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Analytical and numerical analysis of the Burgers’ equation 

 

Abstract. The project aims to perform analytical and numerical analysis on partial 

differential equations. In particular, the project will consider the Burger’s equation. The 

project will aim to solve for analytical solutions of the Burger’s equation and then 

comparing them with the numerically simulated solutions. The analytical analysis will 

examine the effects of the diffusive coefficient (viscosity) and its impact on particular 

types of solutions. The numerical analysis will focus on the stability of the discretisation 

scheme. 

 

1    Introduction 

The Burgers’ equation is a quasilinear parabolic partial differential equation (PDE) which was 

initially proposed by Bateman during 1915 as a method study shock profiles. It was later 

applied to study turbulence by Burgers in 1940s; hence the name Burgers equation. Then, Cole 

and Hopf each independently found exact solutions to the equation. The transformation method 

is recognized as Cole-Hopf transformation where the quasilinear PDE is transformed into a 

linear diffusion equation, also known as the heat equation. There exist many solutions for the 

Burgers equation. For example, there are 35 solutions surveyed by Benton et al.[4]. 

The general form of the equation also known as viscous Burgers’ equation is as follows: 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜖𝑢𝑢𝑥 .  (1.1) 

Alternatively it can be written as [2]: 

𝜕𝑢

𝜕𝑡⏟
𝑈𝑛𝑠𝑡𝑒𝑎𝑑𝑦 𝑡𝑒𝑟𝑚

+ 𝑢
𝜕𝑢

𝜕𝑥⏟
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚

= 𝜈
𝜕2𝑢

𝜕𝑥2⏟  
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑡𝑒𝑟𝑚

, 

or  

𝑢𝑡 + (
1

2
𝑢2)

𝑥
 #(1.2) 

As a result, it is a subject of interest when studying physical properties such as fluid motions 

governed by nonlinear fluid equations,  

for the momentum equations in fluid mechanics 

Other attempts have also been made to solve (1.1) analytically. For example,Wazwaz used the 

tanh-coth method to examine solutions for a single front wave (kink) solution and the traveling 

wave solution as well using the Coth-Hopf transformation to examine multiple front solutions of 

the coupled Burgers equations [21]. By implementing a modified tanh-coth method, Wazzan 

solved the Korteweg-de Vries and Korteweg-de Vries–Burgers’ equation [22]. To modify the 

one-dimensional burgers’ equation, Momani substitute the Caputo fractional derivative [19]. 
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Gomez solved the result for fractional burgers equation through fractional complex transform 

[11]. 

Another aspect of the Burgers equation is often being used to analyse properties of numerical 

schemes due to having analytical solutions. In 1999, Kutluay et al. [16] compared the analytical 

solution of the viscous Burgers equation with solutions approximated via explicit finite 

difference scheme and exact-explicit finite difference scheme. In 2006, Kadalbajoo et al. [14] 

approximate the solutions using a Crank-Nicolson finite difference scheme onto the linearized 

Burgers equation. Inan et al. [12 ]modified the finite difference schemes to use implicit and fully 

implicit exponential finite difference schemes.  

A thorough review into literature of the Burgers’ equation can found in [5] which consist of 

research from1915 until 2017. 

For the rest of report, the content is structured as follows. In section 2, an example on how the 

Burgers equation resembles another model is shown. In section 3, the analytical solutions of the 

Burgers equation will be discussed, first in its viscous form and then its inviscid form. In section 

4, a brief review of the background for numerical methods is first given, followed by discussion 

on how to assess the numerical schemes. The numerical schemes implemented are then 

provided. In section 5, numerical results are given where certain initial value problems are 

considered. In section 6, the relationship between the viscous and inviscid forms of the Burgers’ 

equation will discussed via the vanishing viscosity approach. 

 

2     Analog of the Burgers’ equation 

One of the key reasons that Burgers’ equation is widely investigated is due to how it can be 

represented as an easier counterpart for more complicated models. By using it as a toy model, 

one could study the intrinsic properties of more arduous problems at a lesser complexity. 

2.1 Euler equation  

For example, the Euler equations in 1D are: 

{
 
 

 
 

𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢) = 0

𝜕

𝜕𝑡
(𝜌𝑢) +

𝜕

𝜕𝑥
(𝜌𝑢𝑢 + 𝑃) = 0

𝜕

𝜕𝑡
(
1

2
𝜌𝑢2 + 𝜌𝑒) +

𝜕

𝜕𝑥
((𝜌𝑢2 + 𝑝𝑒 + 𝑃)𝑢) = 0

 

First, reformulate the equation of motion: 

𝜕

𝜕𝑡
(𝜌𝑢) +

𝜕

𝜕𝑥
(𝜌𝑢𝑢 + 𝑃) = 0 

𝑢
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
(𝜌𝑢) + 𝜌

𝜕𝑢

𝜕𝑡
+ (𝜌𝑢)

𝜕𝑢

𝜕𝑥
+
𝜕𝑃

𝜕𝑥
= 0 

𝜌
𝜕𝑢

𝜕𝑡
+ (𝜌𝑢)

𝜕𝑢

𝜕𝑥
+
𝜕𝑃

𝜕𝑥
= 0 
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and then neglect the pressure gradients 
𝜕𝑃

𝜕𝑥
= 0, resulting in the inviscid Burgers’ equation: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0. 

In the next section, both viscous and inviscid forms of the equation will be examined analytically. 

 

3     Analytical solution of the Burgers Equation 

3.1 Viscous Form 

The following initial value problem of (1.1) will be examined. 

