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Abstract

Electricity spot market prices are influenced by a variety of fac-

tors determining its equilibrium price. Some of these variables include

market design, transmission congestion, fuel prices, bidding strategies,

historical electricity prices, weather conditions and season, and equi-

librium of supply and demand. The Nord Pool electricity spot prices

from 1999 to 2007 are recorded hourly and show much volatility over

time. Various features of time series analysis were discussed and imple-

mented in this study in order to determine if a time series model is able

to approximate the Nord Pool electrcity prices based on historical elec-

tricity prices. Regression, autoregressive (AR) models, autoregressive

moving average (ARMA) models, autoregressive integrated moving

average (ARIMA) models, autoregressive conditional heteroscedastic-

ity (ARCH) models, and random walks are considered in this study

for analysis of the hourly historical prices. Analysis showed that time

series analysis of price is unable to satisfy the assumption of station-

arity; and that more variables are needed in combination with a more

dynamic process, such as a stochastic model, in order to adequately

model the time series.
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1 Introduction

The ability to successfully model a time series is one of great value as it

can capture the behaviour of historical data for better prediction of the fu-

ture. Furthermore, electricity spot prices, which easily form time series, are

volatile because of their uncertainty and inelastic demand (Deng & Oren,

2006, p.940). Development of a time series model to approximate the be-

haviour of this data, however, is difficult due to the complexity of electricity

spot market prices. Day-ahead forecasts of electricity prices can easily sur-

pass the simplicity of a statistical model (Weron, 2014), so any reasonable

model must match the complexity of the data. Many methods exist to form

such a model, and those surveyed in this study include (1) regression, (2)

autoregressive (AR) time series models, (3) autoregressive moving average

(ARMA) models, (4) autoregressive integrated moving average (ARIMA)

models, (5) autoregressive conditional heteroscedasticity (ARCH) models,

and (6) random walks.

In this study a time series is taken from the Nord Pool spot mar-

ket price of electricity in EUR/MWh for the dates spanning 1 January 1999

through 26 January 2007. The data is taken hourly without any omissions,

resulting in 70,752 data points that compose a discrete and regularly spaced

time series. As this data relates to spot market prices, it qualifies as a fi-

nancial time series, though it relates to the prices of energy. This dataset

has been analysed before by Erzgräber et al. (2008) through the Hurst ex-

ponent and long range correlations; short-term forecasts of the Nord Pool

market were sought by Kristiansen (2014) using regression, myopic, and fu-

tures models; and the relationship between spot and future prices in the

Nord Pool market was investigated by Botterud et al. (2009). This study
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builds on the literature by applying additional mathematical concepts to the

dataset in order to best determine whether a time series model can be useful

in predicting future trends in the electricity spot market.

This study is organised as follows. Section 2 introduces the dataset

alongside the basic features and literature pertaining to time series. Section

3 applies the time series models to the data and tests it for the assump-

tions of time series, with an evaluation of the performance of the best model

to determine whether a time series model can successfully approximate the

Nord Pool electricity spot market data. Section 4 concludes the paper with

remarks on possible alternative strategies for modelling the data using sta-

tistical methods.
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2 Dataset and time series modelling

The dataset as taken from the Nord Pool electricity spot market is affected

by an equilibrium of supply and demand forces just as with any other mar-

ket price. The Nord Pool operates as an exchange in which institutional

participants trade power contracts for delivery to be made the following day.

This makes it a ‘day-ahead’ market based on one-hour auctions for power

contracts to be bought or sold spanning the 24 hours of the next day. At

the conclusion of each auction, all orders are aggregated based on supply

and demand to determine the equilibrium spot price (Erzgräber et al., 2008;

Kristiansen, 2014).

Time series take many concepts utilised in technical analysis, such

as a moving average, mean reversion, and seasonality; a combination of times

series analysis and technical analysis have been shown to be superior to

isolated analysis (Fang & Xu, 2003), but even this combination may fall

short of the many factors affecting electricity prices. Some of these factors

include the design of the market, transmission congestion, fuel prices, bidding

strategies, historical electricity prices, weather conditions and season, and

equilibrium of supply and demand as described above (Hu et al., 2009). The

large number of factors affecting this series therefore leads to the hypothesis

that a time series model is insufficient in capturing the complexity of the

price movements.

