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ABSTRACT 

 
The project aims to analyse the work of Edward Lorenz. The way dynamical systems 

with complex behaviour, such as the weather behave after a long period of time. The 

project will mention the Lorenz equations and what they represent. What happens to 

the system if we vary one parameter having the other parameters fixed will also be 

discussed here. In addition it will be discussed about what happens to the dynamical 

system if we slightly change the initial conditions. Finally it will talk about what is 

meant by sensitive dependence on initial conditions and the butterfly effect and how 

these to concepts are related to chaos theory. 
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CHAPTER 1 

INTRODUCTION 

 
Could anyone think that a tiny error in an input number of a computer program can 

have huge consequences in the long run behaviour of a complex dynamical system? 

 

Edward Lorenz was a meteorologist and he devoted his work to try to give reasons 

why it is difficult to give accurate weather forecasting for more than two or three 

weeks. 

 

Lorenz studied Mathematics at Dartmouth Collage and then had a Masters degree in 

Harvard University also in Mathematics. He, as well received a SM and a ScD in 

Meteorology from MIT. Furthermore, he served for the US Army Air Corps in World 

War II as a weather forecaster and it is then when he chose to do a graduate job in 

Meteorology. Soon after he took his doctorate in Meteorology. Lorenz was also 

awarded with many prized such as the Crafoord prize and the Kyoto prize. (MIT, 

2008, April 16). 

 

The atmosphere can be modelled by mathematical equations. A small incident during 

a survey to model the atmosphere led Lorenz to discover chaos. After this event, 

Lorenz was searching for complex mathematical systems. Such system is the Lorenz 

attractor or Lorenz equations which will be studied in the project. At the beginning 

the Lorenz equations were derived to model the atmosphere mathematically. 

 

Firstly, the project will concentrate on deriving the Lorenz equations. What Lorenz 

considered before the derivation, what mathematical and physical notations were used 

is something it will also be mentioned in this chapter. It will be explained what the 

variables and what the parameters of these equations represent. 

 

The next two chapters will look at the different parameter range of these equations. 

Basically we will adjust one parameter having the other parameters fixed and observe 

the different behaviours the system takes. If it has stable or unstable points, if it has 

periodic orbits and even if the system has chaotic behaviour. It will also be discussed 
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why the invariant set of the Lorenz equations is also called Lorenz attractor and about 

the nontrivial fixed points of the attractor. 

 

After that, the project will talk about the butterfly effect, a term first conceived by 

Lorenz himself in a paper he wrote in 1972. This chapter will also mention sensitive 

dependence on initial conditions and how this is related to chaos theory. This will be 

also explained by the means of some plots. 

 

Finally, chapter 6 presents the conclusions of the project. Who else is involved with 

chaos theory and where the Lorenz equations are used. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6



CHAPTER 2 

 DERIVATION OF THE LORENZ EQUATIONS 
 

Before deriving Lorenz equations, let us first say a few things about what Lorenz did, 

some mathematical details he considered and about the small experiment he prepared 

that led him to find the equations the project will talk about. 

 

2.1 The Benard Rayleigh experiment 
 

Lorenz (1963) considered a two-dimensional fluid element, such as water, placed 

between two plates. The plates are separated by a distance H . The lower plate is then 

heated uniformly and the upper plate was cooled. The difference of the temperature 

between the two plates is and this difference is a fixed parameter. TheΔΤ x  and y  

coordinates are parallel to the two plates and the  coordinate is perpendicular to the 

plates. The equations of motion are given by the Navier Stokes equations for an 

incompressible fluid ( , and the equation of the temperature is given by the 

heat transfer equation. It is assumed that motion variations are in one direction and are 

parallel to the two plates. This means that the temperature and the velocity of the fluid 

depend only on 

z

)0=u⋅∇

x  and  and independent of the direction. So there are no 

variations in the direction. 

z y

y

 

 In his paper, Lorenz (1963), considered systems of deterministic equations used in 

hydrodynamics. By saying deterministic equation we mean an equation that has the 

power over a dynamical system without arbitrary forces. He was mostly interested in 

periodic solutions and we will discuss this later on in the project. To derive his 

equations, he coped with a phase space Γ  in which there was only one trajectory that 

passed through every point and where time was continuous. In addition the trajectory 

was bounded with a uniform way. This means that there is a bounded area, say R in 

which all trajectories eventually stayed in this area. Lorenz organised the trajectories 

in three ways. The first way was according to the existence of transient properties. 

