
Mathematics MSc Dissertation MTHM038 , 2017/18

The Kuramoto Model

Amani Saleh Alzahrani, ID:170835798

Supervisor: Dr. Wolfram Just

A thesis presented for the degree of

Master of Science in Mathematics

School of Mathematical Sciences

Queen Mary University of London



Declaration of original work

Studen’s Declaration : I Amani Saleh Alzahrani declare that the

work in this thesis is my original work. I have not copied from any other stu-

dent’s work, work of mine submitted elsewhere, or from any other sources ex-

pect where due reference or acknowledgment is made explicitly in the text,

nor has any part been written for me by another person.

References text has been flagged by:

1. Using italic fonts, and

2. using quotation marks “. . . ”, and

3. explicitly mentioning the source in the text.

1



This work is dedicated to my family and my friends.



Acknowledgements

This dissertation could not have been done without the help of Dr Wol-

fram Just. I am profoundly thankful to him for all the productive discussions

we had regarding this work. Thanks for his encouragement, tolerance, pa-

tience and advice. I am also grateful to him for all his email correspondence

as well as his comments on my dissertation.

Many other people must be thanked as well. I would like to thank my

family and my friends for their encouragement and their support. I am very

grateful to the Saudi Arabia Cultural Bureau in London for sponsoring me to

do an MSc in Mathematics at Queen Mary University of London.

3



Abstract

The Kuramoto model is an illustrative model that analyses the synchro-

nisation of coupled limit-cycle oscillators. In the model, the number of oscil-

lators N is large, and the natural frequencies are distributed according to a

unimodal and symmetric probability density. The synchrony state is governed

by the strength of the coupling between the oscillators. When the coupling

strength surpasses a particular value, called threshold, the system displays a

phase transition. Below the threshold, the system is fully incoherent and the

oscillators are running on their own frequencies. If the coupling strength ex-

ceeds the threshold, the system is partially synchronised. Some of the oscilla-

tors synchronise while others stay asynchronous.
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1 Introduction

The story of the Kuramoto model began in 1975 [1–6]. The story has

been through many turns and it ends up with more questions than answers.

In the 1990s, Crawford tackled the problem and wrote some papers regard-

ing this topic [7–9].Though some of his papers look fearsome, he elucidated

some questionable problems. Lately, Strogatz put Crawford’s work in context

in 2000 [10].

Along the way, the current paper follows Strogatz work. The background

identifies the history of the Kuramoto model. The section that follows the

background gives a complete description of the Kuramoto model and how to

measure synchronisation. Later, section 4 illustrates Kuramoto Self-consistency

Analysis, which gives the exact formula for critical coupling. Finally , some is-

sues regarding stability are pointed out.

2 Background

Synchronisation is a cooperative phenomenon that takes place when a

large set of individuals entities coordinate to work simultaneously. Examples

of synchronisation can be found in biology, physics, chemistry, engineering,

and social systems. A conventional example of synchronisation is the syn-

chronous flashing of fireflies. The fireflies start to flash incoherently then start

to flash at the same time after a period of time. The fireflies synchronisation

exist through the relation (coupling) between males and females. One of the
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successful model of synchronisation is the Kuramoto model.

The Kuramoto model is mainly stimulated by collective synchronisation

in which a huge number of oscillators locks to a common frequency though

these individual oscillators have different frequencies [11, 12]. The first mathe-

matical study of collective synchronisation was done by Wiener [13,14]. Wiener’s

study of collective synchronisation, which was based on Fourier integrals [13],

came to a dead end.

Later, Winfree produced more predictive strategy [11]. He put the prob-

lem in terms of an enormous set of interacting limit-cycle oscillators. The

problem was unmanageable, but Winfree simplified it by assuming that the

coupling is weak and the oscillators are identical. The oscillators showed dif-

ferent behaviour over a fast timescale and over a long timescale. Another sim-

plification, made by Winfree, occurred when each oscillator was coupled to the

unified rhythm. The Winfree model is given by:

θ̇ = ωi +

N∑
j=1

(
X(θj)

)
Z(θi) i = 1, ....., N

where θi is the phase of oscillators, ωi is the natural frequency and Z(θi) is

the sensitivity function. Using a numerical and analytic approach, Winfree

discovered the relationship between the oscillators and phase transition. When

the scatter of the frequencies is greater than the coupling, the system is inco-

herent and each oscillator moves at their frequencies. As the scatter becomes

smaller, the incoherence exists until a particular value called the threshold is

reached. After that, the system behaves coherently. This phenomenon moti-

vated Kuramoto to write a paper with his student Nishikawa [5]. However,
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Kuramoto himself wrote his first paper on the topic in 1975, and it has been

known as the Kuramoto model ever since.