{
𝑢𝑡 + 𝑢𝑢𝑥 = 𝜖𝑢𝑥𝑥, 𝑥 ∈ ℝ, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ ℝ
 (3.1.1) 

Exact solution 

The equation (1.1) can be solved exactly by transforming its non-linear form into the linear 

diffusion equation. The transformation method is called the Cole-Hopf method that utilizes the 

nonlinear transformation 

𝑢(𝑥, 𝑡) = −2𝜖
𝜃𝑥

𝜃
  (3.1.2𝑎)

which has an equivalent form of 

𝑢(𝑥, 𝑡) = −2𝜖
𝜕

𝜕𝑥
(log 𝜃) (3.1.2𝑏) 

where 𝜃(𝑥, 𝑡) is a solution to the heat equation. Lastly, by rearranging (3.1.2b) and taking its 

integration gives 

𝜃(𝑥, 𝑡) = exp(−
1

2𝜖
∫ 𝑢(Η, 𝑡)
𝑥

0

𝑑Η)  

(3.1.2a) can be verified as a solution which satisfies equation (1.1) by differentiating accordingly. 

Thus, the transformation reduces (3.1.1) into 

{

𝜃𝑡 − 𝜖𝜃𝑥𝑥 = 0, 𝑥 ∈ ℝ, 𝑡 > 0,

𝜃(𝑥, 0) = exp(−
1

2𝜖
∫ 𝑢(Η, 0)
𝑥

0

𝑑Η) , 𝑥 ∈ ℝ
 (3.1.3) 

To solve (3.1.3), recall that the homogeneuous initial value problem of heat equation` 

{
Θt − 𝑎Θxx = 0 
      Θ(x, 0) = 𝑔

 

has the solution of the form  

Θ(𝑥, 𝑡) = ∫ϕ(𝑥 − 𝑦, 𝑡)𝑔(𝑦)𝑑𝑦
ℝ

, 𝑥 ∈ ℝ, 𝑡 > 0 
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where the fundamental solution ϕ 𝑠(𝑥, 𝑡 > 0) =
1

(4𝑎𝜋𝑡)
𝑛
2

exp−
|𝑥|2

4𝑎𝑡
. Hence, by comparison the 

solution of (3.1.3) can be deduced as  

𝜃(𝑥, 𝑡) =
1

(4𝜖𝜋𝑡)
𝑛
2

∫(exp−
|𝑥 − 𝜂|2

4𝜖𝑡
exp (−

1

2𝜖
∫ 𝑢(Η, 0)
𝑥

0

𝑑Η))d𝜂

ℝ

. #(3.1.4) 

The exact integral  solution of (3.1.1) can then be obtained by substituting (3.1.4) into (3.1.2a) 

which in turn gives 

 

𝑢(𝑥, 𝑡) =
∫ (exp−

|𝑥 − 𝜂|2

4𝜖𝑡 exp (−
1
2𝜖 ∫ 𝑢

(Η, 0)
𝑥

0
𝑑Η) 𝑢(𝜂, 0))𝑑𝜂

ℝ

∫ exp−
|𝑥 − 𝜂|2

4𝜖𝑡
exp (−

1
2𝜖 ∫

𝑢(Η, 0)
𝑥

0
𝑑Η)d𝜂

ℝ

#(3.1.5) 

as seen in [6,7, 8]. 

  Traveling wave solutions.    As the Burgers equation can be used to study shock profiles, 

another solution in the form of 

𝑢(𝑥, 𝑡) = 𝑢(𝜀), 𝜀 = 𝑥 − 𝑈𝑡 #(3.1.5) 

can be used to determine the relationship between nonlinear steepening and viscosity. Such a 

solution is often referred to as a traveling wave solution. Here, 𝑈 represents the wave speed and 

𝑢(𝜀) represents the wave form. Substituting (3.1.5) back into (1.1) returns the following form 

−𝑈𝑢′(ε) + 𝑢𝑢′(𝜀) − 𝜈𝑢′′(𝜀) = 0. 

Then, by taking its integration 

−𝑈𝑢(𝜀) +
1

2
𝑢2 − 𝜈𝑢′(𝜀) = 𝐴, 

where 𝐴 is a constant of integration, which can be rearranged as 

𝑢′(𝜀) =
1

2𝜈
(𝑢2 − 2𝑈𝑢 − 2𝐴) = 0. 

Hence, 𝑈 and 𝐴 can be determined via the two roots of the quadratic equation where 

𝑢1,2 = 𝑈 ±√𝑈
2 + 2𝐴, 𝑢1 > 𝑢2 

and 

𝑈 =
1

2
(𝑢1 + 𝑢2), 𝐴 = −

1

2
𝑢1𝑢2. 

Writing the equation in terms of its roots and then by partial integrations gives 

𝜀

2𝜈
= −∫

𝑑𝑢

𝑑(𝑢1 − 𝑢)(𝑢 − 𝑢2)
=

1

𝑢2 − 𝑢1
log |

𝑢 − 𝑢2
𝑢 − 𝑢1

| 
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Next, by multiplying both sides with −1, 

𝜀

2𝜈
(𝑢1 − 𝑢2) = log |

𝑢 − 𝑢1
𝑢 − 𝑢2

| = log
|(−1)(𝑢 − 𝑢1)|

|𝑢 − 𝑢2|
= log(

𝑢1 − 𝑢

𝑢 − 𝑢2
 ) 

Finally, the solution can be obtained in form of 

𝑢(𝜀) =
𝑢1 + 𝑢2 exp[(

𝜀
2𝜈
)(𝑢1 − 𝑢2)]

1 + exp[(
𝜀
2𝜈)(𝑢1 − 𝑢2)]

