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Abstract

The concept of delay differential equations is discussed briefly along with

where it was encountered first. We will investigate linear delay differential

equations by studying the solutions of the characteristic equations. This will

be done by writing the solutions in terms of exponential functions and hence

obtaining a transcendental characteristic equation. Stability of the charac-

teristic equation is established by evaluating eigenvalues, where those with

positive real parts indicate unstable solutions. A numerical approach based

on complex analysis is taken to judge the stability. We will then extend our

investigation to second order delay differential equations where the stability

boundaries undergo bifurcations.
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Chapter 1

Introduction

Delay differential equations (DDEs) are a type of differential equation where the derivative

of the unknown function at a certain time is given in terms of the values of the function

at previous time. The general form is defined for x ∈ <

ẋ = f(t, x(t), xt)

where xt = x(τ) : τ ≤ t represents the trajectory of the solution in the past. Delay differ-

ential equations, also commonly known as ‘difference differential equations’, are a special

class of differential equations called ‘functional differential equations’. Delay differential

equations were first encountered in the late eighteen century by Bernoulli, Laplace and

Condorcet. Unfortunately, very little was accomplished during the nineteen century and

the early part of all twentieth century. Instead, great development of the theory and

application began after the Second World War [1], and from then on they continued to

be investigated at a very rapid pace. Delay differential equations are now used to describe

many phenomena in science - economics, engineering, life sciences, etc. DDE’s can be

solved either numerically or analytically. An analytical approach can be very difficult;

DDEs have infinite dimensional phase-space which essentially means that the characteris-

tic equations corresponding to the linear system will have an infinite number of solutions

[2]. Although it would be worth mentioning that there exists an analytical approach for

obtaining the complete solutions for a systems of delay differential equations based on

the concept of Lambert function. Some of the numerical methods most often used to

solve DDE’s are Runge-Kutta and asymptotic solution.

A brief description of the organisation of the project follows. In the second chapter we

introduce a linear first order of delay differential equation. We study their corresponding
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characteristic equation, this will be achieved by assuming exp(λt) is a solution of delay

differential equation. We will then examine numerically stability boundaries using a the-

orem borrowed from complex analysis. Examples will be given to illustrate the results. In

the third chapter we extend to a certain two dimensional system. After investigating the

stability of first order linear delay differential equation it becomes interesting to consider

a specific two dimensional system. We use the same method proposed in chapter two.

Fourth chapter will be devoted to second order delay differential equations. Complex

analysis will not be used in this section, instead we will take a simpler approach. At

first will try to see the effect of parameter change on the stability region. We will then

construct bifurcation plots showing the location of bifurcation as the parameter is varied.
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Chapter 2

Stability of linear delay differential
equations and the argument
principle

This chapter serves as an introduction to the more general types of equations that will

be encountered in later chapters. We discuss first order delay differential equations

ẋ(t) = bx(t− τ) . (2.1)

Since Equation (2.1) is a linear equation, the solution may be written in terms of expo-

nential functions. Thus if we use x(t) = exp(λt) Equation (2.1) results in an algebraic

equation for λ, namely

λ = b exp(−λτ). (2.2)

It is now quite useful to introduce the non-dimensional quantities z = λτ and b̂ = bτ as

Equation (2.2) then attains the slightly simpler form

0 = f(z) = z − b̄ exp(−z). (2.3)

This so-called characteristic equation determines in particular the stability of the trivial

solution x(t) ≡ 0 of Eq.(2.1). One of the difficulties in the analysis of DDEs lies in finding

an analytic method to solve this transcendental equation. DDEs are often solved using

numerical methods, asymptotic solutions, and graphical tools. The approach we will be

taking to tackle the problem will be using complex analysis.