The 70,752 data points comprising the range of dates under anal-

ysis is depicted below in Figure 1. Before discussing the results from the

application of time series analysis on the data, definitions and assumptions

of time series must be introduced.
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Figure 1: Nord Pool electricity spot market prices, 1999-2007

A time series, which is a ‘collection of observations taken sequen-

tially in time’, can be used for many applications including finance, eco-

nomics, energy, and many others (Chan & Hang, 2002).

Definition 2.1. A time series is a sequence of random variables {Xt}t=1,2, . . .

Time series can also be discrete or continuous, and either regularly

or irregularly spaced (Chan & Hang, 2002). The ability to successfully com-

prehend a time-dependent series of data can lead to many insights on future

behaviour. In reality, however, several important parameters and assump-

tions must be considered in order to successfully create a predictive model

from a time series. One of the most important assumptions is stationar-

ity, which must be tested for a valid model to be created (Nowotarski &

Weron, 2018). Before defining stationarity, autocovariance is needed, which

is denoted by the Greek letter γ and is calculated as:

γ(Xt+τ ,Xt) = cov(Xt+τ , Xt), (1)

for all indexes t and lags τ .
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From autocovariance, stationarity can be determined.

Definition 2.2. A time series Xt is weakly stationary if

1. E(Xt) = µXt = µ < ∞, that is, the expectation of Xt is finite and does

not depend on t, and

2. γ(Xt+τ , Xt) = γτ , that is, for each τ the autocovariance of random vari-

ables (Xt+τ , Xt) does not depend on t (it is constant for a given lag τ).

Therefore, stationarity requires that there is no trend in the data

over time and that the data is not correlated with itself (Horváth, 2013).

Computing the logarithmic returns of the data over the time horizon typically

results in a stationary time series, so this is the first step. This step is taken

by transforming the data into a return function with the following formula:

r∆(t) = ln
x(t)

x(t−∆)
. (2)

These returns are useful in calculating the autocorrelation function

(ACF) as described below. The logarithmic returns are first analysed for sea-

sonality, which is the appearance of a cyclical pattern in a time series (Alonso

& Garćıa-Martos, 2012). The returns are also tested for serial correlation,

which is when error terms in a time series are correlated with each other

over time. Significant serial correlation leads to the use of more complex

models, beginning with an autoregressive (AR) model. If the original series

is not stationary, it must be transformed appropriately before applying AR

processes.

Autocovariance was introduced in developing the second constraint

for achieving stationarity. This function is also useful in its part in the for-
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mula for autocorrelation, which determines whether ‘knowledge of the past’

has any value in predicting future observations. From the autocovariance

function, the autocorrelation function (ACF) can be found as

ρX(τ) =
γX(τ)

γX(0)
= corr(Xt+τ , Xt) for all t,τ. (3)

The ACF leads into the autoregressive (AR) processes, through

which a present value in the series can be explained by a function of past

values. An AR(p) process uses p past values.

Definition 2.3. An autoregressive process of order p is written as

Xt = Φ1Xt−1 + Φ2Xt−2 + . . .+ ΦpXt−p + Zt, (4)

where Zt is white noise, i.e., Zt ∼ WN(0, σ2) and Zt is uncorrelated with Xs

for each s < t.

An AR(1) process is thus an autoregressive process of order 1 given

by

Xt = ΦXt−1 + Zt, (5)

where Zt ∼ WN(0, σ2) and Φ is a constant. White noise is repre-

sented by uncorrelated, erratic behaviour, which is thus unpredictable if it

represents a random variable (Zhang, 2016).

When an AR model is insufficient in modelling the series, a moving

average (MA) model may be required. A moving average is a smoothing
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process by which data can take the average of a prespecified number of se-

quential values of a time series; this average therefore lags by as many values

as are taken to form the first average. The MA can also be centred, and

this centred moving average (CMA) takes terms both before and after the

observation to find an average centred at the observation (Hyndman, 2010).