 

which can be rewritten as [7]: 

𝑢(𝜀) =
1

2
(𝑢1 + 𝑢2) +

𝑢1 + 𝑢2 exp [(
𝜀
2𝜈
) (𝑢1 − 𝑢2)]

1 + exp [(
𝜀
2𝜈
) (𝑢1 − 𝑢2)]

−
1

2
(𝑢1 + 𝑢2) 

= 𝑈 −
1

2
(𝑢1 − 𝑢2) tanh [(

𝜀

4𝜈
) (𝑢1 − 𝑢2)] . #(3.1.6) 

 

The wave profile exhibits certain properties. As 𝜉 → ±∞, 𝑢(𝜉) tends asymptotically to the 

quadratic roots 𝑢2 and 𝑢1 respectively, which can be observed in figure 1. Furthermore, the 

value of the viscosity 𝜖 affects the shape of the wave form significantly. Indeed, as the viscosity 

coefficient becomes smaller, the wave form begins to distort. Hence, viscosity is required in 

order to prevent wave form from breaking. Similarly, one can also observe that with large 

viscosity coefficient, the wave form is eventually flattened into a horizontal straight line; the 

diffusion effect is strong to the point where no waves can be formed. 

Figure 1: Traveling wave solution with different viscosity values (𝒖𝟏 = 𝟎. 𝟕𝟓, 𝒖𝟐 = 𝟎. 𝟎𝟓) 
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3.2 Inviscid 

When the diffusive term is neglected 𝜖 = 0, the equation becomes a hyperbolic equation 

𝑢𝑡 + 𝑢𝑢𝑥 = 0. (3.2.1) 

which has a conservation form 

𝑢𝑡 + (𝐹(𝑢(𝑥, 𝑡)))𝑥 = 0 

where 𝐹(𝑢) =
1

2
𝑢2is a flux function. 

  Method of Characteristics.    The equation (3.2.1) can be solved via method of characteristics 

which essentially reduces the hyperbolic PDE into a system of uncoupled first order ODEs, 

giving a general solution 𝐹  

𝐹(𝑐1, 𝑐2) = 0 

where 𝐹 is an arbitrary differentiable function with constants 𝑐1 and 𝑐2.  Here, the characteristic 

equations are 

𝑑𝑥

𝑢
=
𝑑𝑡

1
=
𝑑𝑢

0
 (3.2.2) 

This suggests that 𝑢 is a constant. Rearranging (3.2.2), the following ODE can be obtained 

𝑑𝑥

𝑑𝑡
= 𝑢 = 𝑐1 

which integrates to 

𝑥 = 𝑐1𝑡 + 𝑐2 = 𝑢𝑡 + 𝑐2. (3.2.3) 

Therefore 𝑐2 = 𝑥 − 𝑢𝑡, resulting in the general implicit solution 

𝑢(𝑥, 𝑡) = 𝐹(𝑥 − 𝑢𝑡). 

Furthermore, (3.2.3) implies that the solution is constant along the characteristic curves defined 

by  

𝑥(𝑡) = 𝑥0 + 𝑢𝑡 

Hence, the general implicit solution associated with the initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥) = 𝐹(𝑥) 

is 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥 − 𝑢𝑡). #(3.2.4) 

The characteristics are then described by 

𝑥(𝑡) = 𝑥(0) + 𝑢𝑡. 

Example 1: 
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Consider the following piecewise constant initial condition which is also known as a Riemann 

problem: 

𝑢(𝑥, 0) = {
−𝑎        if 𝑥 < 0
    𝑎        if 𝑥 ≥ 0

, #(3.2.5)  

For starters, consider the case when 𝑎 = 1. The resulting characteristic lines projected onto the 

(𝑥 − 𝑡) plane resemble a V shape as seen in figure 2 below. When 𝑥(0) < 0, the lines are 

governed by 𝑡 = −(𝑥(𝑡) − 𝑥(0)) with solution 𝑢(𝑥, 𝑡) = −1. Similarly, when 𝑥(0) ≥ 0, the lines 

are governed by 𝑡 = (𝑥(𝑡) − 𝑥(0)) with solution 𝑢(𝑥, 𝑡) = 1. However, in areas beyond the V 

shape there exist no characteristic lines, a discontinuity has occurred.. This implies that the 

initial data has no classical solution there; i.e. initial value problem does not in general have a 

smooth solution existing for all times 𝑡 > 0. The example highlights that none smooth solutions 

exist for initial value problems or alternatively, smooth solutions only exist within some finite 

time interval.  

Figure 2: Characteristic lines of u(x,0) when 𝒂 = 𝟏 

 

 

As the characteristic lines are essentially discretized lines projected from the 𝑥-axis, one could 

imagine with smaller 𝑎 and more discretized 𝑥(0) values that the characteristic lines would be 

steeper and have covered more regions, suggesting perhaps some compromise can be made to 

construct an acceptable solution. Hence, there is the need to allow for weak solutions. A weak 

solution is essentially an integral solution to the initial value problem to (3.2.1) which does not 

require the smoothness of a classical solution. For detailed explanations readers may refer to 

[7,8,17] but the main idea is as follows: 

1. Consider 𝑢  as a smooth solution and also introducing another smooth function 

𝑣:ℝ × [0,∞) which is bounded within a compact set, i.e. its value is zero when 

considering beyond boundaries of set 𝐴. This is often referred to as a test function. 