Regarding the stability of the trajectories was the second way and the third way was 

according to the periodicity of the trajectories. 
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Lorenz (1963) used Saltzman’s (1962) equations of free convection to derive his 

system of three ordinary differential equations. When we say convection we mean the 

heat flow of a fluid from a hot area to a cold area. Saltzman (1962) rewrote the 

equations of motion in terms of θ  and ψ .He derived his equations using double 

Fourier transforms in x  and , but we will not discuss this here.  z

 

Saltzman’s two equations are: 

 

( )
( )

( )
( ) ,

,
,

,
,

,

2

4
2

2

θκψθψθ

θαψνψψψ

∇+
∂
∂

Η
ΔΤ

+
∂
∂

=
∂
∂

∂
∂

+∇+
∂

∇∂
−=∇

∂
∂

xzxt

x
g

zxt
 

                                             (1)                             

 

                                                               (2) 

 

 

where ψ  is a stream function for a two-dimensional motion, θ  is the leaving 

temperature in the state of no convection, g is a constant representing the acceleration 

of gravity, α  is the coefficient of thermal expansion, ν  is the kinematic viscosity, κ  

is the thermal conductivity and ( )
( )

( ) ( )
zxzx ∂

∂∂
−

∂
∇∂

∂
∂

∂
∇∂ ψψψψψ 2

,
,

x∂
∇ 2

z
ψ2

= . 

 

These equations are introduced, taking into account that motion is parallel to the 

zx − plane and there is no motion in the y direction.  

 

At both the boundaries, the vertical velocity is equal to zero. Furthermore at a free 

boundary the tangential stress is also zero and at a rigid boundary the tangential 

velocity is zero. At the boundaries this means that 

 

,0=ψ     ,02 =∇ ψ 0=∂
∂

z
ψ . 

 

For the derivation of the Lorenz equations we will only use 02 =∇= ψψ . Here, we 

note that these boundary conditions apply to 0=z  and Hz = , where H is the height 

of the fluid. 

 8



2.2 Derivation of Lorenz Equations 

 
The nonlinear system of the partial differential equations (1) and (2) with the 

boundary conditions mentioned above is difficult to solve. To make things easier, one 

should choose some approximations to reduce the partial differential equations 

approximately to nonlinear ordinary differentia equations. For this reason Lorenz 

(1963) introduced solutions of the following form, as these expressions satisfy the 

boundary conditions. 

 

( ) ( ) ( )

( ) ( ) ( .2sinsincos2

,sinsin21

11111

11112

zHZzHxaHYRR

zHxaHaa

ac
−−−−−

−−−−

−=ΔΤ

Χ=+

πππθπ

ππψκ

)

)

                            (3), (4)         

 

Here, are only functions of time t ,  is the Rayleigh number, after the one 

who invented it. This is equal to and  is the 

critical value of the Rayleigh number. 

ZYX ,, aR

3ΔΤH 11 −−= κνgRa α ( 3214 1 aaRc += −π

  

Lorenz (1963) substituted equations (3) and (4) into equations (1) and (2) and with 

some calculations he ended up with the following set of ordinary differential 

equations, which are known as the Lorenz equations. 

 

 

 
.

.

.

bZXYZ

YrXXZY

YXX

−=

−+−=

+−=
⋅

σσ

br,,σ  are constants to be determined and the dot represents derivative with respect to 

time. 

It will now be discussed in some detail how the Lorenz equations are obtained from 

Saltzman’s (1962) partial differential equations. 

 

Now we will substitute (3) into (1). First we will compute the LHS of (1). 
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2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇
ψψψψ          

From equation (3) we see that nothing depends on  so 02

2

=
∂
∂

y
ψ y  and hence    

2

2

2

2
2

zx ∂
∂

+
∂
∂

=∇
ψψψ . 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( zHxaHHX
a
a

z

zHxaHaHX
a
a

x

1121
2

2

2

1121
2

2

2

sinsin21

sinsin21

−−−

−−−

+
−=

∂
∂

+
−=

∂
∂

πππκψ

πππκψ

 

)

nd hence, taking common factors  

 

 

 

a

( ) ( ) ( )( ) ( )[ ]212111
2

2 sinsin21 −−−− +
+

−=∇ HaHzHxaHX
a
a ππππκψ  

             

To compute 

 

ψ2∇
∂
∂
t

 we take into account that the only variable that depends on  is   t

X . 

 

( ) ( ) ( )( ) ( )[ ] .212111
2

2 sinsin21 XHaHzHxaH
a
a

t∂
−−−− +

+
−=∇

∂ ππππκψ  

  

or the RHS of (1) we compute the following quantities 

 

  

 

F

( ) ( ) ([ ]zHxaHaHY
R

R
x a

c 111 sinsin2 −−−ΔΤ
−=

∂
∂ πππ

π
θ . )
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( zHxaHHaHX
a
a

xzzx

zHxaHHX
a
a

z

zHxaHaHX
a
a

x

zxzx

112121
2

2

2

2

2

22

4

1141
2

4

4

1141
2

4

4

22

4

4

4

4

4
224

sinsin21

sinsin12

sinsin12

2

−−−−

−−−

−−−

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂∂

∂

+
=

∂
∂

+
=

∂
∂

∂∂
∂

+
∂
∂

+
∂
∂

=∇∇=∇

ππππκψψ

πππκψ

πππκψ

ψψψψψ

)

   

 

 

( ) ( ) ( )( ) ( ) ( ) ( )[ ]2121414111
2

4 2sinsin12 −−−−−− ++
+

=∇ HaHHaHzHxaHX
a
a ππππππκψ .     