The problem to determine the stability of the trivial solution reduces to the question of

whether the characteristic equation admits eigenvalues λ with positive real parts. Thus

to judge stability we have to count the number of solutions of Eq.(2.3) in the right

half of the complex plane. Phrased differently, namely in terms of the inverse multipliers
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µ = exp(−λτ) = exp(−z), we have to count the number of multipliers within the complex

unit circle. To solve such an issue, i.e., to count the number of zeros (of the characteristic

equation) inside a domain C, here the unit circle, we will employ a theorem borrowed

from the theory of complex functions. Suppose f denotes a ‘meromorphic function’(i.e.

a function which has at most poles as singularities) and C denotes a closed Jordan curve

(i.e. a curve which does not intersect itself) with positive orientation, in our case for

instance the unit circle. Then the following statement holds [3] =)∮
C

f(z)

f(z)

′

dz = 2πi(N − P ) (2.4)

where N and P respectively denote the number of zeros and poles of f(z) inside the

contour C, with each zero counted as many times as its multiplicity, and each pole counted

as many times as its order. The common reason to consider the notion of multiplicity

is to count correctly, without specifying exceptions (for example, double roots counted

twice). It is assumed that f(z) is analytic at every point on the contour. The integral on

the left hand side of Eq.(2.4) can now conveniently be expressed in terms of the complex

argument of the function f(z). For that purpose recall that the complex argument Φ(z)

is defined by

f(z) = |f(z)| exp(iΦ(z)). (2.5)

Using the complex logarithm or otherwise we then obtain for the kernel of the integral

f ′(z)

f(z)
= (ln f(z))′ = (ln |f(z)|)′ + iΦ′(z). (2.6)

Using Eq.(2.6) the integral in eq.(2.4) becomes∮
C

f(z)

f(z)

′

dz =

∮
C
(ln |f(z)|)′dz +

∮
C
iΦ′(z)dz

= 0 + i∆Φ (2.7)

where ∆Φ = ∆arg(f) denotes the change of the complex argument along the contour C.
Thus Eq.(2.4) yields

∆arg(f) = 2π(N − P ). (2.8)

Finally, we are able to work out the change of argument ∆arg(f) by a simple geometric

construction. For the purpose of simplicity, and since this case will be relevant for our

applications, consider the unit circle. Then the contour C is given by the parametric

representation z = exp(it) with t ∈ [0, 2π]. Then (as f is continuous on C) f(exp(it))
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determines a closed curve, say D, in the complex plane and the argument of f(z) is given

by the angle between the positive real axis and the ray from 0 to f(z). Thus, if the closed

curve D encircles the origin ` times then the argument of f(z) changes by `×2π. Plotting

the curve D it is easy to determine the change in argument, and thus to determine the

number of zeros and poles inside the unit circle. By the argument principle, Eq.(2.8) the

factor of 2π cancel and so we are left with N − P = I(C, 0), where I(C, 0) = ` denotes

the ‘winding’ number of f over C about 0.

Let us illustrate this statement using a very simple example, the function

F (z) = z2 (2.9)

and take the domain to be the unit circle. The function F (z) has a doubly degenerated

zero at z = 0 which is inside the unit circle. Now consider the boundary of the unit circle,

i.e. the z-values z = exp(it) where t changes from 0 to 2 π. The variable z moves around

the unit circle once shown in Figure 2.1(a). Consider the change of F (z). We have

F (z) = F (exp(it)) = (exp(it))2 = exp(2it). (2.10)

When t changes from 0 to 2π the argument of F (z) changes from 0 to 4π = 2 × 2π =

N × 2π, where N is the number of zeros inside the unit circle (counting the multiplicity).

In Figure 2.1(b) we can observe the circle appears two times thicker compared to 2.1(a),

which means it surrounds the unit circle twice. That concludes the illustration of the

theorem.

Figure 2.1: Contour plots (a) unit circle (left), (b) expression for eq.(2.10)

Now we are dealing with the function (cf. eq.(2.3))

F (z) = z − b exp(−z) (2.11)
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and we want to count the solutions in the right half plane, i.e. the “unstable eigenvalues”.