2. Multiply the test function 𝑣 onto equation (3.2.1) and then apply integration by parts 

over the intervals −∞ < 𝑥 < ∞ and 0 ≤ 𝑡 < ∞. 
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3. The resulting equality gives 

a. ∫ ∫ (𝑢𝑣𝑡 +
1

2
𝑢2𝑣𝑥)𝑑𝑥𝑑𝑡 +

∞

−∞

∞

0 ∫ 𝑢(𝑥, 0)𝑣(𝑥, 0)𝑑𝑥
∞

0
= 0  #(3.2.6) 

4. Therefore, 𝑢(𝑥, 𝑡) is a weak solution of (3.2.1) if (3.2.6) holds. 

5. An informal way to understand why this is equality leads to a less rigorous solution is to 
consider that the equation now involves fewer derivatives on 𝑢, and hence requiring less 
smoothness. 

 
An immediate consequence of allowing weak solutions is solutions may not always be unique. 
To ensure uniqueness of solutions certain conditions will have to be imposed, namely the 
Rankine-Hugoniot jump condition and the Lax entropy criterion. 
 
    Rankine-Hugoniot jump condition.    When the weak solution 𝑢 is discontinuous across a 
curve 𝑥(𝑡) = (𝑥 − 𝑢𝑡) on the (𝑥 − 𝑡) plane and yet remain smooth on either side of the curve, 𝑢 
then must satisfy the jump condition. This can be derived from the Riemann problem where a 
shock occurs under the conservation law with a piecewise constant initial data [18]. The 
condition for the scalar equation (3.2.1) then returns the speed of propagation of the shock as 

𝑠 =
𝑓(𝑢𝑅) − 𝑓(𝑢𝐿)

𝑢𝑅 − 𝑢𝐿
=
1

2
(𝑢𝐿 + 𝑢𝑅)#(3.2.7) 

where 𝑢𝐿 and 𝑢𝑅 are the smooth solutions beside the discontinuous curve. 

  Lax entropy criterion.    The entropy criterion is based on the second law of thermodynamics 

where entropy increases across a shock. Essentially, this means that the wave speed right 

before a shock is greater than the wave speed after the shock. This can be formulated as 

𝑎(𝑢𝑙) > 𝑈 > 𝑎(𝑢𝑟) 

where 𝑎(𝑢) = 𝑢 for inviscid Burgers equation. Hence, a shock is when a discontinuity satisfying 

both the RH jump condition and the Lax entropy criterion on its curve of discontinuity.  

Another type of discontinuity that exists is the rarefaction wave. Its solution can be determined 

via ansatz [15] 

𝑢(𝑥, 𝑡) = 𝑟 (
𝑥

𝑡
) , −𝑡 ≤

𝑥

𝑡
< 𝑡 

 where 𝑟 is a differentiable function. By substitution into (3.2.1), the solution is then obtained as 

𝑟 (
𝑥

𝑡
) =

𝑥

𝑡
, −𝑡 ≤

𝑥

𝑡
< 𝑡. 

Therefore, two possible solutions are 

𝑢1(𝑥, 𝑡) = {
−1        if 𝑥 < 0
    1        if 𝑥 ≥ 0

  

𝑢2(𝑥, 𝑡) = {

−1        if 𝑥 < −𝑡

           
𝑥

𝑡
        if − 𝑡 ≤ 𝑥 < 𝑡

1        if 𝑥 ≥ 𝑡

  

Both cases meet the jump condition but only 𝑢2(𝑥, 𝑡) satisfies the entropy condition. Hence, 

the unique entropy solution to the initial value problem (3.2.5) is 𝑢2, where the empty 



10 
 

interval is now filled with new information. The next example will illustrate a shock occurring. 

Consider the initial value problem (3.2.5) again, but with 𝑎 = −1.  

Figure 3: Characteristic lines of u(x,0) when 𝒂 = −𝟏 

 

As expected when inverting the signs of 𝑎, the lines project to opposite directions from before. 

When 𝑥(0) ≥ 0 , the lines are governed by 𝑡 = −(𝑥(𝑡) − 𝑥(0)) with solution 𝑢(𝑥, 𝑡) = −1. 

Similarly, when 𝑥(0) < 0, the lines are governed by 𝑡 = (𝑥(𝑡) − 𝑥(0)) with solution 𝑢(𝑥, 𝑡) = 1. 

The key difference is that the lines now intersect. This means the solution have become multi-

valued and are in contradiction; negative and positive lines produce the same solutions. 

  Breaking time.    To examine the shock further, one could determine when the intersection of 

the characteristic lines occurs.  This is called the breaking time and formulated as 

𝜏 = −
1

min
𝜕𝑢(𝑥, 0)
𝜕𝑥

. #(3.2.8) 

Breaking time can be deduced from a number of ways, such as i) implicit function theorem 

applied to the implicit solution (3.2.4)  and ii) using the mean value theorem  onto intersection 

point of two characteristic lines to solve for 𝜏. 

Interestingly, the breaking time 𝜏 = 0 in this scenario and indeed, it appears the initial value 

problem (3.2.1) with 𝑎 = −1 is a static shock; the characteristic lines immediately collide. There 

remains the solution which is a max entropy solution 

𝑢(𝑥, 𝑡) = {
      1        if 𝑥 < 0
  − 1        if 𝑥 ≥ 0

  

which indeed satisfies both the jump and entropy condition. 

To summarize, the initial value problem of (3.2.1) was solved via the Method of Characteristics. 

Then the characteristic lines are projected onto the (𝑥 − 𝑡) plane to obtain qualitative 

information of the solution. Lastly, the Rangine-Hugoniot jump condition and Lax entropy 
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condition were imposed to ensure uniqueness of the solution. Furthermore, shock propagation 

is not always possible as seen from before when shock speed 𝑠 = 0. 

