the portfolio. We then build a

table of expected returns for each of the assets by averaging over their returns using the excel AVERAGE

function. After this point we use the SUM PRODUCT excel function on the weights and covariances of

each asset. We then have a cell with our target return for the portfolio and the standard deviation of the

portfolio. We then create the actual optimal portfolio using Excel’s ”Solver” add-in several times until

the slope reaches it’s peak and then begins to decrease again. The exact method is given in more detail

on quora.com [11]. Finally, we take the expected returns of each portfolio graphed against the standard

deviation of the portfolio to give the graph of our efficient frontier. While this analysis gives us a good

comparative standpoint there are a few things that should be considered. Firstly, this is a relatively

small selection of assets. In practice a portfolio would usually be much larger than this, in particular

for a bank or hedge fund a portfolio of assets may consist of hundreds or even thousands of assets as

opposed to just six, and it is probable that several of these assets may be less favourable than Nord Pool.

Secondly, electricity is very different from stocks and shares and almost falls into it’s own category when

it comes to trading because it is used as it is produced. Lastly, this model uses the returns rather than

the logarithmic returns. In the next section 3.2 we discuss returns but in actual fact what we are referring

to is the logarithmic hourly and daily returns. Using logarithmic returns essentially means that if we

consider our prices to have a log-normal distribution then or log-returns will be normally distributed.

This we will discuss in 3.2.1.

3.2 The Hourly and Daily Returns

In sections 2.2.1 and 2.2.2 we saw the hourly and daily returns of the spot price data. For this thesis we

will focus predominantly on the daily returns but will refer to the hourly returns for some comparison.

We will first compare some basic statistical measures for the hourly and daily returns. We will then look

at the daily returns compared at 6pm and 2am and will discuss what this comparison means in terms

of the risk of this asset. Finally, we will use the daily returns in the calculations of VaR and expected

shortfall which we mentioned in 1.2 and we will use these to further evaluate the risk involved when
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buying electricity on the Nord Pool intraday market.

3.2.1 What do the Hourly and Daily returns tell us statistically?

We have already looked at the mean and variance of the spot prices themselves, as well as what these

mean in 3.1.2. We can do the same for the hourly and daily returns. Below we have a table of the mean,

variance, skewness and kurtosis of both the daily and hourly returns.

Hourly Daily

Mean 0.000007 0.000198

Variance 0.003491829 0.01589618

Skewness 1.930508913 1.188244702

Kurtosis 86.4285468 50.70323281

We see from this table that the mean and variance of the daily returns are seemingly both higher than

the hourly returns while the skewness and kurtosis are lower. Linearity of expectations states that

E[X + Y ] = E[X] + E[Y ]. Under this notation, the mean of our hourly returns is r̄h = E[ xi
xi−1 ]. Our

daily returns are then given by ln( xi
xi−24

) = ln( xi
xi−1

) + ln(xi−1

xi−2
) + ...+ ln(xi−23

xi−24
). Taking the expectation

of this gives r̄d = E[ln( xi
xi−1

)] = E[ln( xi
xi−1

)] + E[ln(xi−1

xi−2
)] + ...+ E[ln(xi−23

xi−24
)] = 24r̄h. This is reflected in

our table since the mean of our daily returns is roughly 24 times the mean of our hourly returns. If the

returns were independent then the variance would have the same additive property as the variance. This

is not reflected in the table and thus we have correlations between returns.These correlations may be

indications of a mean-reversion property of our time series and possibly some volatility clustering. We do

see that our variance is higher for our daily returns which suggests that the data is more largely spread

and experiences more spikes for the daily returns. We see that our skewness and kurtosis are lower for the

daily returns than for hourly returns. This is somewhat intuitive. If the returns have a weak dependence

then the Central Limit Theorem still holds and the returns should tend towards a standard normal

distribution for longer periods. [18]. Hence as we go from 1 hour to 24 hours the skewness and kurtosis

decrease. These are likely to tend closer to 0 if we were to increase the time periods further. ”Skewness

is asymmetry in a statistical distribution, in which the curve appears distorted or skewed either to the

left or to the right. Skewness can be quantified to describe the extent to which a distribution differs from

a normal distribution.” [12].