 

The final term of the RHS of (3) is ( )
( )zx,
, 2

∂
∇∂ ψψ  which according to Saltzman (1962) 

this, as mentioned above, equals to     

 

 ( )
( )

( ) ( )
=

∂
∂

∂
∇∂

−
∂
∇∂

∂
∂

=
∂

∇∂
zxzxzx
ψψψψψψ 222

,
,  

 

( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( )
( ) ( )( )( ) ( )[ ] ( ) ( ) ( ) ( ).cossinsincos12

cossinsincos12

111121211122
2

22

11112121122
22

zHxaHzHxaHaHHHaHX
a
a

zHxaHzHxaHHHHX
a
a

−−−−−−−−

−−−−−−−

+
+

++
+

=

ππππππππκ

πππππππκ

 

Lorenz (1963), in his paper omitted all other trigonometric terms besides the ones 

occurring in equations (3) and (4). So we ignore the term ( )
( )zx,
, 2

∂
∇∂ ψψ  as it doesn’t 

contain any of the trigonometric terms in the two equations. 

 

So putting all the terms together in ( )
( ) x

g
zxt ∂

∂
+∇+

∂
∇∂

−=∇
∂
∂ θαψνψψψ 4

2
2

,
,  we get 
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( ) ( ) ( )( ) ( )[ ]
( ) ( ) ( )( ) ( )[ ]

( ) ( ) ( )[ ]zHxaHaHY
R

R
g

HaHzHxaHX
a
a

XHaHzHxaH
a
a

a

c 111

2
12111

2

.212111
2

sinsin2

sinsin21

sinsin21

−−−

−−−−

−−−−

ΔΤ

−+
+

=+
+

−

πππ
π

α

ππππκν

ππππκ

 

 

Cancelling the terms that occur in both sides and using the definitions of  and , 

this simplifies to  

aR cR

 

( ) ( ) ( )

( ) ( )
dt
dXYa

H
Xa

H
X

a
H

a
H

Xa
H

=+++−=⇒

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+−

2
2

2
2

2

2.

22
4

42
2

2

2.
2

2

2

11

111

πνπν

πνπνπ

 

 

Lorenz (1962), in his paper used ( ) taH κπτ 222 1+= − . So using the chain rule      

ττ d
dt

dt
dX

d
dX

⋅=  and with ( )κπ 22

2

1
1
a

H
+τd

dt
=  we get 

 

( ) ( ) ( )κπ
πνπν

τ 22

2
2

2

2
2

2

2

1
111
a

HYa
H

Xa
Hd

dX
+

⋅⎥
⎦

⎤
⎢
⎣

⎡
+++−= . 

 

This reduces to   and with YXX 11 −−
⋅

+−= νκνκ σνκ =−1  we obtain the first required 

equation, that is  

 

.YXX σσ +−=
⋅

 

 

In order to obtain the other two equations we consider equation (2). We substitute 

equations (3) and (4) into this equation to get the following relationships. 

 

To calculate t∂
∂θ  on the LHS of (2), we take into consideration that the only 

variables depending on t  are Y and Z . Therefore we have 
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( ) ( ) ( )zHZ
R
R

zHxaHY
R
R

t a

c

a

c 111 2sinsincos2 −
⋅

−−
⋅ ΔΤ

−
ΔΤ

=
∂
∂ π

π
ππ

π
θ . 

 

Now we calculate the RHS of (2). Here we have 

 

( ) ( ) ( ) ( zHxaHaHX
a
a

HxH
111

2

sincos21 −−−+ΔΤ
=

∂
∂ΔΤ πππκψ ) . 

 

 

Next we calculate 2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇
ψψψθ . As before, nothing depends on y  so we 

only need to consider 2

2

2

2
2

zx ∂
∂

+
∂
∂

=∇
ψψθ . After taking common factors, this equals to 

 

( ) ( ) ( ) ( ){ } ( ) ([ ]zHHZHaHzHxaHY
R
R

a

c 1212121112 2sin2sincos2 −−−−−− ++−
ΔΤ

=∇ ππππππ
π

θ )
 

The last term we need to calculate is ( )
( )zx,

,
∂
∂ θψ  which as before this equals to  

 

( )
( ) =

∂∂
∂∂

−
∂∂
∂∂

=
∂
∂

zxzxzx
ψθθψθψ

,
,                                                                                          (5) 

( ) ( )( ) ( ) ( ) ( ) (
( )

)

