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 Introduction 

 

The mutual relationship among Markov partitions is investigated for        

one-dimensional piecewise monotonic map. It is shown that if a Markov 

partition is regarded as a map-refinement of the other Markov partition, one 

can uniquely translate a set of symbolic sequences by one Markov partition 

to those by the other or vice versa. However, the set of symbolic sequences 

constructed using Markov partitions is not necessarily translated with each 

other if there exists no map-refinement relation among them. By using a 

tent map it will be demonstrated how the resultant symbolic sequences 

depend on the choice of Markov partitions  . 
The question of how Markov partition can symbolize a given dynamical 

system without losing any information of complexity in dynamics is one of 

the most intriguing subjects in analysing information processing in 

dynamical systems  .  
Among several symbolization schemes, Markov partition provides one of the 

most natural means to symbolize the dynamical system. By constructing the 

Markov partition, one can symbolize the original dynamical system and 

construct its shift space, that is, a set of all possible symbolic sequences 

constructed from a given Markov partition  . The shift space enables us to 

extract several important properties of the dynamical system such as 

topological entropy  . 
Systems that admit only finite types of Markov partition must have zero 

topological entropy. Since most dynamical systems are chaotic, they can 

have infinitely many Markov partitions. However, the mutual relationship 

among different Markov partitions has not been well-revealed  . 
For one-dimensional piecewise monotonic map, tent map, the properties of 

mutual relationship among Markov partitions will be investigated. 

It will be shown that if a Markov partition has a certain relationship we call 

“map refinement of the other Markov partition,” the shift spaces 
corresponding to these two Markov partitions are topologically the same. If 

this relationship does not hold, the Markov partitions are not necessarily the 

case  . 
By using a tent map as an illustrative, typical example of one-dimensional 

piecewise linear map, it will be demonstrated how the choice of Markov 

partitions affects the resultant shift space 
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1. Markov partition in the case of one-dimensional 

piecewise monotonic map 

 

      The decimal expansion real numbers, familiar to us all, has a 

generalization to representation of dynamical system orbits by symbolic 

sequences. The natural way to associate a symbolic sequence with an orbit 

is to track its history through a partition. But in order to get a useful 

symbolism, one needs to construct a partition with special properties. In 

this work we develop a general theory of representing dynamical systems by 

symbolic systems by means of so-called Markov partition  . To fully 

understand the process we need to know what the Markov partition is. This 

chapter will familiarise us with definition of Markov partition and definition 

of transition matrix A which properties are related with partition, we will 

also find out how to transfer properties of transition matrix A onto the 

outsplitting graph.  

 

1.1 Markov partition 

 

Definition 1.0: 

Partition P is a collection of intervals                 only and only if: 

a) I =          or 

b) int(  )   int(  )= Ø if k ≠l ( int=interior )   
For the interval [0, 1] {[0, 1/3], [1/3, 1]} is a partition and {[0, 2/3], [1/3, 1]} 

is not.  

 

Definition 1.1: 

Let f: [0,1]-[0,1] be a piecewise monotonic map, this means that there exists 

a partition P of interval [0,1] into finitely many pairwise disjoint open 

intervals, such that for every       I the  map  f is continuous   and strictly 

monotonic. 
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Example 1.0: 

The tent map f is finite monotonic map, that is, there is a finite number of 

intervals where f is decreasing or increasing   : 

    
 

Knowing meaning of partition we can introduce definition of Markov 

partition for the interval I. 

Definition 1.2: 

A map      is called Markov map if there is a partition of the closed interval 

I: {               a so called Markov partition   such that for all k, k=0,…,N-1 

either  

a) f(int(  ))   int(  )= Ø 

b) Or int(  )  (int(  )) 

 

For any piecewise monotonic map the requirement of the partition being 

Markov reduces to the following: first, the subintervals     do not overlap 

with each other, at most they may only have common end points; second, a 

subinterval    goes into an union of some subintervals under the map f     
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Let’s consider the simplest example of Markov partition for the interval [0,1]: 

Example 1.2: 

Let f: [0, 1]  [0, 1]  

F(x) = {                                    

 

     [0, ½] int(   )=(0, ½)    = [½, 1]  int(   )=( ½, 1) 

P= {   ,   } is a partition.  

f(int(   ))=(0,1) so f(int(   ))  int(   ) and f(int(   ))  int(  ) 
f(int(   ))=(0,1) so f(int(   ))  int(   ) and f(int(  )) int(  )=Ø 

 

Another example shows partition which is not a Markov partition: 

Example 1.3: 

Let f: [0, 1]  [0, 1]  
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    [0, ½]    =[½,1]                                                                                                                 

is not a Markov partition since f(int(  )) int(  )=(1/2, 3/4) Ø but int(  ) is not 

contained in f(int(   ))  .   
Is there another partition which is Markov partition?  

