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Abstract

On-off intermittency is a kind of intermittent behavior in physical signals. In this

thesis, the Nord Pool electricity is the analytic target. Characteristics of on-off

intermittency are explored in the Nord Pool prices log return. The distribution of

laminar phases and the asymptotic power law of it is analyzed. Finally, with the

adjustments of threshold values and bin width of histograms, and using the least

square fitting method to estimate the slope and drift, the asymptotic power law is

verified.
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Preface

The main content of the thesis is the analysis of laminar phases distribution and

estimation of slope and drift of asymptotic power law. Chapter 1 is the introduc-

tion to fundamental knowledge, including Nord Pool electricity market, the log

return of prices, and the concept of on-off intermittency. Chapter 2 is the whole

process of data analysis including data preprocessing, generating the distribution

of laminar phases, using the least square fitting method to estimate the parameters

of the power law. Chapter 3 is the conclusion.

Queen Mary University of London

06th September 2017
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Chapter 1

Introduction

In this chapter, we introduce the basic knowledge about the Nord Pool electric-

ity market and the concept of log return in financial time series data. Then we

introduce intermittent behavior from physics.

1.1 Nord Pool Market

Nord Pool market was created at 1993 because of the Norwegian Parliament’s

deregulated act in 1991. At that time the predecessor of Nord Pool Statnett

Marked AS was an independent company. At 1996, the market was renamed to

Nord Pool ASA and a Norwegian and Swedish joint exchange was founded. Fin-

land has joined the Nord Pool since 1998 and Denmark became a member of it at

2000. After Nord Pool took the sole ownership of UK market in 2014, now it is

the largest electricity market in Europe and over 80% of electrical energy in the

Nordic area is traded in the Nord Pool.

Because of the particularity of electricity market, to become a member of the Nord

Pool, except the financial factor, the Nord Pool also requires the potential partici-

pant must have a balancing agreement with the transmission system operator. In

that way, the participants have the ability to deliver or get power from the main

grid. There are 380 active members of the Nord Pool market.
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CHAPTER 1. INTRODUCTION 7

Nord Pool now provides two types of trading for electrical power: day-ahead and

intraday market. In this paper, the day-ahead prices are analyzed. Participants

trade electrical power contracts for physical delivery the next day. So it is called

the day-ahead market. The traditional contracts are for one-hour long electrical

power. The trading mechanism of the market is auctions with bids. Before the

12:00 CET(central Europe time) deadline, members submit their purchase or sell

contracts for next day. After the deadline, the area prices and system prices are

calculated by aggregating the submitted orders. Area price is under considera-

tion of congestion. Congestion is the situation when the transmission capacity

between areas cannot satisfy the requirement. System price is the unconstrained

price which is calculated without congestion consideration. In this project, the

system prices are used.

The electricity prices in Nord Pool have two typical characteristics, high volatility

and a large number of extreme changes in a short time. There are many researches

have been done on Nord Pool prices. Long range correlations of Nord Pool elec-

tricity prices were analyzed in terms of Hurst exponent in [2]. In [1], extreme value

theory is applied and accurate estimates, as well as forecasts, were produced. [8]

analyzed the diffusion entropy and mean-reversion in Nord Pool market. Finally

proposed a GARCH model for electricity prices. Also, some research focused on

the prices forecasting. [6] used an autoregressive model and demand and wind

power as exogenous variables to forecast the electricity prices. In [15], the charac-

teristics of electricity prices were analyzed and then a jump diffusion and regime

switching model was fitted. [17] used a series of models to forecast electricity prices

and compare the performance.

In this project, we are going to use 70751 Nord Pool hourly system prices from

January 1999 to January 2007.



CHAPTER 1. INTRODUCTION 8

1.2 Log Return Of Prices

Unlike other prices analysis, the prices are not used directly in this project. The

log return is the natural logarithm of the gross return. Log return is used in this

analysis because of its advantage in multiperiod.