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )zHxaHzHxaHXYHaH

a
a

R
R

zHzHxaHXZH
a
a

xaHzHzHxaHXY
R
R

HaH
a
a

a

c

a

c

111111
2

1111
2

111111
2

cossinsinsin12

2cossincos221

coscossincos21

−−−−−−

−−−−

−−−−−−

+ΔΤ

+
+

−
ΔΤ+

ππππππκ
π

ππππκ

ππππ
π

ππκ

 

 

Now if we take the trigonometric term from the second line from equation (5) we 

observe that this can be reduced to  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )xaHzHzH

xaHzHxaHzHzH

111

1
11211

2sin2sin
2
12sin

4
1

2
2sin212sin

2
1cossincos

−−−

−
−−−−

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

πππ

πππππ

 

 

 

Noticing that the second term of the above equation does not appear in equations (3) 

and (4) we neglect this term as Lorenz (1963) did in his paper. 

 

The trigonometric term in the third line becomes 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )zHxaHzHzHxaH

zHzHxaHzHzHxaH

111211

1211111

sincoscossincos2

1cos2sincos2cossincos

−−−−−

−−−−−−

−

=−=

πππππ

ππππππ
 

 

As explained before, Lorenz (1963) omitted terms not involving trigonometric terms 

as those appear in (3) and (4). So we omit the first term of the above equation. 

 

Finally, we take the term in the last line of equation (5), we see that this is 

 

 

( ) ( ) ( ) ( ) ( )
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

−
−−−−

2

2cos1
2sin

2
1

cossinsin
1

11112
xaH

zHzHzHxaH
π

ππππ
 

( ) ( ) ( )xaHzHzH 111 2cos2sin
4
12sin

4
1 −−− −= πππ . 

 

As Lorenz (1963) did, we omit the second term of this equation. 

 

Now putting all the terms together, we obtain 

 

( )
( ) θκψθψθ 2

,
,

∇+
∂
∂ΔΤ

+
∂
∂

−=
∂
∂

xHzxt
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( ) ( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )[ ]

( )( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ) ([ ]ZzHHYzHxaHHaH
R
R

XzHxaHaH
a
a

H

XYzHHaH
a
a

R
R

XZzHxaH
R
R

HaH
a
a

XYzH
R
R

HaH
a
a

ZzH
R
R

YzHxaH
R
R

a

c

a

c

a

c

a

c

a

c

a

c

121112121

111
2

111
2

1111
2

111
2

111

2sin2sincos2

sincos21

sin
4
112

sincos
4
1221

2sin
4
121

2sinsincos2

−−−−−−

−−−

−−−

−−−−

−−−

⋅
−

⋅
−−

++
ΔΤ

−
+ΔΤ

+
+ΔΤ

−
ΔΤ+

−
ΔΤ+

−

=

)

ΔΤ
−

ΔΤ
⇒

ππππππ
π

κ

πππκ

πππκ
π

ππ
π

ππκ

π
π

ππκ

π
π

ππ
π

 

 

Comparing the coefficients of the trigonometric term ( ) ( )zHxaH 11 sincos −− ππ   we 

have 

 

( ) ( ) ( ) ( ) ( )

( ) ( )[ ] .2

21221
2
12

2121

1
2

11
2

YHaH
R
R

XaH
a
a

H
XZH

R
R

aH
a
aY

R
R

a

c

a

c

a

c

−−

−−−
⋅

+
ΔΤ

−
+ΔΤ

+
ΔΤ+

=
ΔΤ

ππ
π

κ

πκπ
π

πκ
π

 

 

After some simplifications we get to 

 

( ) ( ) ( ) ( )[ ]YHaHX
R
R

H
aXZ

H
a

dt
dYY

c

a 2121
2

2
2

2

2
2 11 −−

⋅

+−+++−== ππκπκπκ . 

 

As we did before we use ( )22

2

1
1
a

Ht
+

=
κπ

τ and ( )22

2

1
1
a

H
d
dt

+
=
κπτ

 we obtain, using 

the chain rule 

 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅⎥
⎦

⎤
⎢
⎣

⎡
+−+++−

==

22

2
2

2

2

2

2
2

2

2
2

1
1111
a

HYa
H

X
R
R

H
aXZ

H
a

d
dt

dt
dY

d
dY

c

a

κπ
πκπκπκ

ττ
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With r
R
R

c

a =  we finally obtain 

 

YrXXZY −+−=
⋅

. 

 

This is the second equation of the Lorenz equations. 

 

Finally we compare the coefficients of ( )zH 12sin −π . This is 

 

 

( ) ( )( ) ( )( )

( ) ZH
R

R

XYHaH
R
R

XY
R
R

HaH
a
aZ

R
R

a

c

a

c

a

c

a

c

21

1111
2

2

2
11

2
1

−

−−−−
⋅

ΔΤ

+
ΔΤ

−
ΔΤ+

−=
ΔΤ

πκ

ππκ
ππ

ππκ
π

 

 

This simplifies to 

 

( ) Z
H

XY
H

a
dt
dZZ 2

2

2

2
2 41 πκπκ −+==

⋅

. 