Markov maps map boundary points of the partition on boundary points  .  
 

1.2 Topological transition matrix A 

 

For every Markov partition we can construct topological transition matrix   

which dimension corresponds to the partition of the interval I. The 

topological transition matrix   is useful to characterize topology of the shift 

space. Thus, 

Definition 1.3: 

 The N x N matrix   is defined by:  

    {              ))        )             )         )    

We say that       if the transition       is permitted  .                         
Every topological transition matrix   has at least one 1 in each row and 

column. 

Example 1.4  

Topological transition matrix for tent map with P=2 is of the form: 
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For tent map all transitions are permitted that is why in each row and each 

column there are only 1. In this case we say that Markov transition matrix is 

full, it describes a full shift on two symbols   .   
Markov transition matrices are extremely useful for computing allowed and 

forbidden symbol sequences   . They are also useful for computing 

topological entropy but this will be described later on. 

 

1.3 Outsplitting grapf and admissible symbol sequences 

 

Transition matrix A is also used to determine whether given symbol 

sequences is admissible or not. We can start with following theorem: 

Theorem 1.0:   –Markov map with Markov partition {               and symbols                 . Assigning symbol sequence          to      according to 

the rule       )   )      leads to the fact that    has symbol 

sequence.        .Collection of all possible symbolic sequences forms an 

abstract space of symbolic sequences.  

Let’s assume that we have Markov partition with only two symbols: 1 and 0. 
Each point    in I can be written as binary fraction:                      

(= 0.       ) called symbol sequences.  

 

Definition 1.4: 

A symbol sequence .        is called admissible if for transition matrix   of 

a Markov map                  
Following example shows admissible symbol sequences for tent map with 

partition P=2: 

Example 1.2: 
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 0.0000 fixed point, admissible 

 0.010101 is admissible 

 0.1010101 is admissible 

Tent map is classified as a surjective map which means that the whole 

interval I maps onto itself. For this kind of maps all symbolic sequences 

made of two symbols 0 and 1 are admissible. Admissibility condition is 

needed to tell whether a given sequence is allowed or not  .  
 

Next example shows symbol sequence which is not admissible. Let’s 
consider following transition matrix   of a Markov map: 

Example 1.3: 

 

 0.010101 is admissible  

 0.110010 is not admissible since    =0 and all symbol sequences 

which contain a pair “11” are not admissible.  

 

Admissible symbol sequences can be generated by walks on the directed 

graph        ) which has n vertices  = {           , corresponding to n 

intervals {            and directed edges going from    to    when      . We 

denote the set of edges that emanates from    by   . Suppose that we have a 

composition of    defined by             where      are a subset of    satisfying          
= . Associated with each decomposition of   , let each 

vertex    divide into {              }. One then can construct a graph whose 

vertices    are defined by    {               }  {          }    {          } and 

edges    are by    {                 )⁄                              }. All possible graphs that are essentially the same as this graph are 

called “outsplitting graph” of G with respect to the decomposition                        , which is here denoted by      .  
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Outsplitting graph can be created for any Markov partition. To demonstrate 

how this works we will use tent map as an example.  

Let’s start with partition when P=2: 

Transition matrix   is of the form: 

 

Set of vertices  = {       as we have two intervals:            and    [1/2,1] 

and 4 directed edges from                              so:         where           )       )  and           )       ) . 
We draw an arrow from     to    because  (   )     . 
Directed graph for Markov partition with P=2 is given by: 

In general, let   be a map defined on interval I which has a partition 

{          }, i.e., I=                and            are disjoint closed intervals 

(except at the end points), then we draw an arrow from    to    in the 

transition graph, if and only if     )       . 
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2. Dependencies of graph topology on Markov partitions  

 

In this section, using the tent map as an illustrative example, it will be 

shown how the resultant shift space changes when new periodic orbits are 

added to the Markov partition P. We will show that if a partition P is a 

Markov partition, any partition P^ constructed by adding new elements to P 

is also a Markov partition. This means that if we have a partition P we can 

further “split” interval I and the new constructed partition remains Markov 

partition. We will introduce definition of partition P^ as a  -refinement to the 

partition P. We will show that if a Markov partitions have a certain 

relationship, we call “map-refinement of the other Markov partition,” the 
shift spaces corresponding to these two Markov partitions are topologically 

the same  . Using tent map, we will also show that to each point    of the 

map we can assign a proper symbol sequence and all those sequences 

create orbit of a given period. Further, we will demonstrate definition of 

topological entropy and we will show that for the tent map it has always the 

same value, no matter how the interval I is partitioned or if a partition P^ is 

a  -refinement to the partition P. 