Note that despite having the method of characteristics, the hyperbolic equation (3.2.1) usually 

cannot be solved analytically. Hence, numerical methods are required to approximate the 

solution 𝑢(𝑥, 𝑡). This will be discussed in Section 4. 

 

4    Numerical analysis 

4.1 Background 

There are a numerous ways of solving quasilinear PDEs numerically, such as finite difference, 

finite element, finite volume and spectral methods. In this report, only finite difference methods 

are implemented. Some common notations used for the numerical methods are first mentioned 

here.  

• ∆𝑥 ≔ Interval of the step taken in the spatial direction 

• ∆𝑡 ≔ Interval of the time step 

• 𝑢𝑖,𝑗 ≔ Estimated solution of the Burgers
′equation at spatial point 𝑖 and time 𝑗 

• 𝜃𝑖,𝑗 ≔

Estimated solution of the transformed linear Burgers equation at spatial point 𝑖 and time 𝑗 

• 𝑁 ≔ The total number of steps(iterations)in spatial space =
1

∆𝑥
 

• 𝑀 ≔ The total number of steps(iterations)in time =
1

∆𝑡
 

• 𝑇 ≔  The final time = 𝑀∆𝑡 

4.1.1 Taylor series 

Before discussing the different numerical schemes in greater details, a fundamental concept will 

be briefly reminded, namely the Taylor series. Consider an arbitrary differentiable function 

𝑓(𝑥) and its Taylor expansion 

𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) + ∆𝑥
𝜕𝑓

𝜕𝑥
+
∆𝑥2

2!

𝜕2𝑓

𝜕𝑥2
 + ⋯+

∆𝑥𝑛

𝑛!

𝜕𝑛𝑓

𝜕𝑥𝑛
+⋯#(4.1.1) 

where the number of terms  𝑛 is referred to as order of 𝑛. A series with order of 𝑛 will then have 

errors determined by its omitted 𝑛 + 1 terms onwards. In particular, the dominating error will 

be the ∆𝑥𝑛+1 term which is referred to as the truncation error and denoted as 

𝑂(𝑥𝑛+1). 

Note that the truncation error does not mean the exact size of the truncation error. Instead, it 

gives an expectation on how it should behave as ∆𝑥 → 0.  

4.1.2 Finite Difference approximations 

Finite difference approximation is an approximation of a derivative by discretizing the 

dependent variables onto finite points. By doing so, the derivatives can then be replaced as 

algebraic equations and thus, reducing the need to directly solve complicated calculus problems.  



12 
 

From (4.1.1), by rearranging in terms of the first derivative and then only choosing up to the 

order 𝑛 = 1, one could obtain the following difference equation 

𝜕𝑓

𝜕𝑥
=
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
+ 𝑂(∆𝑥) 

which is referred to as the forward difference. Similarly, one could obtain the backward 

difference by using a backward Taylor expansion in (4.1.1) i.e. 𝑓(𝑥 + (−∆𝑥)) which returns 

𝜕𝑓

𝜕𝑥
=
𝑓(𝑥) − 𝑓(𝑥 − ∆𝑥)

∆𝑥
+ 𝑂(∆𝑥). 

Lastly, by subtracting the backward difference from the forward differences, one can then 

obtain the central difference  

𝜕𝑓

𝜕𝑥
=
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
+ 𝑂(∆𝑥2). 

As the derivations are mostly similar in nature, the remaining difference equations involved are 

stated without proof. 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 

𝜕2𝑓

𝜕𝑥2
=
𝑓(𝑥 + 2∆𝑥) − 2𝑓(𝑥 + ∆𝑥) + 𝑓(𝑥)

∆𝑥2
+ 𝑂(∆𝑥) 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 

𝜕2𝑓

𝜕𝑥2
=
𝑓(𝑥 − 2∆𝑥) − 2𝑓(𝑥 − ∆𝑥) + 𝑓(𝑥)

∆𝑥2
+ 𝑂(∆𝑥) 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 

𝜕2𝑓

𝜕𝑥2
=
𝑓(𝑥 + ∆𝑥) − 2𝑓(𝑥) + 𝑓(𝑥 − ∆𝑥)

∆𝑥2
+ 𝑂(∆𝑥2) 

An immediate observation is that both central differences provide a more accurate 

approximation as compared to their counterparts.  

4.1.3 Assessing the approximations  

As the numerical methods are approximations of the solutions, it crucial to understand the 

quality and properties of these methods and their estimations, i.e. accuracy and stability. 

  Accuracy.    To determine how accurate the approximations are, one could use the difference 

between the exact and estimated values. One way of doing so is by computing the norms of the 

error. First, recall that the for 𝑘 = 1…𝑛, norm of || ⋅ ||𝑝 for a real number 𝑝 is defined as 

||𝑥||
𝑝
:= (∑|𝑥𝑘|

𝑝

𝑛

𝑘=1

)

1
𝑝

 

and in particular for 𝑝 = ∞, 
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||𝑥||
∞
:= max

1≤𝑘≤𝑛
|𝑥𝑘|. 

Next, introduce the error metric as 𝑒𝑟𝑟𝑜𝑟𝑘 = 𝑥𝑘
𝑒𝑥𝑎𝑐𝑡 − 𝑥𝑘

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 . Then, by treating it as mesh 

function using the Trapezoidal integration formula, the error can be computed as 

||𝑒𝑟𝑟𝑜𝑟||
𝑝
= (

1

𝑁
∑|𝑒𝑟𝑟𝑜𝑟𝑘|

𝑝

𝑛

𝑘=1

)

1
𝑝

. 