We could use the theorem [3] to count the number of eigenvalues. The right half plane

is unbounded and it is not completely straightforward to deal with unbounded sets. For

that purpose we introduce the new complex variable

µ = exp(−z). (2.12)

The unstable solutions, i.e. z-values with real part larger then zero, are transformed to

µ-values which are inside the unit circle since |µ| = exp(−Re(z)). Hence we need to

count solutions inside the unit circle. Rewriting Eq.(2.11) in terms of µ by taking the

exponential on both sides we obtain

1 = exp(z) exp(−b exp(−z)) (2.13)

so that

µ = exp(−z) =⇒ 1 =
1

µ exp(−bµ)
(2.14)

and finally

µ = exp(−bµ) . (2.15)

To determine the zeros of eq.(2.15), i.e. the zeros of the function

G(µ) = µ− exp(−bµ) (2.16)

we may apply Theorem (2.4) with µ = exp(it) where t changes from 0 to 2π

G(exp(it)) = exp(it)− exp(−b exp(it). (2.17)

We could plot Equation (2.17) on the complex plane to assess whether its argument does

indeed change by a multiple of 2π. Thus as we have seen, if the curve encircles the origin

n times then there are n unstable eigenvalues, and if the curve does not encircle the origin

then there are none.
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Figure 2.2: Contour plots of the expression (2.17) for b = −0.4 (left), b = −0.7 (right).

Figure 2.3: Contour plots of the expression (2.17) for b = −1.5 (left), b = −1.8 (right).
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We have used Maple to produce the figures 2.2 and 2.3. We can see in Figure 2.2

(a),(b) and 2.3 (a) that the curve does not encircle the origin, therefore there are no

unstable eigenvalues. In Figure 2.3 (b), we can see that the curve surrounds the origin

twice therefore there are two unstable eigenvalues. In fact, we can see that at some value

between b = −1.5 and −1.8 some eigenvalues with positive real parts occur, i.e., the

original equation of motion (2.1) becomes unstable. Thus, we would like to determine

the stability region for b. Of course, there can be an infinite number of stability intervals ,

but varying b we were able to numerically approximate one stability interval b ∈ (−π/2, 0).

The difficulty in the analysis of the DDEs lies in finding an analytic method to solve for

the zeros of Eq.(2.11). We can rewrite such a condition as follows

z = b exp(−z) ⇒ g(z) := z exp(z) = b (2.18)

z = g−1(b) . (2.19)

The inverse function which has been formally introduced in Eq.(2.19) is called the Lam-

bert function. The analytic approach to obtain the complete solution for systems of delay

differential equations is based on such a function. It is often called “Product log”, which

is the function W (z) such that z = W (z) exp(W (z)) solves z = W (z) exp(W (z)) for a

given value z. The Lambert function is defined as the solution of a transcendental equa-

tion W exp(W ) = z(z ∈ C). It has infinite branches , denoted by Wk(z), k = 0,±1,±2, ..

respectively. W0(z) is the unique branch that is analytic at the origin z = 0, and is called

the principal branch [4]. This concept is applied to solve transcendental characteristic

equation of DDE. The Lambert function also gives us the full stability region - i.e. the

complete set of stability intervals - for the function in Equation (2.19). A full derivation

of this result lies outside the scope of this thesis, for full details please refer to [5].
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Chapter 3

Extension to a certain two
dimensional system

In this section, the method proposed in chapter 2 will be applied to find the stability

region of a two dimensional system of DDEs. In order to do that we quote the main

result of Hara and Sugie [6]. Consider the delay differential equation system

ẋ(t) = Ax(t− τ) (3.1)

where A is a 2 × 2 matrix. Stability criteria are expressed explicitly in terms of the trace,

the determinant and the eigenvalues of the matrix in the case of

A = −ρ
(

cos θ − sin θ
sin θ cos θ

)
(3.2)

where ρ > 0, and -π ≤ θ ≤ π denote the parameters of the system.