The use of either an AR model or an MA model may yet be in-

sufficient, so their combination is the next step. An autoregressive moving

average (ARMA) model takes properties of both AR and MA models by

using parameters of p lags for AR and q periods for MA. An ARMA(p, q)

model is denoted by

xt = b0 + b1xt−1 + . . .+ bpxt−p + εt + θ1εt−1 + . . .+ θqεt−q (6)

E(εt) = 0, E(ε2
t ) = σ2, Cov(εt, εs) = E(εtεs) = 0 for t 6= s

where b1, b2, . . . bp are the AR parameters and the θ1, θ2, . . . θq are

the MA parameters.

The complexity of ARMA models is further limited by the instabil-

ity in the parameters, with small changes able to result in drastically different

final parameter estimates. Additionally, there is no standard procedure for

the choice of parameters.

Autoregressive integrated moving average (ARIMA) models use both

parameters in the ARMA model and add an integration term (I) accounting

for non-stationarity of the series (Palma, 2016). In an ARIMA(p,d,q) model,

d is a nonnegative integer indicating degree of integration in the time series;

it is commonly 1, as a series is stationary if d = 0 (Diebold, 2007; Ling et
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al., 2015).

If a series can be successfully transformed to satisfy the assump-

tions of stationarity, the residuals must be tested for autoregressive condi-

tional heteroscedasticity (ARCH). Heteroscedasticity is the dependence of

the variance of the error term on time. The squared residuals are regressed

on a lagged value of the squared residual; a test for ARCH(1) uses a lag of

1 value. The residuals do not show ARCH if the coefficient on the squared

lagged residual does not significantly differ from zero (Kokoszka et al., 2017).

Evidence of ARCH results in incorrectly specified standard errors and the

ability to predict variance of the errors over time (Fryzlewicz, 2007).

If a series cannot be transformed to satisfy the assumptions of sta-

tionarity, it may be a random walk. An ARIMA(p,1,q) process behaves

similar to random walks (Diebold, 2007; Zhou et al., 2006).

Definition 2.4. A random walk is a series for which a value is determined

by the value in the previous period plus an unpredictable random error. A

random walk is described by the following:

xt = xt−1 + εt, E(εt) = 0, E(ε2
t ) = σ2, (7)

Cov(εt, εs) = E(εtεs) = 0 if t 6= s

A random walk therefore has an error term with constant variance

that is uncorrelated with previous error terms. Previously discussed regres-

sion methods cannot be used to estimate an AR(1) model when the time

series is a random walk.

The use of a random walk in a non-stationary series is allowable

since one of the assumptions of stationarity is a constant and finite value,
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and all stationary time series have a finite mean-reverting level. A mean-

reverting level is the level that a series tends to approach, whether it is

above or below this level and is calculated as

xt =
b0

1− b1

(8)

A random walk has no mean-reverting level. This is derived from

the idea that if xt is at its mean-reverting level, xt = b0/(1 − b1) as shown

in (8). In a random walk, b0 = 0 and b1 = 1, so b0/(1 − b1) = 0/0 which is

undefined. A random walk has a variance of

xt = (t− 1)σ2

for any period t, which approaches infinity as t increases. This proves that

a random walk cannot be a stationary time series, as stationarity requires

finite variance.

A random walk can be made stationary by differencing the series.

First-differencing simply takes the difference between the value of an ob-

servation and the previous observation, and is suggested in the time series

literature when significant serial correlation is found in the linear trend model

before implementing a more complex AR model. The first-difference results

in

yt = xt − xt−1 = εt, E(εt) = 0, E(ε2
t ) = σ2, (9)

Cov(εt, εs) = E(εtεs) = 0 for t 6= s

The expected error thus becomes zero and the best forecast in period
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t−1 based on the first-difference is zero. The first-differenced random walk is

stationary as it is now an AR(1) model with b0 = 0 and b1 = 0, which results

in a mean-reverting level of b0/(1− b1) = 0/1 = 0. Additionally, the variance

of this series is the variance of the error term and is Var(εt) = σ2. This

proves that both the mean and variance are both constant and finite in all

periods, the first-differenced random walk is stationary and can be modelled

with linear regression. Using an AR(1) model of the first-differenced random

walk does not aid in forecasting future values but only leads to the conclusion

that the original series is a random walk. Random walks can be extended

to include a drift parameter; this models trend as it grows each period, on

average, by the drift δ. This is a model of stochastic trend and is applicable

here as stocks often follow stochastic movements (Diebold, 2007).
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3 Time series analysis and evaluation of model