3 The Kuramoto Model

3.1 - Model Description

The Kuramoto model is a simplification of Winfree’s model to study

the evolution of a huge population of coupled limit-cycle oscillators [2]. The

model displays that if the coupling is weak and the oscillators are nearly iden-

tical, the long-term dynamics for any system are given by a phase equation of

the following form:

θ̇ = ωi +

N∑
j=1

Γij(θj − θi), i = 1, ...N (1)

where θi, θj are the phases and Γij is the interaction function. The oscillators

could be connected in a different random graph due to the arbitrariness of the

interaction functions. To simplify the analysis of the model, Kuramoto used

a sine function to couple the oscillators, and used the mean-field case to trace

the model as shown below:

Γij(θj − θi) =
K

N
sin(θj − θi) (2)

combining (1) and (2) gives the governing equation:

θ̇ = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, ...N (3)
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where k > 0 is the coupling strength, a key parameter in the problem, and ωi

is the natural frequencies that distribute to a probability density g(w). While

g(w) is unimodal and symmetric g(Ω + ω) = g(Ω − ω) around the origin,

one can set the mean to Ω = 0 because of the rotational symmetry of the

model.This transformation will not affect the model, since the Kuramoto gov-

erning equation will be invariant to such a change . This gives g(ω) = g(−ω)

for all ω [10].

For instance, If θi(t) = θ(j), the angle variables synchronise. As opposed

to that, they are not synchronised if θi(t) 6= θ(j). While each oscillator tends

to run independently at its own frequency, the coupling tries to synchronise

them together. To see how that depends on the coupling strength K, consider

the case if there is no coupling (K = 0), The governing equation becomes:

θi(t) = ωi + θi(0)

For the identical initial condition θi(0) = 0 for all i, it is clear the angle vari-

ables depend only on the natural frequencies ωi. If all frequencies ωi are the

same, the angles synchronise, but they do not synchronise if ωi differ (Figure

1 and 2).

8



Figure 1: Three oscillators start from the same initial condition with same

frequencies i (synchronised oscillators)

Figure 2: Three oscillators start from the same initial condition but with dif-

ferent frequencies i(asynchronous oscillators)
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To figure this out, the next section introduces the Order Parameter :

3.2 - Order Parameter

The state variable θ is called the phase of the oscillator and the phases

of any system can be viewed by points going around the simplest loop, a unit

circle [2]. The phases live in the interval [0, 2pi] as the unit circle is periodic

and we can represent the state of an oscillator by its phase θ(t).

To describe the unit circle, it is appropriate to set it in the complex plane,

where a complex number Z is on the circle if it has length one, i.e |Z| = 1 and

can be written as

Z = eiθ = cosθ + isinθ, (4)

where i =
√
−1 and θ is the counterclockwise angle between the positive real

axis and the vector from the centre to the complex number that represents

the phase at the circle.

One way to measure the collective behaviour of a collection of phase os-

cillators is their degree of synchrony. The oscillators are completely synchro-

nised if their phases are moving together around the unit circle. On the con-

trary, if the phases are spread around the circle, the oscillators are asynchronous.

The Kuramoto order parameter r is used to measure the level of synchrony

and it can be defined by the average of all the complex numbers representing

the phases of the oscillators.
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Figure 3: order parameter r has magnitude corresponding to the average of θj

phases plotted around the unit circle [10]

For N oscillators with θj phases, the order parameter is given by:

Z = reiψ =
1

N

N∑
j=1

eiθj j = 1, 2, ....N (5)

where ψ is the average phase or the argument of Z, i.e.the counterclockwise

angle between Z and the positive real axis, and r measures the phase coher-

ence (Figure 3).

To explain the idea, consider two oscillators with their phases represented

by a vector between the origin and the corresponding points on the circle.