Figure 3.6: Diagram of skewness [12]

In our case the skewness for both the hourly and daily returns is positive and therefore the distribution

of the returns is skewed to the right in both cases, however since the skewness of the hourly returns is
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slightly larger than the daily returns this suggests that the hourly returns deviate further from a normal

distribution than the daily returns. A positive skew suggests that the distribution of the returns has

larger right tails and therefore the occurrence of extreme events within the right tail are more probable.

In our case this suggests that spikes in electricity prices are more probable than drops. Kurtosis is

defined as the fourth moment of the standard normal distribution, similarly to skewness it is used as

”a measure of the ”tailedness” of a probability distribution” [20]. Given a random variable X we can

calculate it’s kurtosis using kurt(X) = E[(X−µσ )4] where µ and σ are the mean and standard deviation

of the distribution. The distributions of our hourly and daily returns are leptokurtic meaning that they

have positive excess kurtosis. A distribution is considered leptokurtic if it’s kurtosis has a value higher

than 3, our hourly and daily returns both have kurtosis which exceeds 50. This, again, implies that

the distribution has much fatter tails relative to the standard normal distribution. Mathematically this

implies that the distribution decays at a slower rate. ”In finance, fat tails often occur but are considered

undesirable because of the additional risk they imply.” [20]. The high skewness and kurtosis that occurs

in both sets of returns further implies that the financial risk of the Nord Pool data is high.

3.2.2 Comparison of 2am versus 6pm

An interesting comparison to look at is the daily returns at specific hours of the day. I have chosen to

consider the returns at 2am versus the returns at 6pm.

Below I have shown the graph of the daily returns at 2am. I find this graph particularly interesting

Figure 3.7: Daily returns for 2am

because these returns are clearly quite volatile. We may assume that in general returns on electricity

prices at this time are more likely to be steady and relatively low seeing that we would probably anticipate

lower electricity usage at 2am. For this data we can calculate the expected return to be 0.00027015

and the variance of the returns to be 0.015866828. When we look at these numbers compared with the

expectation and variance of the daily returns across the entire time scale we can see that in reality our

data says quite the opposite of what we may expect. Our expected returns at 2am are actually higher

than our overall expected return whilst the variance of the 2am returns remains roughly the same.

We can now look at the graph for the returns at 6pm. This graph is quite different from the 2am

graph, large spikes are less frequent and we see far more volatility clustering. We can view volatility
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Figure 3.8: Daily returns for 6pm

clustering as “large changes tend to be followed by large changes, of either sign, and small changes

tend to be followed by small changes.” [8].In other words, although asset prices and their returns are

mathematically random, it is logical that if the returns are low they are unlikely to become drastically

high and vice versa. Be that as it may, it is not sufficient to simply compare the graphs of the two sets

of returns. The lack of large spikes in the 6pm data compared with the 2am data may lead us to make

assumptions which are simply untrue. When we look at the actual numbers, we see that the variance

of the 6pm returns is 0.015900568 which is actually higher than the variance of the 2am returns.

Surprisingly, the expected return at 6pm is 0.000198402. this means that if you invest in Nord Pool

your return, on average, is likely to be higher at 2am than it is at 6pm, however your risk is likely to

be slightly higher at 6pm in comparison to at 2am. We may choose to ponder why this could be, but

realistically there are several factors that may contribute.

Looking directly at the two graphs it is interesting to see that some of the large spikes correspond to

each other. Furthermore, taking a closer look at all of the graphs for daily and hourly returns we see a

large spike about mid way through 2006. Focusing more closely at the data itself I have discovered that

this spike corresponds to a volatile period on the 7th May 2006. I have then graphed the short period

between May 6th at 00:00 and May 8th at 23:00. This graph is shown below. We can now see how,

when packed together in a larger set of data, this series of events will become what seems to be a large

spike. Examining the graph within a smaller range we see that the range in returns happens over a few

hours. There is a large fall in daily returns after 00:00 on 07/05/2006, this corresponds in a drop in

the price from 28.33 at 01.00 on 06/05/2006 compared with just 7.58 at the same time on 07/05/2006.