The zero solution of (3.1) is asymptotically stable if and only if

0 < ρτ <
π

2
− |θ| (3.3)

Figure 3.1: The stability region for system (3.1) with matrix (3.2), according to Eq.(3.3)

Eq.(3.3) determines a stability region in the ρ-θ parameter plane. Figure 3.1 shows a

sketch of this region. We clearly see that the stability region has a triangular shape, and
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that no stability is possible if ρτ exceeds π/2.

Our aim is to verify that this necessary and sufficient condition is satisfied for this specific

matrix A using the method proposed in chapter 2. In fact, we will show that the original

equation of motion (3.1) can be written as a single complex equation, namely

ξ̇ = −ρ exp(iθ)ξ(t− τ) (3.4)

For that purpose define

x =

(
x1

x2

)
, ξ(t) = x1(t) + ix2(t) . (3.5)

We want to convert the two dimensional (3.1) system to a one dimensional one, Eq.(3.4).

We could do this by observing that(
ẋ1

ẋ2

)
= −ρ

(
cos θ − sin θ
sin θ cos θ

)
×
(
x1(t− τ)
x2(t− τ)

)
= −ρ

(
cos θx1(t− τ)− sin θx2(t− τ)
sin θx1(t− τ) + cos θx2(t− τ)

)
(3.6)

Therefore, using the definition (3.5) we have

ξ̇(t) = ẋ1 + ix2(t)

= ρ(x1(t− τ) cos θ − x2(t− τ) sin θ + i(x1(t− τ) sin θ + x2(t− τ) cos θ))

= ρ(x1(t− τ)(cos θ + i sin θ) + x2(t− τ)(− sin θ + i cos θ)

= ρ(x1(t− τ) + ix2(t− τ)) exp(iθ)

= −ρξ(t− τ) exp(iθ) (3.7)

Thus

ξ̇ = −ρ exp(iθ)ξ(t− τ). (3.8)

The characteristic equation is obtained by assuming a solution in the form of ξ = exp(λt)

and substituting it into Eq. (3.8). As a result we get

λ = −ρ exp(iθ) exp(−λτ) . (3.9)

Let us define the non-dimensional quantities z = λτ, ρ̄ = ρτ , thus

z = −ρτ exp(iθ) exp(−z) (3.10)

hence

z = −ρ̄ exp(iθ) exp(−z). (3.11)

11



As a result, the transcendental characteristic equation is

z + ρ̄ exp(iθ) exp(−z)) = 0. (3.12)

Taking the exponential of Eq.(3.12)

exp(z) exp(ρ̄ exp(iθ) exp(−z) = 1 (3.13)

and introducing the new complex variable µ = exp(−z), we obtain

1

µ
exp(ρ̄ exp(iθ)µ) = 1 (3.14)

i.e. following the ideas of the previous chapter we have to analyse the holomorphic

function

F (µ) = µ− exp(ρ̄ exp(iθ)µ). (3.15)

To determine the zeros of Eq.(3.15) we now apply the theory of complex functions which

means we take µ = exp(iφ), φ changes from 0 to 2 π and evaluate

F (iφ) = exp(iφ)− exp(ρ̄ exp(iθ) exp(iφ)). (3.16)

Let us first examine when θ and ρ̄ take different values, we will show that condition (2.3)

is indeed the correct stability condition. For the first case suppose that we fix θ and ρ̄

varies. Figure 3.2 shows contour plots for θ = 0 and three different values of ρ̄. In figure

3.2(a) and (b) the curve does not surround the origin, which implies the argument does

not change. Finally for the largest value in figure 3.2(c) the curve surrounds the origin

twice. Thus the stability changes between ρ̄ = 1.5 and ρ̄ = 1.66. Such a result is perfectly

consistent with Eq.(3.3) as the change of stability is expected to occur at ρ̄ = π/2.