 

As we did before, using the chain rule with ( )22

2

1
1
a

Ht
+

=
κπ

τ  we have 

 

( ) ( ) bZXY
a

HZ
H

XY
H

a
d
dt

dt
dZ

d
dZ

−=
+

⋅⎥
⎦

⎤
⎢
⎣

⎡
−+== 22

2

2

2

2

2
2

1
41

κπ
πκπκ

ττ
, 

 

where b . So we find the third equation we required. This is ( 1214 −
+= a )

.
.

bZXYZ −=

bZXYZ −=
⋅

. 

 

The system of the three equations is: 

 

.
YrXXZY

YXX

−+−=

+−=
⋅

σσ                                                                                                     (6) 
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The variables  represent respectively the rate of convective overturning, how 

the temperature varies in the horizontal direction and how temperature varies in the 

vertical direction. 

ZYX ,,

 

The three real and positive parameters are: 

 σ  which is called the Prandtl number and it represents the ratio of the viscosity of 

the fluid of a material to its thermal conductivity, r  is the Rayleigh number and it 

represents the temperature difference between the top and bottom of the system and 

b represents a ratio of width to height of the container being considered. 

 

Lorenz used ,10=σ   and 28=r 3
8=b . In the next chapter we will study what 

happens if we change the values of these parameters 
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CHAPTER 3 

THE PARAMETER r  

 
After deriving the equations, the next step is to analyse what happens when we vary 

one of the parameters in the Lorenz equations. We will investigate what happens 

when we fix the parameters  and b σ  and vary r . As we said in the previous chapter 

this parameter is the Rayleigh number. Here we will study what we can observe for 

small and large r , say 1>>r . We will also examine if the system has stable or 

unstable solutions and in result if periodic orbits exist. Finally, this chapter will state 

if this system can ever reach chaotic behaviour and if so for what value of r . 

 

3.1 Solutions of the Lorenz Equations 
 

Here we consider a solution of the Lorenz equations, say ( )tX , ( )tY ,  and we are 

going to study how a nearby solution, say

( )tZ

( ) ( )txtX 0+ , ( ) ( )ty0tY + ,  will 

behave. , 

( )tZ ( )tz0+

( )tx0 ( )ty0  and  are small perturbations which depend on ( )tz0 τ  and so we 

end up with the following equation. 
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bXY
XrZ
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x σσ

,                                                                          (7) 

 

Equation (7) allows us to study stability properties of the solution ( )tX , , . ( )tY ( )tZ

  

The coefficients of these equations are not all constants. Some of them are variables 

and change as time changes.  

 

To calculate the (change of phase space) volume of the system we need to calculate 

the divergence of the vector field. That is, we calculate the trace of the Jacobean 
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( ) ( ) ( )

( ).11 bb

xybz
z

xzyrx
y

yx
x

++−=−−−=

+−
∂
∂

+−−
∂
∂

++−
∂
∂

σσ

σσ

 

Because σ  and b are positive numbers, the change in volume is negative and so the 

volume is contracting. This means all attractors have zero volume. We will discuss 

this later on in the chapter in more detail. 

 

3.2 Different Values of r 

 
In this section we will investigate what happens for different values of r . At this point 

we want to study simple stationary. That is solutions that do not depend on time. We 

shall work within a simply connected and closed region R . This region contains a set 

( )RA tt φ0≥∩= . All trajectories will eventually enter this set and will never leave. 

Therefore this set is an attracting set and has bounded solutions.  

 

We now study the stability of the trivial fixed point 0=== ZYX

0

. For a steady state 

solution of Lorenz equations we require === ZYX . This is the state where there 

is no convection. That is, as we said previously, there is no heat flow from hot areas to 

cold areas.    

 

So for this situation the characteristic equation of the matrix (7) is 
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( ) ( )( )[ ] ( )
( ) ( ) ( )[ ] 011

0001

0
00

01
0

2 =−++++−

=+++−+++−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−

rb
brb

b
r

σσλλλ

λσλλλσ

λ
λ

σλσ

( ) ( ) ( )

                                                                 

[ ] 0112 =−++++ rb σσλλλ .                                                                            (8) 

 

 

Let us take equation (8) and we shall fix σ  and  and varyb r . First we shall take the 

case when . So we have 0>r

 

( ) ( ) ( )[ ] 0112 =−++++ rb σσλλλ . This is 

 

b−=λ   or   
( ) ( ) ( ) ( ) ( )

2
411

2
1411 22

2,1
rr σσσσσσ

λ
+−±+−

=
−−+±+−

= .  