We then see that later on our returns revert back to 0 and after 00:00 on May 8th the returns see a

sharp increase corresponding to a lift in the price from 7.58 at 01.00 on 07/05/2006 to 25.58 at the

same time on 08/05/2006. The exact cause of these fluctuations is very difficult to pinpoint, especially

when looking at data that is over 10 years old. However, we can speculate that this fall and rise of

prices is most likely due to variations in supply and demand. As discussed in section 2.1.2 electricity is

not a commodity which is stored but, in general, is used as it is produced.This means that if too much

electricity is being produced at a time when it is not necessarily in use the price is likely to drop as we

saw on the 7th of May 2006. Similarly, if the demand for electricity is higher than it’s supply, the price
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Figure 3.9: Graph of the daily returns from 06/05/2006 - 08/05/2006

tends to increase. An interesting mathematical implication of the link between supply and demand is

the mean reversion property. In finance ”mean reversion refers to the phenomenon that prices or returns

will fluctuate around a long-term average level.” [4]. Given that our average daily return is 0.000198, it

makes sense that we see our returns often coming close to 0. This mean reversion property of assets is

largely the basis of the ”buy low, sell high” strategy of investors. The theory that the price of an asset

will usually revert back to a long-term mean gives the impression that if the price is far from it’s mean

it is generally set to drop and vice versa. This, of course, has a big implication for financial market risk

since investors are typically looking to make as much money as possible. Thus, if an asset has a larger

average rate of return, then even when the return reverts back to it’s mean your portfolio will be of

larger value. Thus, we see again that with an average daily return of 0.000198, our Nord Pool data is

not going to be the best investment.

3.2.3 Value at Risk and Expected Shortfall

In section 1.1 we briefly discussed the meanings of VaR and Expected Shortfall in financial terms and we

saw a mathematical formulae for how they are calculated explicitly. In this section we will discuss the

financial meaning of these two measures of risk in more detail and we will apply these measures to our

Nord Pool data using Microsoft Excel, we will then discuss these numbers and what they actually mean in

layman’s terms. ”Value at risk measures the largest loss likely (in the future) to be suffered on a portfolio

position over a holding period with a given probability (confidence level).” [6]. In practice we take a given

confidence level (say 95%) and calculate the largest loss that we are likely to incur over a short period (in

practice this is typically 10 days) based on historic returns of the portfolio. Of course in our scenario we

do not account for an entire portfolio, instead we are looking at just one asset. For the Nord Pool case I

have calculated the 10 day VaR using a confidence interval of 95%. As discussed in section 2 I have used

two different methods for calculating the VaR. The first method we will discuss is the calculation of VaR

using the CDF of the Normal Distribution. The result that I got for the daily Normal Distribution VaR

of the Nord Pool data was -0.207382109 or approximately -20.74%, multiplying this result with
√

10

gives the 10 day Normal Distribution VaR as -0.65579981 or roughly -65.58%. In layman’s terms this

means that in a 10 day period, we can say with 95% confidence that our loss will not exceed 65.58% and
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over 1 day our loss will not exceed 20.74%. For comparison we may wish to take into account the VaR

of some other companies. I have looked at the VaR data for 5 other companies from a range of sectors.

A table of these is below. As we can see from the table these comparative figures are far lower than

Figure 3.10: Table of 1 and 10-Day VaR for various companies [2]

the values we received for our Nord Pool data. Even the highest 10-Day Holding VaR sits at roughly

42% lower than that of Nord Pool. In other words, Bioplast Pharma, who has the highest VaR of these

companies, can say with 95% confidence that in a 10 day period you will not incur a loss of more than

23.53% if you were to invest in their shares. In perspective this is only 3.53% higher than the loss you

may incur within only one day of trading Nord Pool electricity. However, there are several things to note.