Now assume it is at time t-1, the net asset value is Pt−1, at time t the net asset

value is Pt, so the one-period simple return Rt is:

1 +Rt =
Pt

Pt−1
(1.1)

If there are n periods, the multiperiod simple return is:

1 +Rt[n] =
Pt

Pt−n
=

Pt

Pt−1
× Pt−1

Pt−2
× ...× Pt−n+1

Pt−n
(1.2)

The log return or continuously compounded return is the natural logarithm of the

one-period simple return:

rt = Ln(1 +Rt) = Ln
Pt

Pt − 1
(1.3)

With the log return, the multiperiod return is turned to:

rt[n] = Ln(1 +Rt[n])

= Ln[(1 +Rt)(1 +Rt−1)...(1 +Rt−n+1)]

= Ln(1 +Rt) + Ln(1 +Rt−1) + ...+ Ln(1 +Rt−n+1)

= rt + rt−1 + ...+ rt−n+1

(1.4)

Finally, the multiperiod return is the sum of the one period return in the form

of log return. The analytic target of this project is the log return of Nord Pool

hourly prices.
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1.3 On-off intermittency

Intermittent behavior is a kind of common phenomenon in physics. [10] has intro-

duced different kind of intermittency: Pomeau-Manneville I, II, III intermittency.

Crisis-induced intermittency is defined in [3]. The on-off intermittency, named

after its two states, was defined in [9].

The on-off intermittency has two states: the off state is nearly constant and remain

for a long time, while the on state departs from the off state and return back to

it in a short time. The long time interval of the off state is called laminar phase.

[5] has shown that the distribution of laminar phases obeys a universal asymptotic

-3/2 power law.

In this project, we detect the on-off intermittency in Nord Pool prices and try to

verify the asymptotic -3/2 power law.



Chapter 2

Distribution of Laminar Phases

In this chapter, we are going to explore the on-off intermittency in Nord Pool

prices log return. We will focus on the distribution of laminar phases especially

the asymptotic -3/2 power law of it.

2.1 Data Preprocessing

As preparation, the mean value and standard deviation of the log return series are

6.6927×10−6 and 0.0379. In [2], space time separation plot is drawn for Nord Pool

prices and the horizontal level lines are a symbol of stationary behavior. Unlike

other kinds of financial time series data, the Nord Po ol prices are more likely to

be considered as stationary time series. Because of the stationary feature, per-

example mean subtraction can be used for data preprocessing method. Then we

can plot the processed log return time series as showed in Fig 2.1.
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Figure 2.1: Horizontal coordinate shows the time in years while vertical coordinate
displays the processed log return of hourly Nord Pool system price from January
1999 to January 2007.

In Fig 2.1, there are lots of bursts in time series and the length of the intervals

between them varies.

2.2 Collection of Laminar Phases

As previously mentioned, a laminar phase is the events between adjacent on state

or burst in intermittent behavior. To define on and off state of on-off intermittency,

a threshold value is needed to set.
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Figure 2.2: Part of samples from Fig 2.1. The threshold value is 0.08.

In fig 2.2, part of the log return has been plotted and the threshold value is set to

0.08 which is the dashed line in Fig 2.2. There are some obvious bursts above the

threshold value. They happen instantaneously in extremely short time. They are

so-called on states. It is remarkable that after a burst on the positive direction,

there is a following burst in the negative direction. The events between on states

are laminar phases. Let us take one burst at the positive part as an example.

Although the time of the on state is very short, the vertical coordinate already

experiences a rising process and a dropping process in a burst.
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Figure 2.3: Enlarged view of a burst in Fig 2.2.

During these two processes, the plot and the dashed line intersect twice like Fig

2.3 shows. The cross point in the rising process is defined as a rising point while

the cross point in the dropping process is dropping point. The absolute value of

vertical coordinate of both kinds of points is equal to the threshold value 0.08.

Taking the negative part into account, we use the next point’s absolute horizontal

coordinate to distinguish rising point and dropping point. For example, if a point

(xt, yt) is a rising point, in time series, |xt+1| ≥ |xt|. In the case of a dropping

point, |xt+1| ≤ |xt|.