 

2.1 P^ as  -refinement of P 

Let’s start with the following definition which will be used to show what 

happens when interval I is split into “smaller” intervals, when new elements 

are added to already existing Markov partition P: 

Definition 2.0: 

P, P^- Markov partitions. We call P^ as  -refinement of P if P   P^ and       (P^) =P   
Using that fact we can show that: 

Lemma 2.0: 

If a partition P is a Markov partition, any partition P^ constructed by adding 

new elements to P is also a Markov partition  . 
Proof: 

Let I^ be an interval with respect to the partition P^, where P^ is                  -refinement of P. F restricted to I^ is homomorphism from I^ onto  f(I^) 

since there exists i {1,…,n} such that I^    and the restriction of f to I^ is 

homomorphism f(I^). F maps the two boundary points of the interval I^ to 
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those of f(I^), which are also elements of P^ because of the fact that 

f(P^) P^. This means that f(I^) is a connected union of the intervals of P^ 

between the two boundary points of the interval P^. Given Markov partition 

P, there are some cases where Markov partition P^ satisfy P P^ and 

f(P^) P^. The Markov partition of a certain finite number of elements P can 

be divided into two parts: Q composed of periodic orbits and R composed of 

all the rest. By adding elements of periodic orbits to the Q part, one can 

construct P^ if there are periodic orbits that are not taken as elements of Q. 

If the set    (P) P is not empty , one can add any elements of the set to the 

R part   . The resultant partition P^ forms a Markov partition for both cases.  

 

To illustrate this we will use tent map as an example. 

Example 2.0: 

Let’s start with partition for P=2: 

     [0, ½]     = [½, 1] 

It is easy to see that the above partition is Markov partition. Now acting on 

the same map we can construct partition for P=4: 

 

 



110313892 

 

Interval I has been divided into 4 parts, 4 intervals namely: 

LL= [0, 1/4] int(LL)=(0,1/4) 

LR= [1/4, 1/2] int(LR)=(1/4,1/2)     LL  LR    = RR   RL 

 

RR =[1/2,3/4]  int(RR)=(1/2,3/4) 

RL= [3/4,1]   int(RL)=(3/4,1) 

 

Is this still Markov partition? 

 

int(LL)=(0,1/4) f(int(LL))=(0,1/2) 

int(LR)=(1/4,1/2) f(int(LR))=(1/2,1) 

int(RR)=(1/2,3/4) f(int(RR))=(1/2,1) 

int(RL)=(3/4,1)) f(int(RL))=(0,1/2) 

this is Markov  partition as either a) or b) applies.  

 

We can notice that partitioning interval I into smaller parts does not change 

properties which Markov partition has.  

 

Knowing that P={      } and P^={            } are Markov partitions we can 

show that P^ is an f-refinement of P since  (1/4)=1/2 and  (3/4)=1/2 and  (P^) P.  

 

Now let’s use the tent map with Markov partition P^={            }to construct     . Because P^ is an f-refinement of P it will be demonstrated how directed 

graph looks like when the same tent map has 4 intervals. 
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In this case  ={             as there are 4 subintervals.                   where: 

1=     2=    3=    4=    
and 

             )         ) ,               )         ) ,               )         ) ,              )         )  
 

Interval I is divided into 4 subintervals                          
which is shown on the figure above. This map shows that the interval LL is 

mapped onto interval LL and LR, LR is mapped onto RR and RL, RR is 

mapped onto RR and RL and RL is mapped onto LL and LR. Mathematically, 

we could write that  (LL)   LL   LR. These relations are summarized below 

in a transition graph. The arrow from LL to LR says that  (LL) covers LR.  
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Following picture presents those relations: 

 

 

Those relations are also very conveniently summarized in a Markov 

transition matrix:                                 ) 

 

2.2 Fixed points, periodic points and symbol sequences 

Using Markov partition we can establish one-to-one mapping between the 

orbits in the system and the set   of all allowed symbol sequences.  The 

procedure of mapping the original dynamics of the system to a dynamics in 

the symbol space   is referred to as symbolic dynamics  . To understand the 

process we should first familiarise ourselves with the meaning of fixed point, 

orbit, symbol sequences and periodic point. 
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Definition 2.1: 

A continuous map is a continuous function between two topological spaces. 
In some fields of mathematics, the term "function" is reserved for functions 
which are into the real or complex numbers. The word "map" is then used 

for more general objects.    
A map F: X   Y is continuous if the preimage of any open set is open. 