Firstly, our VaR is calculated from data that ranges over a large period of 8 years whereas it is difficult

to say how much data is used by ycharts.com to calculate the VaR percentages in this table. Also, we

must consider that Normal Distribution VaR is predicated on an assumption that the Nord Pool prices

are normally distributed. We saw in section 3.2.1 that our skewness and kurtosis differ largely from what

we would expect of a normal distribution and thus making this assumption leads to numbers which are

essentially incorrect. A more accurate indication of the VaR for our data would be the Historical VaR.

For our data we have N = 70727 data points. Taking α equal to 0.95, we get (1− α) as 0.05 (i.e. 5%).

5% of 70727 is 3536.35. We thus look at the 3537th smallest data point which is -0.135341348 and

the 3536th smallest data point which is -0.135345726. We then interpolate between the two to give

a 1-day historical VaR of -0.135344194 or approximately -13.53%. Again, we multiply with
√

10 to

give a 10-day holding VaR of -0.427995921 or approximately -42.80%. Simply put, according to our

historical VaR, we can say with 95% confidence that in a 10 day period we will not incur a loss of more

than 42.8%.Taking this smaller number in comparison with the companies in the table we see that the

Nord Pool data still have a relatively large VaR, and is still nearly double the 10-day VaR of Bioplast

Pharma. We can also see that this number is clearly much smaller than the number we calculated using

the Normal Distribution VaR. Once more, we see a big indication that our returns are not distributed

according to a normal distribution.

I mentioned earlier that we do not know how much data is used by ycharts.com, in general a good

estimate of the VaR is based on roughly one years worth of data. Hence, if we pick a specific year

we might get a slightly more accurate representation. In this case we can look at 1999 as the year

for comparison. When taking the daily returns from 1999 alone we get a historical daily VaR of -

0.112800892 or approximately -11.28%. Our historical 10-day holding VaR using the 1999 data then

comes out at -0.356707741 or roughly -35.67%. This number tells us that on January 1st 2000, we

could say with 95% certainty that we would not suffer a loss of more than 35.67% within a 10 day period.

Again, this is a far smaller loss than our value of -65.58% according to the normal distribution mean

and is also lower than our historical VaR calculated using all pf the data. We see that as we implement

steps to make our VaR closer to a standard industry VaR it is gradually becoming far smaller.However,

we can clearly see that the VaR for our Nord Pool data is still respectively much larger than for our 5
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companies above.

We can now take a look at the Expected Shortfall or Conditional Value at Risk (CVAR).While VaR

takes into account the maximum loss for a given α% of the returns, expected shortfall accounts for what

is most likely to happen if the (1− α)% of cases were to occur. We took our α as 95%, so our expected

shortfall is the average loss that we would incur if the bottom 5% of cases were to actually occur. For

our Nord Pool data this average amounts to -0.271842045 or -27.18%. This means that if the bottom

5% of cases were to occur, the average loss that we would have is 27.18% over the period of a day. For

a period of 10 days this average loss is -0.859640026 or approximately -85.96%. In simpler terms this

means that there is a 5% chance that we could incur a loss of 27.18% over the next day or a loss of

85.96% in 10 days time. This would obviously be a massive loss for any investor and despite it’s low

probability of occurrence is still something that we should definitely consider when evaluating Nord Pool

as an investment.

3.3 A Note on Distributions

Thus far we have discussed our data in a combination of mathematical and financial ways. This section

will take a more mathematical path where we discuss in further detail some conclusions that we have

made regarding the distribution of our returns. Throughout this thesis we have sometimes assumed

normality of our returns and on a few occasions the data analysis has proved us completely wrong.