 

So for  the equation has three solutions and all of them are real. The solutions 

are 

0>r

 

,1 b−=λ   
( ) ( )

2
411 2

2
rσσσ

λ
+−++−

= ,   
( ) ( )

2
411 2

3
rσσσ

λ
+−−+−

=  

 

b−=1λ  is negative as  is a positive constant. b 3λ  is also negative as the square root 

is positive and ( )1+σ  is also positive. Since they have a negative sign the expression 

is negative. 2λ  is positive as ( ) ( )141 2 +>+− σσσ r . 

 

Now, if 1<r  the three roots are all negative and the origin ( )0,0,0  is a stable point.  

 

In the next chapter we will see what is happening to the system in the range 1>r . 
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CHAPTER 4 

 NONTRIVIAL FIXED POINTS 
 

In this chapter we will mostly consider the region 1>r  and the non trivial fixed 

points occurring in this region. We note that the nontrivial fixed points correspond to 

stationary convection. Also, as a remark, a fixed point is a time independent solution.  

 

4.1 The Region 1>r  

 

If we take the region 1>r then the matrix (7) has a characteristic equation 

 

( ) ( ) ( ) 0121 23 =−++++++ rbbrb σλσλσλ                                                             (9) 

 

Here, we first have to compute the nontrivial fixed point, say ∗X , ∗Y , ∗Z . These 

numbers are computed from the equations of motion, i.e. equations (6),   letting 

. Then equations (6) give three equations for0===
⋅⋅⋅

ZYX ∗X , ∗Y , ∗Z , namely 

, **** YX σσ +− ***** YXrZX −+− , . Solving these equations for**** ZbYX − ∗X , 
∗Y , ∗Z   we obtain two extra solutions for the Lorenz equations. We will call them  

and . These solutions are fixed points and are 

1s

2s ( ) ( )( )11 −−± rb

)

,1 r,± −rb . 

 

Now we investigate the stability of this fixed point using equation (7) and the 

associated characteristic equation which is equation (9), for the nontrivial fixed point. 

 

 In this case the origin is a saddle point. Such points are unstable but they have a 

stable and unstable direction. 

 

At ( )
( 1

3
−−
++

=
b
br

σ
σσ  we have 

( ) ( )
( )

( )
( )

( ) ( )( ) ( )( ) ( )( ) .01323111

01
1
32

1
31

23

23

=−+++++++++−−+−−

=⎥
⎦

⎤
⎢
⎣

⎡
−

−−
++

+⎥
⎦

⎤
⎢
⎣

⎡
+

−−
++

++++

bbbbbbb

b
bbb

b
bb

σσσλσσσλσσλσ

σ
σσσλσ

σ
σσλσλ

 

 21



At this r value we obtain an imaginary pair of eigenvalues, which indicates the 

second instability. The eigenvalues are 

 

( ),11 ++−= bσλ  ( ) ( )1/123,2 −−+±= bi σσσλ . 

 

We can call this critical value of r , . Then for hr hrr =  we have the so-called Hopf  

 

bifurcation (Guckenheimer, Holmes, 1983, p.93). For hrr =  the fixed points become 

unstable. 

 

This value of r is a critical value because it shows us if we have stability or instability 

of steady convection. If 1+< bσ  there exists a stable steady convection and for 

1+> bσ  there exists unstable steady convection. 

 

If we now take 10=σ  and 3
8=b  then we have 

 

( ) ( )
74.24

13
810

33
81010

1
3

≈
−−

++
=

−−
++

==
b
brr h σ

σσ . 

 

For  the two solutions  and  are stable. For  with 74.241 << r 1s 2s 346.1>r 10=σ  

and 3
8=b  the eigenvalues become complex and their real parts are negative. 

 

For ,  and  are not stable. For this condition there is one real eigenvalue 

which is negative and two complex eigenvalues. The real parts of the complex 

eigenvalues are both positive. 

74.24>r 1s 2s

 

Lorenz (1963) chose a slightly larger value of r . He fixed 3
8,10,28 === br σ  and 

then used numerical integration for equations (5) with initial condition the origin 

.    ( )0,0,0
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4.2 Time Dependent non Stationary Solutions 

 
This section will concentrate mostly on the time dependent solutions of the Lorenz 

equations at the standard parameter values, namely the so called Lorenz attractor. As 

we have seen in the previous sections the Lorenz equations acknowledge stable fixed 

point solutions for . If hrr < 1>r we obtain a non convective state, for he 

recently generated stable fixed point corresponds to time independent convection. At 

 a Hopf bifurcation takes place and in our case no stable time periodic state is 

generated for . This is a so called sub critical Hopf bifurcation. In fact for  

aperiodic time dependence is observed and the corresponding attractor has some quite 

‘strange’ figures.    

hrr <<1   t

r

hrr =

hrr > hr>

 

 Let us first say a few more details about this so called strange attractor. According to 

Lorenz (1979) an attractor has basically two sheets and following an orbit these sheets 

seem to join together. From this, take as a accurate statement, it would follow that 

pairs of orbits should join together as well and this is not possible. Therefore one 

sheet is a combination of two sheets which are very close to each other. Consequently, 

repeating this reasoning, two sheets that are joint together are composed of four sheets 

four sheets have eight sheets and so on. Hence it appears that there are an infinite 

number of sheets. The closed set of this kind of sheets is called a strange attractor. 