Specifically, the norm with 𝑝 = 2  

||𝑒𝑟𝑟𝑜𝑟||
2
= (

1

𝑁
∑|𝑒𝑟𝑟𝑜𝑟𝑘|

2

𝑛

𝑘=1

)

1
2

 #(4.1.2𝑎) 

and 𝑝 = ∞  

||𝑒𝑟𝑟𝑜𝑟||
∞
:= max

1≤𝑘≤𝑛
|𝑒𝑟𝑟𝑜𝑟𝑘| #(4.1.2𝑏) 

will be used to assess the accuracy of the approximations. Note that these errors are step size 

dependence due to the scaling of 
1

𝑁
. 

  Stability.     The assessment is to measure the discrepancies from errors introduced by 

computations. For example, computers can only compute up till finite decimal points. Thus, 

round-off errors will be present. Here, the Von Neumann method, also known as Fourier stability 

analysis, will be used to determine stability criteria for the numerical methods implemented. 

For the detailed explanation, readers are referred to [9] but the main idea is to 

1 Assume that the distribution of errors is represented by a Fourier series. 

2 Making use of Euler’s formula, the amplification factor 𝐺 can be obtained. 

3 From 𝐺, it can be further simplified to determine a stability criteria. 

Note that this method is applicable for linear problems only. Hence when analysing the viscous 

equation (1.1), the Cole-Hopf transformation must be used. 

4.1.4 Numerical schemes  

  Forward-Time Central-Space (FTCS).    The FTCS explicit scheme, as its name suggests, is a 

first order scheme obtained from the combination of forward difference in the time derivative 

and a central difference in the spatial derivative. The following equations are based on the 

transformed linear equation as seen in [16] 

𝜃𝑖,𝑗+1 = (1 − 2𝑟)𝜃𝑖,𝑗 + 2𝑟𝜃𝑖+1,𝑗, 𝑖 = 0  

𝜃𝑖,𝑗+1 = 𝑟𝜃𝑖−1,𝑗 + (1 − 2𝑟)𝜃𝑖,𝑗 + 𝑟𝜃𝑖+1,𝑗, 𝑖 = 1:𝑁 − 1  

𝜃𝑖,𝑗+1 = 2𝑟𝜃𝑖−1,𝑗 + (1 − 2𝑟)𝜃𝑖,𝑗, 𝑖 = 𝑁  

where 𝑟 = 𝑘𝜖/ℎ2, 𝑘 is the time step. A truncation error of 𝑂(𝑘) + 𝑂(ℎ2) can be expected. The 

final solution can then be obtained via the following conversion 
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𝑢(𝑥𝑖 , 𝑡𝑗) = −
𝜖

ℎ
(
𝜃𝑖+1,𝑗 − 𝜃𝑖−1,𝑗

𝜃𝑖,𝑗
) 

along with the stability requirements of 

2𝜖
∆𝑡

∆𝑥2
≤ 1. 

  Implicit Crank Nicolson finite difference.   The Crank Nicolson scheme is a second order in 

time scheme that can obtained from a central difference on the time derivative with half time 

steps, 𝑡𝑗 +
1

2
∆𝑡; and for the spatial derivative, the average between two points. The 

approximation are computed as seen in [14] 

−𝑟𝜃𝑖+1,𝑗+1 + (1 + 𝑟)𝜃𝑖,𝑗+1 = 𝑟𝜃𝑖+1,𝑗 + (1 − 𝑟)𝜃𝑖,𝑗, 𝑖 = 0 

−
𝑟

2
𝜃𝑖+1,𝑗+1 + (1 + 𝑟)𝜃𝑖,𝑗+1 −

𝑟

2
𝜃(𝑖−1,𝑗+1) =

𝑟

2
𝜃𝑖+1,𝑗 + (1 − 𝑟)𝜃𝑖,𝑗 +

𝑟

2
𝜃𝑖−1,𝑗, 𝑖 = 1:𝑁 − 1 

(1 + 𝑟)𝜃𝑖,𝑗+1 − 𝑟𝜃(𝑖−1,𝑗+1) = 𝑟𝜃𝑖−1,𝑗 + (1 − 𝑟)𝜃𝑖,𝑗, 𝑖 = 𝑁 

where 𝑟 = ∆𝑡𝜖/ℎ2. The final solution is also computed by #(5.1.5). Notice that a tridiagonal 

matrix was involved at each time step and the Thomas Algorithm was implemented to compute 

it. 

By the Von Neumann stability, the implicit Crank Nicolson is unconditionally stable with a 

truncation error of 𝑂(∆𝑡2 + ∆𝑥2). This means that larger time steps can be taken without 

comprising the stability. 

  Lax method.    By expanding a Taylor series of the conservative form of the Burgers equation 

(1.2), the following can be obtained via central differences and averaging the first term [2] 

𝑢𝑗,𝑛+1 =
𝑢𝑗+1,𝑛 + 𝑢𝑗−1,𝑛

2
−
∆𝑡

∆𝑥

𝐹𝑗+1,𝑛 − 𝐹𝑗−1,𝑛

2
   

where 𝐹𝑗,𝑛 =
𝑢𝑗,𝑛
2

2
  along with the stability requirement of 

|
∆𝑡

∆𝑥
𝑢max| ≤ 1. 