Let us perform a similar analysis at a fixed value for ρ̄ = 0.196 and varying θ. We clearly

see that the curve in Figure 3.3(a) does not surrounds the origin, therefore the argument

does not change. In Figure 3.3(b) the curve surrounds the origin once. Hence the stability

changes between θ = 1.399 and θ = 2. Again the result is consistent with the findings.

As ρ̄ increases (ρ̄ = 10) shown in Figure 3.3 (c) it leaves the instability region, and we

see the number of eigenvalues increase.
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Figure 3.2: Contour plots for eq.(3.16 for different parameter values: (a) ρ̄ := 1, θ := 0
(b) ρ̄ := 1.5, θ := 0 (c) ρ̄ := 1.66, θ := 0

Figure 3.3: Contour plots for Eq.(3.16 for different parameter values: (a) ρ̄ := 0.196, θ :=
1.399 (b)ρ̄ := 0.196, θ := 2, (c) ρ̄ := 10, θ := 0
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Chapter 4

Stability domains for a second order

system

This chapter extends our earlier work on first order delay differential equation as we

move up to second order delay differential equations. With the knowledge of the previous

chapter we can now address the more ambitious equation

αẍ(t) + βẋ(t) + χx(t) = δx(t− τ) . (4.1)

where in physicists’ terms, the coefficients have the following meaning: α = mass, β =

damping, χ = force. The solution of Eq.(4.1) can be written in terms of exponential

functions. Hence if we use x(t) = exp(λt) in Eq.(4.1) it reduces to an algebraic equation

αλ2 + βλ+ χ = δ(−λτ). (4.2)

Rewriting the Eq.(4.2) using the abbreviation z = λτ we obtain

α

βτ
z2 + z +

χ

β
=
δτ

β
exp(−z) (4.3)

hence

cz2 + z = a+ b exp(−z) (4.4)

which is the transcendental characteristic equation where c = α/(βτ), a = −χ/β,

b = deltaτ/β.

We will be taking a different approach with regards to the complex contour integrals

which could be used for providing stability. The main problem is that it is quite tedious

to write the characteristic equation Eq.(4.4) in terms of the multiplier

µ = exp(−z). (4.5)
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In fact, it is unlikely that we will again end up with a holomorphic function, an essential

ingredient for the complex contour integration technique, as it is hard to avoid complex

logarithms, i.e., z = ln(µ). To get around such a problem we just recall that we are

mainly interested in that part of the parameter region where Eq.(4.4) has solutions with

negative real parts only. Such a region is bounded by curves, and on that curves the real

part of z changes sign, i.e., either z = 0 or z = iφ. Hence to obtain the boundaries of the

stability region one can directly deal with the z variable and analyse the expression

cz2 + z = a+ b exp(−z) (4.6)

for z = 0 and z = iφ. For the first choice we obtain the boundary

0 = a+ b . (4.7)

In the latter case we end up with

c(iφ)2 + iφ = a+ b exp(−iφ) . (4.8)

Eq.(4.7) yields a straight line in the a-b parameter plane, which gives a boundary of the

stability domain. The region below the line is stable and the region above the line is

unstable. Eq.(4.8) when written in real and imaginary part yields a parametric represen-

tation for the other part of the boundary

−cφ2 = a+ b cos(φ)

φ = −b sin(φ). (4.9)

To illustrate the behavior of the solutions of Eq.(4.7) and (4.9), i.e. the boundary between

the stable and unstable regions in the a-b parameter plane, we will discuss how the

boundary changes when c is varied. We begin our numerical analysis by considering first

the case c < 0.