 

Now, let us examine in slightly more detail how such a strange attractor can occur in a 

dynamical system. For a value 926.13≈r there is a global bifurcation a so called 

homoclinic explosion. This means that the system generates an orbit which links the 

saddle point at the origin with itself. Roughly speaking the period of such an orbit is 

infinite. (Sparrow, 1982, p.26).  

 

One can show that for , because of the homoclinic explosion the equations of 

motion create an infinite number of periodic orbits which are all unstable. 

arr <

 

We note that the two stationary points  and  are still stable at 1s 2s 06.24≈r  and any 

trajectory starting near  and  will tend to  or . However if we cross the 1s 2s 1s 2s
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threshold  no longer a stable fixed point exists and the time dependent solution 

will ‘bounce’ between all the unstable periodic points 

hrr =

 

Let us now investigate what happens to the strange attractor in the area . The 

study will concentrate near the area

arr >.

28=r . This is the r  value Lorenz (1963) 

considered in his paper and from this value he discovered the chaotic behaviour of the 

Lorenz attractor but this will be discussed in more detail later on. To study aperiodic 

time dependence it is convenient to use a kind of symbolic coarse grained description, 

a so called symbolic dynamics. One associates a symbol sequence to the orbit under 

consideration. For the Lorenz system it is convenient to generate the symbol sequence 

according to the revolution of the two different lopes of the chaotic attractor. One uses 

two symbols for the coarse grained dynamics. The first is when we have a  when 

the trajectory goes around the point  

'' x

2s ( )0>x  and we have a  when the trajectory 

goes around  ( )
'' y

2s 0<x . At  we observe that for the sequences '  and ''   the 

periodic orbits and trajectories are not in the set. The periodic orbits and trajectories 

are missing because they are separated from the attractor in homoclinic explosions. 

These homoclinic explosions occur at a large number of 

28=r ' x y

r  values. In addition there is 

an infinite number of different attractors in all the neighbourhoods of all the values 

of r . This situation concerns the trajectories that stay forever in the attractor of the 

orbit under consideration. In this strange attractor the orbits and trajectories disappear 

in homoclinic explosions from the set, they do not leave. This does not happen for all 

the aperiodic trajectories which disappear. So near the value  28=r  there are no 

stable periodic orbits. 

 

 

4.3 Period Doubling Scenarios 

 
This section will give attention to stable periodic orbits of the Lorenz attractor. We 

will conceder values of r  much larger than 28=r . Here we will see three intervals of 

r values and investigate their periodic behaviour taking in mind that there are other 

such intervals smaller than these considered here. 
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The first interval to analyse is 795.100524.99 << r

98.99

. According to Sparrow (1982, 

pp.56-58) there exists a stable periodic orbit in 795.100≤≤ r . We still consider 

the two sequences with  and  where we have mentioned before. Because of the 

symmetry of the Lorenz attractor there are stable orbits and these orbits seem to 

attract trajectories. 

'' x '' y

 

For  there is another stable periodic orbit. (Sparrow, 1982, p.56). 

As 

98.99629.99 << r

r  tends to 99.98, the loops of the orbit will come together at the end. Here we 

have a period doubling bifurcation. That is when the stable periodic orbit becomes 

unstable but still exists and it is replaced by a stable periodic orbit with a double 

period compared to the previous one. There is another stable orbit in the 

interval 629.99547.99 << r . As the value of r decreases more we observe more 

period doubling bifurcations. 

 

Moreover, we observe that just below 795.100=r  there is a pair of non-symmetric 

stable periodic orbits and above this value these orbits cannot be seen any more and it 

is suggested that they disappear in saddle-node bifurcations. (Sparrow, 1982, p.58).  

This bifurcation happens when on one side of r there is a non-stable periodic orbit 

and a stable periodic orbit. When the parameter increases or decreases in the direction 

of r , the two orbits move very close and their periods rends towards the same value. 

(Sparrow, 1982, p.52). For  there exists an infinite number of non-stable 

periodic orbits. 

524.99<r

 

The second interval is  (Sparrow, 1982, p.59). Here things happen in a 

similar manner as the above situation but at 

166145 << r

160=r

07.166

there is a symmetric periodic 

orbit which is stable in the range 4.154 << r . At 4.154≈r there is a symmetric 

saddle-node bifurcation. This kind of bifurcation has occurred in the Lorenz system 

when two saddle non-symmetric orbits and a non-symmetric orbit loses its stability to 

a pair of non-symmetric orbit combined together to create a stable symmetric orbit. At 

this value of r the orbit loses its stability to a pair of non-symmetric periodic orbits. 