The sum of these two vectors, using the geometric vector definition, is a vec-

tor that points to the average direction of the two oscillators. So, if the two

phases are equal, the average vector will be the unit vector. In contrast, if the

phases are opposite of each other, their average vector will be zero. Kuramoto

used the magnitude of Z as a measure of synchronisation i.e r = |Z|.

Basically, r could capture the degree of phase coherence in the system. It
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vanishes (r ≈ 0) when the phases are distributed around the circle (incoherent

system) and approaches one (r ≈ 1) when the phases of all oscillators are

acting together like a giant oscillator (coherent system). Kuramoto rewrote

the governing equation (3) in terms of the order parameter by multiplying

both sides of equation (5) by e−θi to obtain:

reiψ−θi =
1

N

N∑
j=1

eiθj−θi (6)

The L.H.S can be expressed in the form :

reiψ−θi = r(cos(ψ − θi) + isin(ψ − θi))

and the R.H.S can be expressed as:

1

N

N∑
j=1

eiθj−θi =
1

N

N∑
j=1

(cos(θj − θi)− isin(θj − θi))

consider only the imaginary part from each side as it is the exact expression

that appears in the Kuramoto governing equation which yields:

rsin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi)

The governing equation (3) can be rewritten in terms of the order parameter

as follows:

N∑
j=1

sin(θj − θi) = Nrsin(ψ − θi)

by substitution, equation (3) becomes:

θ̇ = ωi +Krsin(ψ − θi), i = 1, ..., N (7)

Equation (7) appears to be an equation for one oscillator, but by look-

ing at the definition of the order parameter, these two quantities r and ψ in-

volve all the other oscillators. In other words, the oscillators are coupled only
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through the mean-field quantities r and ψ.In Particular, each oscillator is cou-

pled to the mean phase ψ with a coupling strength Kr, rather than individual

phase [10]. Moreover, the coherence r is proportional to the coupling strength

K in a positive way. If the system becomes more coherent, then the effective

coupling Kr increases and more oscillators will pull toward the synchronise

state. In contrast, if r decreases, it becomes self-limiting (Winfree) [11].

3.3 - Simulations and Numerical Results

The simulation and numerical methods are used to clarify how r evolves

with time and what role coupling strength plays. For solidity, the distribution

g(ω) is chosen from any infinite tails distribution and K is varied. Kuramoto

showed that for N number of oscillators there is a critical coupling kc delim-

iting the synchronisation state. Also, For all K below the certain threshold

K < Kc, all the oscillators are incoherent and act like if they were not coupled

(fully asynchronous). In this case, the phases distribute around the circle and

r decays of size O(N−
1
2 ) to fluctuate around zero (Figure 4). However, for all

K above that critical value K > Kc, the oscillators become coherent and act

like one oscillator (fully synchronszed). Now all the phases gather towards the

average phase and r(t) grows exponentially until it reaches some level r∞ < 1

and fluctuates around with size O(N−
1
2 ) (figure 4). By looking at that, the

oscillators become synchronised for a certain value of the coupling strength

Kc and the connection between the Kuramoto model and phase transition be-

comes obvious.
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Figure 4: evolution of r(t) [10]

In some cases of individual oscillators, the population splits into two dif-

ferent groups: part of the oscillators are in the synchronised state and the

others are in the asynchrony state. The part of the oscillators around the cen-

tre of the distribution lock together and synchronise, while the other oscilla-

tors in the tails drift and run around their natural frequencies. This mixed

state is called ’partially synchronised’ where more oscillators are recruited into

the synchronised state by increasing the coupling strength K, and r grows ac-

cordingly (Figure 5). As a numerical result, r∞ depends only on the value of

Kc, and the fluctuation of r becomes smaller as the number of oscillators in-

creases. Kuramoto affords formulas to calculate the critical coupling Kc and

coherence measure r −∞, and derives definite results [10].
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Figure 5: More oscillators are recruited into the synchronised state as K in-

creases and r grows accordingly [15]

For K < Kc, the oscillators are running individually in the incoherent

state and r fluctuates around zero. As K increases, more oscillators get closer

to synchronize until K saturates at the theoretical value Kc in the limit of

large N. The oscillators reach the critical value to transform from incoherent

state to coherent one. Then, at that level when K > Kc, the oscillators are

moving together coherently and r tends to 1 (Figure 6).