Firstly, we saw large numbers for skewness and kurtosis in section 3.2.1, we later saw a big difference

between our historical and normal distribution VaRs in section 3.2.3. A good way to see what our

distribution looks like is to plot it in the form of a histogram. Below is a graph where I have plotted the

cumulative percentages of the data against the frequency of which they occur. This gives us the basic

shape of the distribution of our returns. After graphing this distribution I used excel to simulate 70727

Figure 3.11: Distribution of daily returns

normally distributed random numbers with mean 0.000198 and variance 0.01589618. Hence I created a

normal distribution with the same mean, variance and number of samples as our returns. I then graphed

these numbers as a frequency distribution. I have then put together a combination of the two graphs

for an easier comparison. Both graphs are shown below. Looking closely, this comparison graph shows
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Figure 3.12: A normal distribution with mean 0.000198 and variance 0.01589618

Figure 3.13: The distribution of our returns versus a normal distribution with the same expectation and
variance

the positive skew of the data with respect to the normal distribution as we see our spike is to the left of

the normal distribution curve. The most obvious difference is large spike which shows the indication of

the excess kurtosis. This spike looks far closer to a Laplace distribution than a Gaussian distribution,

however even the Laplace distribution has an excess kurtosis of only 3 in comparison with our daily

returns which has a massive excess kurtosis of approximately 50.7, which we can see is obviously much

larger. This large deviation from a normal distribution can make a large difference to a number of results

within financial risk analysis, in particular we encountered the large difference in VaR calculations for

the normal distribution VaR and the historical VaR. Modern Portfolio theory in section 3.1.1 is also

predicated on the assumption that asset prices are subject to a normal distribution, and it is obvious

that in our case the Nord Pool data does not follow this trend. An extension to Modern Portfolio

Theory is the Capital Asset Pricing Model (CAPM) which recognises that a portfolio is subject to two

different types of risk, the first is systematic (or market) risk which is non-diversifiable and the second
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is unsystematic risk which, in theory, can be reduced by having a portfolio of diversified assets. The

systematic risk is quantified by the portfolio’s beta. This is a widely used model for quantifying and

reducing risk, however it is also a model which assumes that asset returns follow a normal distribution.

This assumption of normally distributed returns is one that arises in several areas of finance and is

something that we will consider further in our conclusions.
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Chapter 4

Conclusions

The aim of this thesis was to look at the daily returns of our spot prices and do a financial risk evaluation

taking the returns as a financial asset. Of course this is slightly abstract. Since we established that

electricity is not a commodity which can be stored it is logical that businesses invest in electricity in

order to use it rather than to hold it as part of a portfolio. Nonetheless, our time series of prices as well as

their hourly and daily returns can be treated as a financial instrument and thus are subject to financial

risk. It must still be considered whether all of the models we used are entirely suitable for the electricity

market. Although portfolio theory is highly respected and often used on various financial instruments,

its suitability in the context of an electricity market may be called into question. In practice Modern

Portfolio Theory is used within the energy sector, but there are many papers and studies ”aimed at

improving the capacity of the model and adjusting it to the reality of the electricity market.” [5] Which

therefore suggests that there are some adjustments that need to be made to this model in order to

consider it viable for evaluating risk within electricity markets.

We had two perspectives on our analysis, a mathematical stand point and a financial standpoint.

Both of these perspectives suggested that, as an investment, the Nord Pool electricity market was not

a great one in terms of the risk involved. In general the returns were low yield yet highly volatile

with all of our risk measures coming up high against other assets.It has to be considered though that

our risk measures as well as many other risk measures and financial models make several assumptions

which simply are not true with regards to the Nord Pool data. A largely inaccurate assumption was the

assumption of normality of our returns. Although, as we discussed, this distribution would most likely

tend towards a normal distribution for a longer length of time.

In order to take this thesis and analysis further it would be interesting to explore the distribution of

our returns even further. In particular, how do our daily returns fit with assumptions from other financial

models used in industry? Do our returns follow a Geometric Brownian Motion as assumed under the

Black-Scholes model? Or do they follow closer to a jump diffusion model like the one suggested by Robert

Merton in 1998? We could also take the analysis from modern portfolio theory further and explore some

of the methods which have been suggested in research for fitting this model more closely to our Nord

Pool data. These are questions which would, of course, require further research and analysis of our data,

but would be imperative to a complete and in depth financial analysis of this data.
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