(Sparrow, 1982, p.53). These orbits are stable in 4.1542.148 << r . Under the value of 

 this orbit also exists and it is non-stable. 4.154=r
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 At  there is period doubling bifurcation. At a value of 2.148≈r r  greater than 

 we have intermittent chaos (Sparrow, 1982, pp.62-63). Here, although the 

stable symmetric orbits does not exist, trajectories look to move close to it and then 

they wonder off and have chaotic behaviour for a short time and then return to 

periodic behaviour. The length of the chaotic intervals gets bigger as the value of 

07.166=r

r  

increases. 

 

The final interval we will mention is (Sparrow, 1982, pp.66-69). Here we 

have the same circumstances as the previous interval with the difference that the last 

stable symmetric orbit continues to exist for . Because this time 

364.214>r

>r 313 r goes up to 

infinity and there is no upper limit we cannot observe chaotic behaviour. 

 

In the next chapter we will talk about what we mean by sensitive dependence on 

initial conditions and how the Lorenz attractor posses chaotic behaviour. 
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CHAPTER 5 

 THE BUTTERFLY EFFECT 

 
Lorenz equations were an attempt to describe the atmosphere and weather conditions 

in a simple manner but then realised that these equations can be formulated to 

describe a laboratory water wheel. He soon discovered that the Lorenz equations 

possessed chaotic behaviour as we have seen earlier. 

 

The term ‘butterfly effect’ was first conceived by Edward Lorenz in his effort to 

describe sensitive dependence on initial conditions and chaos theory. At first the term 

butterfly effect was used only in meteorology to describe the chaotic behaviour of the 

weather. Later on chaos theory and the butterfly effect were used in a greater range in 

science. 

 

Edward Lorenz accidentally discovered the chaotic behaviour of the atmosphere when 

he was working on a computer program for weather forecasting. Lorenz wished to 

look again at a specific sequence. Instead of starting from the beginning he decided to 

start from somewhere in the middle of this sequence because he didn’t want to waste 

much time. He ran the program and left for a while. When he came back he 

discovered that the sequence didn’t progress in the same way as the previous one. At 

the beginning he thought that there was a problem with the hardware but he soon 

discovered what was going on. The first sequence was run with initial conditions 

. In the second sequence Lorenz typed only . The difference between 

the two initial conditions was only , which was something very small and 

yet the two sequences came out so differently. This is how Lorenz discovered the 

chaotic behaviour of the atmosphere and he started a new search to discover chaotic 

systems. 

506127.0 506.0

000127.0

 

It is so amazing that such a tiny difference can cause so huge changes in the long run 

behaviour. Following this, Lorenz wrote a paper in 1972 with the title ‘Predictability: 

Does the Flap of a butterfly’s wings in Brazil set off a Tornado in Texas?’ 
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It is surprising that something that seems so small such as the flapping of a butterfly’s 

wings and cannot be felt by anyone, in the long run behaviour can create something as 

big as like a tornado in the other side of the earth. In the world of meteorologists and 

other scientists, this phenomenon is also known as sensitive dependence on initial 

conditions. This is related to chaos theory. A very small variation in initial conditions 

may alter the behaviour of a complex system, such as the weather in the far future as 

it is not possible to measure the initial conditions of the atmosphere accurately. The 

fact that such a miniscule event can create huge differences is one of the reasons we 

cannot predict weather forecasting accurately for more than one or two weeks. 

 

 

 
Figure 4.1: The Lorenz attractor. Lorenz equations are always following a spiral. The 

equations do not settle down to one point and they do not have periodic behaviour as the 

system never repeats itself. (Valbonesi, I.,2008 April 17). 
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CHAPTER 6 

CONCLUSION 

 
We have seen and discussed about the Lorenz equations. These equations where 

studied by many scientists such as Haken, Knoblock, Malkus, Yorke and many more 

(Sparrow, 1982, p.4). We have also seen that the Lorenz equations behave chaotically 

if we increase the value of the parameter r . At this point, we note that all the results 

for stable or unstable points, periodic orbits and bifurcations are made using 

numerical integration with the use of a computer. 

 

Lorenz work to try to find the reason we cannot predict the weather accurately for a 

long period of time and the butterfly effect was at first only considered by 

meteorologists. He could never believe that the butterfly effect and chaos theory were 

impacted by other fields of science such as Mathematics, Physics, Biology. (MIT, 

2008, April 16). Lorenz (1972) said that we cannot blame the structure of the weather 

if we cannot have precise forecasts for more than three weeks. It is our ‘incomplete 

knowledge’ of physical principles and some approximations in order to formulate 

these principles. 
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