 

Theorem 2.0 (Fixed point theorem) 

Let   be a continuous map on   and I =[a,b] is a closed interval. If  (I ) I, 

then there is a fixed point    in I satisfying f(  )=        
Proof:  

Since  (I ) I, we have      I, such that     )  a, thus     )-    0. Similarly, 

we have     I, such that     )  b and thus     )-    0. Since   is 

continuous, we must have a     I , such that     )-    0   . 
 

It is easy to count many fixed points there are for Tent Map: 

Example 2.1: tent map 

 

Figure 1 shows   x) and figure 2 shows first iterate of the tent map    )(x). 

The important point of these two graphs is that these two functions intersect 

the diagonal 2 and 4 times. It requires little stretch of the imagination to 

believe that    )(x) has    fixed points. 

 

http://mathworld.wolfram.com/ContinuousFunction.html
http://mathworld.wolfram.com/TopologicalSpace.html
http://mathworld.wolfram.com/Preimage.html
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The Markov transition matrix can be also used to estimate the number of 

fixed points of the     iterate of the map.  

Example 2.2: 

Markov transition matrix for ten map with P=2 is: 

A=
       . 

This matrix informs us that there are two fixed points of the original map f 

and they are in interval    and     
For the second iterate the Markov transition matrix is of the form:                          and it shows straightaway that we have two fixed 

points in interval    and     
 

Definition 2.2: 

Periodic point is the point    which has property that  (  )=     .  
 

Let’s assume that we have Markov partition with only two symbols: 1 and 0. 

Each point    in I can be written as binary fraction:                     

(= 0.       ) called symbol sequences.  

Symbol sequences allow us to make simple and elegant distinction between 

different types of orbits. There are essentially two types of orbits: periodic 

and chaotic. A periodic orbit of period p is one that repeats itself after p 

steps.  In symbol space such an orbit is represented by a symbol sequence 

of length p which repeats itself forever. A chaotic orbit in phase space is one 

which is nonrepeating. It is represented in symbol space by a sequence of 

symbols which is nonrepeating   .  
We will now show that tent map has chaotic orbits but to fully understand 

the proof we have to familiarise ourselves with definition of Lyapunov 

exponent of an orbit (       )     
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We will start with the following definitions: 

Definition 2.3: 

Lyapunov number is the number which is equal to     )        |     )     )      )|    .    
If this limit exists and assuming that      )    for all   we define Lyapunov 

exponent as: 

Definition 2.4: 

Lyapunov exponent is the values which equals to     )=         ∑   |     )|    .    
Definition 2.5: 

Let   be a map on   and let (       ) be an orbit. The orbit is called chaotic 

if: 

 It is not asymptotically periodic 

 Its Lyapunov exponent     )>0.    
 

Let us now consider the tent map to show that it has chaotic orbits: 

1.  If the orbit does not contain ½ then     )=ln2. 

 

2.  If an orbit is asymptotically periodic then it is eventually periodic.  

 

Eventually periodic means that the orbit becomes periodic after 

sufficient number of iterations. As an example (1/2,1,0,0,…) is 

eventually periodic, (1/4,1/2,1,0,0…) and (3/4,1/2,1,0,0…) are also 

eventually periodic. If an orbit converges to a periodic orbit, it has to 

be exactly the same as the periodic orbit after some number of 

iterations. 

 

3.  The periodic and eventually periodic orbits are countable.  

 

For periodic orbits, we can draw figures for    )     )    and then 

estimate the number of fixed points, period-2 points, period-3 points, 

etc. This leads to the conclusion that all periodic orbits are countable. 

For eventually periodic orbits, we first show that all those orbits that 
become a fixed periodic orbit are countable.  
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For example, we can list those orbits that become (0, 0,...) as follows: 

(1,0,0,…), 
(1/2,1,0,0,…), 
(1/4,1/2,1,0,…), 
(3/4,1/2,1,0,…), 
(1/8,1/4,1/2,1,0,…) 
In general such orbit can be written as (                    ) 
And there are    possibilities. Therefore, they are countable. Next, the 

union of countable number of sets, with each set countable, is still 

countable. Thus, all eventually periodic orbits are countable. 