  Lax-Wendroff.    As an improvement to the first order Lax-method, the Lax-Wendroff scheme 

is second order and obtained by evaluated 𝑢 at half time steps and half spatial direction  

𝑢𝑗,𝑛+1 = 𝑢𝑗,𝑛 −
∆𝑡

∆𝑥

 𝐹𝑗+1,𝑛 − 𝐹𝑗−1,𝑛

2
+
1

2
(
∆𝑡

∆𝑥
)
2

[𝐴
𝑗+
1
2
,𝑛
( 𝐹𝑗+1,𝑛 − 𝐹𝑗,𝑛) − 𝐴𝑗−1

2
,𝑛
( 𝐹𝑗,𝑛 − 𝐹𝑗−1,𝑛)] 

where 𝐹𝑗,𝑛 =
𝑢𝑗,𝑛
2

2
 and the Jacobian matrix A at the half intervals are calculated as  

𝐴
𝑗+
1
2
,𝑛
=
𝑢𝑗,𝑛 + 𝑢𝑗+1,𝑛

2
     and     𝐴

𝑗−
1
2
,𝑛
=
𝑢𝑗,𝑛 + 𝑢𝑗−1,𝑛

2
 

along with the stability requirement of 
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|
∆𝑡

∆𝑥
𝑢max| ≤ 1. 

5    Results 

  Statement of the problem.  Here, consider the following initial and boundary conditions 

{
𝑢(𝑥, 0) = sin(𝜋𝑥) , 0 < 𝑥 < 1
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0

 #(5.1.1) 

The Hopf-Cole transformation of (5.1.1.) is then  

{
𝜃(𝑥, 0) = exp(−(2𝜋𝜖)−1[1 − cos(𝜋𝑥)]), 0 < 𝑥 < 1

𝜃𝑥(0, 𝑡) = 𝜃𝑥(1, 𝑡) = 0, 𝑡 > 0.
 #(5.1.2) 

 

5.1.1 Viscid 

The exact solution of (3.1.5) is then given as [6] 

𝑢(𝑥, 𝑡) = 2𝜋𝜖
∑ 𝑎𝑛𝑒

−𝑛2𝜋2𝜖𝑡𝑛sin(𝑛𝜋𝑥)∞
𝑛=1

𝑎0 + ∑ 𝑎𝑛𝑒
−𝑛2𝜋2𝜖𝑡cos(𝑛𝜋𝑥)∞

𝑛=1

 #(5.1.3𝑎) 

where 

𝑎0 = ∫𝑒
−
1−cos (𝜋𝑥)

2𝜋𝜖

1

0

𝑑𝑥 #(5.1.3𝑏) 

and  

𝑎𝑛 = 2∫𝑒
−
1−cos (𝜋𝑥)

2𝜋𝜖

1

0

cos(𝑛𝜋𝑥)𝑑𝑥, 𝑛 ≥ 1  #(5.1.3𝑐) 

Note that the integrals (5.1.3b) and (5.1.3c) can be expressed in terms of Bessel functions; hence 

equation (5.1.3a) can be computed as 

𝑢(𝑥, 𝑡) = 4𝜋𝜖
∑ 𝑒−𝑛

2𝜋2𝜖𝑡𝑛𝐼𝑛(
𝑢0
2𝜋𝜈)sin(𝑛𝜋𝑥)

∞
𝑛=1

𝐼0(
𝑢0
2𝜋𝜈) + 2

∑ 𝑒−𝑛
2𝜋2𝜖𝑡𝐼𝑛(

𝑢0
2𝜋𝜈)cos(𝑛𝜋𝑥)

∞
𝑛=1

 #(5.1.4) 

where 𝐼0 and 𝐼𝑛are modified Bessel functions of the first kind [1]. The following is a statement 

from [3], cautioning against the usage of Bessel functions:  

“This analytical solution is numerically untractable at small 𝑡 (0 ≤ 𝑡 ≤  2𝜋) and 𝑣 as 𝐼𝑛(𝑧) 

with 𝑧 going to infinity behaves asymptotically as 𝑒𝑧(2𝜋𝑧)−
1

2 independent of 𝑛.” 

In figure 4a, comparisons are made among the solutions obtained from the analytical solution, 

the FTCS scheme and the Crank-Nicolson scheme. The parameters involved were ∆𝑡 = 0.00001, 
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∆𝑥 =
1

80
 and 𝜖 = 1. Some of the solutions are shown in the table and both schemes produce 

agreeing results. 

Figure 4a: Comparison of solutions from at 𝝐 = 𝟏, ∆𝒙 =
𝟏

𝟖𝟎
 and ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 

𝒕 𝒙 Exact FTCS Crank-
Nicolson 

 0.1 0.1095382 0.1095289 0.1095241 
𝟎. 𝟏 0.3 0.2918964 0.2918722 0.2918587 

 0.5 0.3715775 0.3715477 0.3715292 
 

Furthermore, the accuracy of both the FTCS and Crank-Nicolson are computed using equations 

(4.1.2a-b) and shown in Figure 4b. The two numerical schemes return errors of small 

magnitudes. 

Figure 4b: Accuracy comparison at ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟏,∆𝒙 =
𝟏

𝟖𝟎
 and 𝝐 = 𝟏 

 

 

 

 

 

Next, the time step intervals are increased to ∆𝑡 = 0.005 to illustrate the importance of stability. 

The rest of the parameters remain the same. Indeed, it can be observed from figures 5(a,b) that 

both FTCS and Crank-Nicolson schemes suffer in accuracy. More importantly, as the FTCS 

scheme is a conditionally stable scheme, it is no longer stable with the new and larger time step 

interval. Thus, the approximations are inaccurate. On the other hand, one can notice the Crank-

Nicolson having increase in the magnitude of error, this can be expected for the truncation 

errors. Nonetheless, its approximations remain stable despite the larger time step due to being 

an unconditionally stable numerical scheme.  