Figure 6: r evolution with increase of K (bifurcation diagram) [10]
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4 Kuramoto’s analysis and self-consistency

Kuramoto found out the long-term behaviour of the solutions in the limit

N→∞ by what is called self-consistency. He tried to obtain a steady so-

lution, where r(t) is constant and ψ rotates uniformly by going into a suit-

able rotating frame with frequencies Ω. The average of phases could be set to

ψ(t) ≡ 0 without effecting the model, since the Kuramoto equation is invari-

ant to such a change. Then the governing equation (7) gives:

θ̇ = ωi +Krsinθi, i = 1, ..., N (8)

As a result of the assumption that r is constant, all the oscillators are inde-

pendent and Kuramoto described the motions of all the oscillators. These re-

sulting motions depend on the parameter r and denote a consistent value for

r and ψ. By finding solutions of (8), two types of behaviour will result. These

types of long-term behaviour depend on the size of frequencies relative to Kr.

The oscillators with |ωi| ≤ Kr reach a stable fixed point which can be ob-

tained by setting θ̇ = 0 in (8). The stable fixed point is defined by

ωi = Krsinθi (9)

Oscillators in this case will be called locked oscillators where |θi| ≤ 1
2π. On

the other hand, the oscillators with |ωi| > Kr do not approach the fixed

point. They move around the circle non-uniformly, so they are called drift-

ing oscillators. In particular when the coupling K is strong and r is high, they

could pull the oscillators away from their natural frequencies. Conversely,
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Figure 7: Locked and Drifting Oscillators

weak coupling with small coherence could not pull the oscillators away from

their natural frequencies. All the oscillators that locked to a common fre-

quency are consistent with the centre of g(ω) while the drifting corresponds

to the tails [10] (Figure 7).

Kuramoto clarified how the population can be divided into locked and

drifting oscillators. In order for the drifting oscillators to keep the value of r

constant as assumed, Kuramoto required that the drifting oscillators ρ(θω)

form a stationary probability distribution. Then, for r to be constant we must

have

ρ(θω)θ̇ = C

As stationary demands inverse proportion between ρ(θ, ω) and the speed of θ

ρ(θω) =
C

θ̇
=

C

|ω −Krsinθ|
(10)

where C can be determined by the normalization of the probability distribu-
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tion ρ to give:

C =

√
ω2 − (Kr)2

2π

The order parameter (5) can be re-expressed as an integral with respect to the

distribution, as follows:

〈
eiθ
〉

=
〈
eiθ
〉
lock

+
〈
eiθ
〉
drift

the angular brackets used here to indicate the average of population and
〈
eiθ
〉

=

reiψ = r since ψ = 0, then

r =
〈
eiθ
〉
lock

+
〈
eiθ
〉
drift

Starting with locked oscillators where |ωi| ≤ Kr

〈
eiθ
〉
lock

=
〈
cosθ

〉
lock

+ i
〈
sinθ

〉
locked

=

∫
|ωi|≤Kr

cosθ(ω)g(ω)dω + i

∫
|ωi|≤Kr

sinθ(ω)g(ω)dω

The symmetry of the locked oscillators distribution will give 0 for the imagi-

nary part and the following for the real part:

〈
eiθ
〉
lock

=
〈
cosθ

〉
lock

=

∫ Kr

−Kr
cosθ(ω)g(ω)dω

By using (9)

〈
eiθ
〉
lock

=

∫ π
2

−π
2

cosθg(Krsinθ)Krcosθdθ = Kr

∫ π
2

−π
2

cos2θg(Krsinθ)dθ

Now evaluate the drifting oscillators where |ωi| > Kr

〈
eiθ
〉
drift

=

∫ π

−π

∫
|ω|<Kr

eiθρ(θ, ω)g(ω)dωdθ
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From equation (10), it can be seen that ρ(θ + π,−ω) = ρ(θ, ω) and since

g(ω) = g(−ω) , this integral turns to zero.

Collecting all the results from above will give the self-consistency condition :

r = Kr

∫ π
2

−π
2

cos2θg(Krsinθ)dθ (11)

For which r = 0 is always a trivial solution corresponding to a completely

incoherent state with ρ(θ, ω) = 1
2π .