Figure 4.1 displays the stability boundaries for c = −0.01, we observe that the stability

region is bounded by the red and blue line. The blue line is obtained by the condition

z = 0 and the red curve by z = iφ. It has the similar stability region for first order

delay differential equations (c = 0) shown in Figure 4.1 (a). No qualitative change in the

stability domain is visible. We can also spot from Figures 4.1, 4.2 and 4.3 that decreasing

c yields an increase of the stability region, a larger curvature of the red boundary, and

an extension of the stability region to the right half of the parameter plane. The green

and the orange curve change their shapes but they are located in the unstable region.
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Figure 4.1: Stability domain of the second order delay differential equation, c = 0 (left),

c = −0.01 (right). The inset (the rightmost graph) shows the case c = −0.01 on a smaller

scale.

Figure 4.2: The stability domain of the second order delay differential equation is affected

for negative values of c, here c = −0.6.
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Figure 4.3: As c values get more negative the stability area increases i.e. c = −1.5. The

inset shows the boundaries close to the origin.

We will further comment on the influence of parameter values and we will see that a

qualitative change of the boundary occurs. Varying parameters, the boundary changes

continuously as shown in the figures above. In Figure 4.1(b) the stable domain has a

triangular shape and both boundaries, which meet close to the origin meet at a finite an-

gle. For Figure 4.2 a change occurs as now both boundaries, those caused by z = 0 and

a purely imaginary pair, become tangential. Finally in Figure 4.3 both boundaries have

changed their orientation. Such qualitative changes are often referred to as bifurcations,

here a bifurcation in the shape of the stability boundary. Bifurcation takes place when

a qualitative change in the nature of the solution occurs if a parameter passes through a

critical point [7]. For instance, in this example, the bifurcation occurred at c = −0.6

For the case c > 0 we can examine from the diagram below that each curve slightly

shifts to the left as the positive value of c gets bigger, as a result the instability region

gets larger.
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Figure 4.4: As c values gets more positive the stability area decreases i.e. (a) c =0.01 ,

(b) c=0.5, (c) c=1.5
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Chapter 5

Summary and Conclusion

A numerical approach of the stability analysis of linear delay differential equations has

been presented. A theorem of complex function theory, more precisely the argument

principle, has enabled us to analyse stability properties of delay differential equations.

The change in the argument has been demonstrated in the contour plots. The use of

such a concept was illustrated by studying an example in chapter 2. The dependence of

the stability properties on the parameters of the system, cf. Equation (2.11), has been

investigated, varying b we were able to numerically approximate one stability domain

b ∈ (−π/2, 0). It would be impossible to numerically obtain all the - potentially infinite -

stability intervals ourselves, however this has become possible analytically by the Lambert

function which gives us the full stability region. Curiosity has lead us to investigate and

extended to higher dimensions for instance a two dimensional system. This was presented

in a paper by [6]. Here we were able to verify the stability interval. This was again

demonstrated by contour plots. Our investigations lead us to more advance equations

such as second order delay differential equations where our previous method no longer

applied. We took a new approach of analysing stability boundary by varying a parameter

c and monitoring the changes of the boundaries of the stable domain in parameter space.

As we have seen the stability analysis of linear differential difference equations result

in transcendental characteristic equations which involve powers and exponentials. For

further study one could introduce quasi-polynomials.

P (z) =
r∑

m=0

s∑
n=0

amnz
m exp(nz). (5.1)

The purpose of Eq.(5.1) is to determine when all the roots of such a characteristic equa-

tion are in the left half-plane. A major result of Pontryagin gives the necessary and
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sufficient conditions for all the zeros of P (z) to have negative real parts, that is, analyti-

cal stability conditions [8].

By Pontryagin’s investigation we are now able to study the stability of delay differ-

ential equation of any order. This indeed would save a lot of tedious calculations, as

we experienced in our second order equation. We came across difficulty in rewriting the

equation in terms of multipliers to obtain the change of argument. Fortunately we are

able to use Eq. 5.1 to overcome these difficulties. However, one should not assume that

this is an easier option as the application of Pontryagin’s stability criteria require tedious

calculations as well.
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