Analysis of the time series begins with a return to the plot shown in Figure

1. As is plainly visible, there are several spikes in the prices and a general

upward trend. Simple least-square regression analysis showed that the trend

is significantly different from zero. The Durbin-Watson statistic for this linear

regression is 0.043, indicating strong and positive serial correlation. With

positive serial correlation, estimates of the standard error are smaller than

in reality (Williams, 2015). This Durbin-Watson value supports the claim

that the data is not best modelled by a linear regression. Further regression

analysis found that a linear regression explains more of the variation in the

data than does an exponential regression.

The first attempt at making the series stationary was application of

(2) to produce hourly logarithmic returns. The result of this transformation

is shown below in Figure 2, which depicts these returns.

Figure 2: Hourly logarithmic returns of spot market data
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Tests for stationarity additionally determine whether a series is co-

variance stationary, meaning that the variance does not change significantly

over time (Pagan & Schwert, 1990; Xiao & Lima, 2007). The logarithmic re-

turns in Figure 2 show signs of volatility clustering but without pattern, and

spikes in the returns data show that variance does not depend on time. The

Durbin-Watson statistic is invalid for models with lagged variables, and in

logarithmic returns this lag is evident (Nerlove & Wallis, 1966). Instead the

Ljung-Box (LB) test is employed to determine if serial correlation is present

in the residuals (Lee & Park, 2016). Applied to the logarithmic returns,

the LB test indicates that there is not enough evidence to reject the null

hypothesis that the return residuals are not autocorrelated; in other words,

the logarithmic returns are not serially correlated. This is reinforced by a

space-time separation plot provided by Erzgräber et al. (2008), which only

indicates weak 24-hour periodicity. The unit root test (Dickey & Fuller, 1979;

Pagan & Schwert, 1990) and the KPSS test (Kwiatkowski et al., 1992; Xiao

& Lima, 2007) are commonly used tests for stationarity in financial data, but

are not used here as the LB test provides adequate results. Additionally, it

must be noted that seasonality, which appeared possible in the original data

in Figure 1, is no longer apparent in the returns data in Figure 2. An expla-

nation for this could be the variation in months of the year during which the

prices reached their annual peak. The data therefore does not require to be

de-seasonalised.

Examination of the autocorrelation functions is next. It is worth-

while to first look at the ACF of the original data, as depicted in Figure 3

below. The first 168 lags are shown to visualise the lags for a full week. The

first autocorrelation is at 0.9876 and does not decline rapidly, as is required

in a stationary series; additionally, this function shows the high levels of au-
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tocorrelation of the data, never breaching 0.88. These ACF values are far

greater than the acceptable range of autocorrelations.

Figure 3: Autocorrelation function of price data

Acceptable ranges for ACFs are found by using a t-test on the stan-

dard error of the residual correlation of 1/
√

(n), where n is the number of ob-

servations (Brockwell & Davis, 2016; Diebold, 2007). The autocorrelation is

divided by the standard error, which is computed as 1/
√

(70, 752) = 0.00377

for this dataset. Using 5% significance limits, the t value must be less than

0.00739, which is a strict requirement to satisfy the assumptions for no serial

correlation. Due to the large number of observations, this bound is rela-

tively small and difficult to achieve, but the severity of autocorrelations in

the original series is far from this requirement.

The ACF for the logarithmic returns shows that the series retains

autocorrelations higher than are within the acceptable range as shown in

Figures 4 and 5 below. Figure 4 depicts the ACF and Figure 5 depicts the

partial autocorrelation function (PACF); this latter function controls for the
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values of the series at all shorter lags by removing linear dependence between

intermediate variables (McLeod & Zhang, 2006).