 

4.  The set of all orbits of    ) is not countable. 

 

Every number in [0, 1] has an orbit. Two different numbers give 

different orbits. The set [0, 1] is uncountable. 

Therefore, there are orbits which are not asymptotically periodic and 

the Lyapunov exponent is ln 2 > 0, so they are chaotic orbits.    
 

All repeated symbol sequences correspond to periodic orbits, for example 

0.010101 corresponds to a period 2 orbit and 0.001001001 corresponds to a 

period 3 orbit. It follows immediately from this that there are infinitely many 

periodic orbits in the system. There are more ways of constructing period-3 

symbol sequences than period-2 symbol sequences, and in general, it can be 

easily verified that the number of periodic orbits increases exponentially 

with the period  .  
We can present the above using tent map as an example. In the beginning 

we will use Markov partition when P=2:     {0,1/2} where the subscript of P means the period of periodic orbits used 

in the Markov partition. 
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The diagonal line in the above graph is the identity line         and its 

intersection with the tent gives the fixed point 2/3 and 0. Every    in [0,1] is 

of the form       , p, n integer. There is infinite number of periodic points 

of the form       where   and   are integers and   is odd like the period 

two points 2/5 and 4/5. Any fraction in lowest terms whose denominator 

contains an odd number as a factor is a preimage of a point in a periodic 

orbit  .  
The set of all periodic points that participate in orbits of period n can be 

computed exactly. For   , the    iterate of    is in bin 0 if it lies in [0,1/2] 

and that is in bin 1 if it lies in (1/2,1].  

We want to construct all orbits of period 2. There are 4 possible strings that 

repeat after two cycles: .0000000; .1111111; .01010101; .10101010. If   is 

the initial value and it is in bin 0, its value is to be multiplied by 2. If   is in 

bin 1 its value is to be subtracted from1 and then multiplied by 2. Thus the 

period two point with orbit represented by .0101010 has initial value     (     )     . The period 2 orbit represented by .10101010 starts 

on    (     )     . If we compute the points corresponding to .00000 

and .111111 we get 0 and 2/3 respectively, the period one point. Points of 

higher period are computed in the same way  .  
Thus a fixed point 2/3 is mapped to 2/3: 

2/3 2-2*2/3=2/3 2/3 

Period 2 orbit: 

2/5 2*2/5=4/5 2-2*4/5=2/5- 4/5 

All fixed points and periodic orbits are unstable.  

The number of fixed points that are not fixed points is     . If p is prime 

number, then all of those      fixed points must lie on periodic orbits of 

period p. If p is not prime and has integer factors p1, p1…then some of 
those points will be on orbits of the lower periods p1,p1…. Hence, if p is 

prime the number of periodic orbits of period p is         )    This number 

gets large rapidly: for example    1,                   For p not prime 

the number    of periodic orbits satisfies          and is more difficult to 

obtain  . Nevertheless, for large  , we always have that         with a 

correction which is small compared to      . 
Let’s get back to the picture of figure 1 and figure 2. Figure 1  (x) has two 

fixed points 0 and 2/3. This tells us that we have two period one orbit. The 
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second iterate    )(x) has fours fixed points. Two of these are the period one 

orbits. These have minimal period one. They can masquerade as period two 

orbits. Therefore only two of the four fixed points belong to an orbit of 

minimal period 2. Since there are two such points, and both must be on the 

same period two orbit, there is only one period two orbit   . 
Now let’s do the same for the Tent Map but this time for P=4. Constructing 

the topological transition matrix we got the following picture: 

 

 

 

The transition matrix A the above partition is as follows: 

                                                             )=

                                ) 

Admissible symbol sequences for this type of partition is: 

Since                              are equal to 0 then all symbol sequences 

which contain a pair “02”,”03”,”10”,”11”,”20”,”21”,”32”,”33” are not 
admissible.  

The remaining symbol sequences which are admissible are for example: 

0.00000000 

0.13131313 

0.22222222 
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Now, let’s try to compute the value for x according to the given symbol 

sequences: 

Symbol sequence with period 4: 0.001000100010 corresponds to: 

X=0 x 1/2 + 0 x 1/4  + 1 x 1/8 + 0 x 1/16 + 0 x 1/32 + 0 x 1/64 + 1 x 

1/128 + 0 x 1/156+…= 1/8 + 1/128+…=1/8 x (1/ (1-1/16))=1/8 x 16/15= 

2/15 

 

By symbol shift: 

 0.00100010   0.01000100 0.10001000 0.00010001 0.001000100    

2/15   4/15 8/15 1/15 2/15   

 

. 