Figure 5a: Comparison of solutions from at 𝝐 = 𝟏, ∆𝒙 =
𝟏

𝟖𝟎
 and ∆𝒕 = 𝟎. 𝟎𝟎𝟓 

𝒕 𝒙 Exact FTCS Crank-Nicolson 

 0.1 0.1095382 4.337343 0.1094927 
𝟎. 𝟏 0.3 0.2918964 −138.956 0.2917844 

 0.5 0.3715775 51.43078 0.3714543 
 

Figure 5b: Accuracy comparison at ∆𝒕 = 𝟎. 𝟎𝟎𝟓,∆𝒙 =
𝟏

𝟖𝟎
 and 𝝐 = 𝟏 

 𝐅𝐓𝐂𝐒 𝐂𝐫𝐚𝐧𝐤 − 𝐍𝐢𝐜𝐨𝐥𝐬𝐨𝐧 

𝒕 𝑵 ||𝒆𝒓𝒓𝒐𝒓||
𝟐

 ||𝒆𝒓𝒓𝒐𝒓||
∞

 ||𝒆𝒓𝒓𝒐𝒓||
𝟐

 ||𝒆𝒓𝒓𝒐𝒓||
∞

 

𝟎. 𝟏 𝟖𝟎 2.10097𝑒 − 05 2.973187𝑒 − 05 
 

3.420002𝑒 − 05 4.838738𝑒 − 05 

 𝐅𝐓𝐂𝐒 𝐂𝐫𝐚𝐧𝐤 − 𝐍𝐢𝐜𝐨𝐥𝐬𝐨𝐧 
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5.1.2 Inviscid 

Here, consider the initial condition from (5.1.1) again with a slight modification 

𝑢(𝑥, 0) = sin(𝜋𝑥) , 𝑥 ∈ [0,2]. #(5.1.5) 

The implicit solution for (3.2.1) can be obtained as 

𝑢(𝑥, 𝑡) = sin (𝑥 − 𝑢𝑡) 

where the characteristic lines projected onto the (𝑥 − 𝑡) plane are described by 

𝑥(𝑡) = 𝑥(0) + sin (𝑥)𝑡. 

The characteristic lines are shown in figure 6 where intersections of the lines can be observed. 

The breaking time (3.2.8) is  

𝜏 = −
1

−1
= 1 

Due to the symmetrical nature of the sine curve, 𝑢𝐿 = −𝑢𝑅 and the shock propagation speed can 

then be deduced as 𝑠 = 0. Thus, there is no propagation of shock. 

Figure 5: Characteristic lines of the (𝟓. 𝟏. 𝟓) projected onto the (𝒙 − 𝒕) plane 

 

 

From figure 7, one could observe the sine waveforms for both Lax and Lax-Wendroff solutions 

become sharper as 𝑡 increases, indicating a distortion phenomenon. Furthermore as time 𝑡 

increase, the Lax-Wendroff solutions begin to fluctuate sharply as the wave forms steepen. This 

𝒕 𝑵 ||𝒆𝒓𝒓𝒐𝒓||
𝟐

 ||𝒆𝒓𝒓𝒐𝒓||
∞

 ||𝒆𝒓𝒓𝒐𝒓||
𝟐

 ||𝒆𝒓𝒓𝒐𝒓||
∞

 

𝟎. 𝟏 𝟖𝟎 945.0245 6416.754 
 

8.72524𝑒 − 05 1.259611𝑒 − 04 
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signals that shock waves have occur. The parameters used ∆𝑡 = 0.0001, ∆𝑥 =
1

300
 and time 

considered were 𝑇 = {0.01, 0.1, 0.5, 1}. 

Figure 6: Simulations with different t values using Lax and Lax-Wendroff methods 

 

 

Unfortunately, as the analytical solution was not found, no accuracy assessment could be made 

about the two schemes. 

 

6    Vanishing viscosity 

In this section, the effects of viscosity will be examined again. In particular, recall when 

determining unique weak solutions, much of the motivation behind the inviscid Burgers’ 

equation originates from physical behaviors, i.e. conservation laws. Another less physically 

biased method is the vanishing viscosity approach, i.e. in equation (1.1) as 𝜖 → 0, the “true” 

solution of the inviscid equation will be revealed.  

Returning back to the problem from section 5, some snapshots of the Burgers equation plotted 

using different viscosity values in figures 8 and 9. As 𝜖 decreases, it seems that the waveforms 

are being split into two, where one side is moving upwards while the other moves downwards. 

Indeed, this illustrates the vanishing viscosity concept. 
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Figure 8: Exact solutions for 𝝐 = 𝟎. 𝟖𝟎 (left) & 𝝐 = 𝟎. 𝟑𝟓 (right) with ∆𝒙 = 𝟎. 𝟎𝟎𝟓 & ∆𝒕 = 𝟎. 𝟎𝟎𝟓 

 

 

 

 

Figure 9: Exact solutions for 𝝐 = 𝟎. 𝟎𝟏 (left) & Lax-Wendroff solutions for 𝝐 = 𝟎with ∆𝒙 = 𝟎. 𝟎𝟎𝟓 & ∆𝒕 = 𝟎. 𝟎𝟎𝟓 
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Figure 10: Illustration of the effects large viscosity, 𝝐 = 𝟏𝟎 with ∆𝒙 = 𝟎. 𝟎𝟎𝟓 & ∆𝒕 = 𝟎. 𝟎𝟎𝟓  

 

Lastly, an illustration of the exact solutions (5.1.4) with 𝜖 = 10 is shown in figure 10 where one 

can observe the waveforms have been flatted out by the diffusion, with a single dissipative “flat” 

hump remaining. 
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