Figure 4: ACF of logarithmic returns

The ACF illustrates the higher significance of each 24-hour cycle

affecting future observations, such that the highest autocorrelations appear

around 24 hours, 48 hours, and so on with gradual decline. This decline is

common for autocorrelation functions, but time series models that do not

suffer from serial correlation do not show this severity in breaches of the

acceptable range. Moving average models find that the corresponding ACF

drops to zero after q values, with q representing the number of observations

used in calculating the moving average. The ACF in Figure 4 shows that a

moving average model does not capture the series, as its autocorrelation never

remains at zero, and few values within the acceptable range are obtained.

The PACF provides insight on the most influential lagged values

within the past 24 hours. The extreme difficulty in reducing the autocorre-

lations to the acceptable range will prove the complexity of the development
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Figure 5: PACF of logarithmic returns

of a suitable time series model.

It is clear from the high autocorrelations in Figure 4, as shown in

the first lag, that an AR(1) of the logarithmic returns of the data will be

insufficient in modelling the series. Additionally, it can be deduced before

testing further models that a large number of lags in the autocorrelation

functions require integration with the AR process before it can possibly find

all autocorrelations with the acceptable range. Although it may be intuitive

to test various AR processes utilising combinations of lag 1, 24, 48, 72, 96,

120, and 144, none of these combinations satisfy the range given for the

autocorrelation functions, and serial correlation remains evident in all cases,

even at higher lags. An AR process alone is therefore insufficient to model

the data, so the model is incorrectly specified.

As a 24-hour periodicity is expected in hourly data, the time series

feature of a moving average (MA) is approached next. Using the logarithmic
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returns, several combinations of moving averages were taken on the data and

the results showed no improvement to the model. Both the 24-period MA

and 24-period CMA were expected to aid in significantly reducing the peaks

in the data, but this could not be accomplished even with larger moving

averages extending to a 1-week (168-period) MA. This is due to the times

that witnessed consistently elevated prices that eventually returned to normal

values, as can be seen in Figure 1 around January 2003. Furthermore, MA

is more commonly seen when the ACF depicts a negative autocorrelation for

the first lag, but this is not the case here (Nau, 2017). It is most likely that

a moving average is not helpful in the creation of any time series model for

this data.

Combination of an AR model and an MA model is therefore the

next step, but this assumes that the series is stationary as this is the same

as an ARIMA model in which d = 0. Therefore, tests move forward to the

ARIMA model with parameters estimated for p and q, with d fixed at 1 for

all tests.

The ACF of the log returns shows that the strongest initial au-

tocorrelations appear in the first six lags before approaching zero in a si-

nusoidal manner; this suggests an AR(6) process. The periodicity of the

strongest autocorrelations is 24; this suggests an MA(24) process. Using an

ARIMA model with parameters (p, d, q) = (6, 1, 24) does not result in the

autocorrelations remaining within the specified bounds of the target range.

Inclusion of a seasonal component in an ARIMA model using the notation

ARIMA(6, 1, 24)(1, 0, 0)[24] integrates the 24th lag, but this model is insuffi-

cient as well. A majority of the autocorrelations of this model remain outside

the acceptable range. ARIMA that omitted MA found improvements in the
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results, as might be expected based on the conclusions after isolated MA

tests were performed. Issues remained in an ARIMA model using only AR

and I, however.

The process of increasing p in the AR component only increased

the autocorrelation of lag p + 1 and gradually increased autocorrelations of

all lags less than p. This applied to lags greater than 6 as well, and is

caused by the high autocorrelations in the original time series that do not

decline significantly with increasing lags, reflected as a high dependency on

recent values that cannot be made independent through AR processes. The

possibility of a random walk to model the series is therefore considered.

It is useful to first examine the ACF of a simulated random walk;

this is shown in Figure 6 below. Here, the autocorrelations begin near 1 and

gradually decline, though at a faster rate than the ACF of the original spot

market data. This supports the time series as a random walk.
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Figure 6: Sample ACF of a random walk (QuantStart, 2018)

The ACF of the first-differenced series in Figure 7 below shows that

the autocorrelations do not fall within the given bounds after any number of

lags. This is less supportive of the random walk model. The autocorrelations

appear to follow a sinusoidal curve as with the autocorrelations of the log

returns, indicating a definite pattern as opposed to the appearance of white

noise as is representative of the first-difference of a series that is a random

walk.