 

In general,    denotes the number of periodic points: 

 

Where    denotes the eigenvalues of Markov transition matrix and      the 

largest eigenvalue. In particular the number of periodic points grows 

exponentially with the period  : 

 

The growth rate ln(    ), called the topological entropy      characterises the 

topological complexity of the system  .  
 



110313892 

 

2.3 Topological entropy 

 

Topological entropy is a positive number assigned to each topological 

dynamical system, that roughly tells how much chaotic a system is. Let us 

try to give first an intuitive idea of what it measures. Topological entropy 

gives the exponential rate of growth of the number of orbits distinguishable 

with finite but arbitrary precision. There are various equivalent ways of 

defining topological entropy and sometimes one is more convenient than the 

others to compute it  .  
 We will demonstrate that the values of topological entropy does not change 

even if we have various types of partition: P=2, P=4, P=3.  

For the beginning we will count the value of topological entropy for P=2: 

For Tent map we are looking for the eigenvalues of the transition matrix A: 

(1- )(1- )-1=0 

1-2 +  -1=0 

-2 +  =0           =2        

Thus the topological entropy for Ten map with partition [0, 1/2] and [1/2, 1] 

is      ln|    |  ln2 

What happens if we have partition when P=4? 

 

 Topological entropy for P=4: 

 

 =

                                )=

                                                ) 

 



110313892 

 

Thus the topological entropy for Ten map with partition 

[0,1/4],[1/4,1/2],[1/2,3/4],[3/4,1] is      ln|    |  ln2. 

 

2.4 P^ as a not  -refinement of P 

We can partition interval I  and have  P^ which is not  -refinement of P. If P^ 
is not  -refinement of P then shift space constructed from P^ is not 
necessarily conjugate to P. What does it mean? This means that, depending 

on how we symbolize the dynamical system, the structure of the resultant 

shift space such as number of periodic orbits can be different  . So let’s see 
what happens if tent map has Markov partition when P=3: 

 

                  [1/2, 2/3]               
This is still Markov partition.  

2/3 is the endpoint of the interval.  

Topological transition matrix for the given map is: 
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A=(                ) 

It is straightforward to check that P^ is not f-refinement of P since  (P^) P. 

How does the directed graph look like for the given partition? 

In this case  ={          as there are 3 intervals.                where: 

1=      2=    3=    
And 

             )         )         ) ,              ) ,              )         )  

 

The structure of the outsplitting graph      for this partition is not 

topologically equivalent    since each incidence matrix has different zero 

eigenvalues. 
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What about topological entropy?  

Eigenvalues for the transition matrix are equal to 0, -1 and 2 so taking 

maximum eigenvalue the topological entropy is of course      ln|    |  ln2 

for the given Markov partition.  

Given information allow us to conclude the following: 

Although the number of periodic symbol sequences depends on the way of 

Markov partitioning, all the Markov partitions have the same topological 

entropy as that of the original map f  . 
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3. Conclusion  

 

 First chapter of this work presents definition of Markov partition and other 

definitions like Markov map, partition which are useful to understand how 

the interval I can be divided to have Markov partition . I have shown how to 

construct topological transition matrix A taking information from Markov 

partition.  Giving the definition of admissible symbol sequences I have 

demonstrated how to build outsplitting graph for the tent map as an 

example.  

 Second chapter starts with definition of partition P^ as  -refinement of P 

and using that fact gives us a proof that  partition of already existing  

interval I into “smaller” parts is also Markov partition. Having partition with 

P=4 it has been shown how the outsplitting graph looks like in this case. 

Another part of this chapter includes the definition of fixed point, periodic 

and chaotic orbit, symbol sequences and information about number of fixed 

points, orbits, non-periodic points and gives a proof that tent map has 

chaotic orbits. We can familiarise ourselves with the definition of   Lyapunov 

exponent and we can find out what the topological entropy is and that the 

value of it does not change when we have different partitions for the same 

map: tent map. Last part presents example of partition P^ which is not         -refinement of P. Definitions are covered with a proper examples.  

 

I’ve enjoyed working on this project. I wish to express my gratitude to my 
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