A non trivial branch of the solution corresponds to a partially synchronised

state meets:

1 = Kr

∫ π
2

−π
2

cos2θg(Krsinθ)dθ (12)

This branch of the solution bifurcates at the critical point K = Kc where the

order parameter r = 0 starts to grow to r∞. The critical point Kc can be

obtained by putting r → 0+ in (12) [10]

Kc =
2

πg(0)
(13)

The whole idea is as follows:

Below the critical point Kc, r = 0 is the stable solution corresponding

to a completely incoherent state. As the coupling reaches Kc the incoher-

ent state becomes unstable and a nonzero solution appears. As K increases,

r tends to 1 and the state becomes completely coherent where the synchroni-

sation sets in.

By expanding the integral in (12), the bifurcation is subcritical if g′′(0) >

0 and supercritical if g′′(0) < 0, The size of the bifurcation complies with the
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square root scaling law [10] (Figure 6):

r ≈

√
16

πK3
c

√
K −Kc

Kc

1

−g′′(0)
(14)

5 Kuramoto model for 100 oscillators

Through the simulation, the Kuramoto model is used with 100 oscillators and

the frequencies ωi are drawn from the normal distribution. By varying K, Dif-

ferent states of synchronisation appear. In the first case, the coupling strength

has been chosen to be K = 1, so the resultant state is fully incoherent and the

oscillators are distributed around the circle (Figure 8).

Figure 8: asynchronous oscillators due to a weak coupling

20



Figure 9: How r evolves with time at k = 1

The vector r fluctuates around zero, as the oscillators act as if they were un-

coupled (Figure 9).

When K =1.5 the state is still incoherent but the magnitude of vector r

is increased. As K increases, the oscillators split into two groups, part of the

oscillators synchronised while the others stay incoherent. This case is called

partially synchronised and r starts to grow (Figure 10)

Figure 10: Partially Synchronized Oscillators
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Figure 11: fully Synchronised State

With an increase in K, more oscillators begin to synchronise. When K=6

the oscillators move together coherently and the synchronisation sets in (Fig-

ure 11).

The measure of synchrony r tends to 1 because of the prominent strength

of the coupling between oscillators(Figure 12)

Figure 12: r evolution with time at K=6
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Figure 13: r evolution with different values of K

The vector r is changing with different values of K, For each value of K, r

shows a different attitude. (Figure 13).

From the previous results, it is clear that any value K > 2, r tends to 1,

and for any value K < 2, r decays to 0. That means the threshold seems to

be in some value around 2. Simulation is used here to find the approximate

critical point where K = Kc (Figure 14).
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Figure 14: Bifurcation Diagram

From the plot of bifurcation, it is clear that Kc ' 2. By using the Ku-

ramoto theoretical formula for KC (13), the critical value for the normal dis-

tribution when σ = 1 is:

Kc =

√
23

π
σ ' 0.2108 (15)

As the number of oscillators N increases, the transition value starts to

approach the numerical value for Kc (15). With further increases in N, one

could get a sequence of numbers which do not converge monotonically. Those

sequences converge very slow by 1
N .
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6 Conclusion

In this paper the principle properties of the Kuramoto model are explored.

The model is given by a differential equations studied in the mean field with

large numbers of oscillators. The phases of oscillators are represented by points

on the unit circle in the complex plane. The model derives several results an-

alytically. The measure of synchrony is a vector r which decays to zero if the

system is incoherent and tends to 1 if the system is coherent. The synchroni-

sation depends on the strength of the coupling K between oscillators. There

is a transition value for K: when K is below that value, the state is fully asyn-

chronous and when K is above that value, the state is partially synchronised.

The Kuramoto model extracts the formula for the critical value of a large

number of oscillators. In the self-consistency approach, where r is constant

and ψ = 0, the behaviour of the system depends on the size of the frequencies.

If |ωi| ≤ Kr the oscillators are locked, while they are drifting if |ωi| > Kr.

The model is then derived with 100 oscillators. Stability is a difficult issue

and the stability of the steady solution is left unsolved by Kuramoto. He was

conscious of that problem and he explained some points in [2]. Kuramoto at

first time tried to address the stability problem with Nishikawa. They sug-

gest two different theories, but neither of them are correct [5, 6]. Strogatz and

Mirollo proved that the incoherent state is stable for K < Kc then becomes

unstable when K > Kc [16]. Crawford confirms that result later [7]. The sta-

bility problem for the non-zero branch remains untouched by anyone to this

day.
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