As the ACF is often analysed extending to a larger proportion of

the number of observations than in Figure 7, an ACF with 1000 lags shows

another pattern. In Figure 8, this ACF is depicted with 1000 lags. This

figure shows the clear autocorrelations recurring every 24 periods, but that

besides large absolute autocorrelations in the first several lags there is little
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Figure 7: ACF of the first-difference of spot market data, 24 lags

pattern to be found. Nevertheless, the autocorrelations persist well above

the bounds, which describes the high volatility of the time series.
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Figure 8: ACF of the first-difference of spot market data, 1000 lags

As the series cannot be said with confidence to follow a random

walk, the best model is most likely one that utilises autoregressive processes

in combination with a first-difference; the improvement made by a moving

average is uncertain.

The model that minimised the autocorrelations appeared to be an

ARIMA model utilising a first-difference, five lags in the AR component,

and three 24-period seasonal lags in the AR component. This appears as

the ACF in Figure 9 below. As discussed above, the addition of lags beyond

five caused the subsequent lag to significantly increase and for previous lags

to slightly increase. An ARIMA model with 23 AR lags finds no uniquely

severe lags, but that all that remain outside the significance limits for the

ACF and therefore does not improve upon this model.
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Figure 9: ACF of the best model using ARIMA

This model suggests the following formula:

xt = 0.9284xt−1 − 0.1536xt−2 − 0.1491xt−3 (10)

−0.1308xt−4 − 0.1087xt−5 + 0.2586xt−24

+0.0787xt−48 + 0.1828xt−72 + εt−1

The model therefore incorporates the first-difference in the highly

correlated first lag (calculated by taking 1 − 0.0716 as is the coefficient

seen in Table 1 in the Appendix); the following four lags are all negative

and smaller in magnitude, and the seasonal components are all positive and
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slightly greater in magnitude than the second through fifth lags.

Although this is the best model found using time series analysis

and specifically ARIMA modelling, it does not capture the complexity of the

time series and is therefore insufficient for practical use. The ACF in Figure

9 shows the consistently high autocorrelations even when one of the more

complex time series models is applied, so it does not satisfy the constraints

of stationarity.
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4 Conclusion

The Nord Pool electricity spot market data from 1999 to 2007 shows high

degrees of autocorrelation and therefore pose significant problems in mod-

elling the series through time series analysis. The logarithmic returns of the

series were not serially correlated, but retained high levels of autocorrelation

in nearly all lags. Through further analysis by autoregressive (AR) processes,

moving average (MA) models, and autoregressive integrated moving average

(ARIMA) models, the autocorrelations were unable to be pushed to within

the bounds necessary for the model to become stationary. Since stationar-

ity was not achieved through this time series analysis, it was not tested for

autoregressive conditional heteroscedasticity (ARCH). First-differencing the

original series determined that the data do not sufficiently follow a random

walk, as per the consistently elevated autocorrelations.

The ARIMA models were therefore relied on for the most accurate

model for the series. This optimal model used a first-difference, five AR

lags, and three 24-period seasonal AR lags, but did not manage to fulfill

the assumptions of stationarity. It therefore cannot be used for practical

purposes.

More advanced models are therefore required to suitably fit the

data. As a random walk was considered in this investigation, a dynamic

model such as a stochastic process may better model the series. More suc-

cess has been achieved by research that utilised additional variables, how-

ever, such as Kristiansen (2014) who incorporated independent variables of

inflow levels and reservoir levels in combination with a regression model that

achieved roughly 7.5% mean absolute percentage error. Use of the Hurst
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exponent by Erzgräber et al. (2008) found the ability to capture up to 20%

of the numerical variation, though they acknowledged that a single exponent

will not explain the complexity of a real-world process. Ergemen et al. (2015)

looked at the variable of supply elasticity and its co-integration with time

for aid in future research. Based on the insufficiency in time series features

applied here, it is clear that more variables must be considered besides spot

market price in combination with a stochastic or other more complex model.
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Appendix

Table 1. Minitab output for final ARIMA model
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