With the help of threshold value, the rising points and dropping points are found

out. According to the definition of laminar phase, the difference of horizontal co-

ordinate between rising point and drop point of two adjacent bursts is a laminar

phase. Imagine there are n bursts in the positive part, the first dropping point

is (xd,1, yd,1). The rising point of next burst is (xr,2, yr,2). The laminar phase is

xr,2 − xd,1.
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Actually the above analysis is theoretical. The vertical coordinate of real points in

time series are rarely just equal to the threshold value. So we need to calculate the

horizontal coordinate of cross points with the assumption their vertical coordinate

is equal to the threshold value. The linear equation method is used to solve the

cross points.

First we need to find out the points in the neighbourhood of cross points. Every

point in the time series is checked. Let us assume the two adjacent points are:

(xt−1, yt−1), (xt, yt) and the threshold value is: Vt. There are 4 situations which

means the criticality happen:

1) yt−1 ≤Vt & yt ≥Vt

2) yt−1 ≥Vt & yt ≤Vt

3) yt−1 ≥-Vt & yt ≤-Vt

4) yt−1 ≤-Vt & yt ≥-Vt

Situation 1) and 2) happen above the horizontal axis while 3) and 4) happen at

the negative part. Once these situations happen, the two adjacent points are taken

to work out the cross point. It is assumed that the two adjacent points and the

cross point are all on the same straight line: y = ax + b. With the two adjacent

points, the slope of the straight line is: a = (yt − yt−1)/(xt − xt−1). The constant

term b is:

b = yt − a× xt

Finally the linear equation y = ax + b has been worked out. Then we use the

threshold value to replace the y in the equation and work out the x as horizontal

coordinate of cross points. Then we calculate laminar phases according to the

definition. Finally, we collect all laminar phases from the Nord Pool log return.
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2.3 Histogram of Laminar Phases

After the data preparation and collection, we can focus on the distribution of the

laminar phase.

The histogram is a graphic tool to display the distribution of numerical data.

Firstly it divides the range from maximum to minimum to small equal bins. In

fig 2.3(a), the range was divided into 39 bins. Each bin is 0.01 wide. Then count

the number of samples in each bin. Finally, plot the histogram according to the

counted numbers in each bin. We can see that there are most laminar phases in

the first bin which range from 0 to 0.01. There are few laminar phases great than

0.15 and the counted number of the following bins are already in the single unit.

Obviously, the threshold value influences the distribution of laminar phase. From

Fig 2.3(b) we can know that, when the threshold is 0.20 which is larger than 0.15,

the most popular bin is also 0-0.01. But the number is much less than the number

in 0-0.01 when the threshold value is 0.15. From the shape of the two histograms,

we can say that the distribution of laminar phases is similar to the shape of a

power law, which means one variable’s change results in a power of another power.

The next step of our task is to find out the specific power law.
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(a)

(b)

Figure 2.4: Histogram of laminar phases from Nord Pool log return in period from
1999 January to 2007 January. (a) The threshold value is 0.15. (b) The threshold
value is 0.20.
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2.4 The Asymptotic Power Law

[5] shows that the distribution of laminar phase obeys an asymptotic -3/2 power

law in both random and chaotic driving cases. Now we are going to see if this

characteristic also exists in Nord Pool log return time series.

Let us take a look at the asymptotic power law first. Suppose there is a constant

function P(T), if it satisfies the asymptotic -3/2 power law, it should have:

P (T ) = C · 1

T 3/2
(2.1)

Although we know the distribution of laminar phases is approximately a power

law, it is still hard to evaluate the unknown C value. We try to take the natural

logarithm of both sides of the Eq 2.1:

Ln(P (T )) = Ln(C · 1

T 3/2
)

= Ln(C) + Ln(
1

T 3/2
)

= Ln(C)− 3

2
Ln(T )

(2.2)

Now the relationship between Ln(P (T )) and Ln(T ) is a linear relationship. We

can estimate the drift Ln(C) and the slope first.

Let us use the case in which the threshold value is 0.15. To ensure the number

of bins and enough samples in each bin, the bin width is decreased to 0.005, see

the histogram in Fig 2.5(a). In this specific case, the P(T) use number of laminar

phases in each bin as samples. Because at each bin, time is a range. For example,

there are 625 laminar phases in range 0-0.005. The P(T) is 625 but T is range

from 0 to 0.005. In this project, the middle of the range is used as samples of T. So

the T is 0.0025 in the first bin. After gathering samples and taking the logarithm

of P (T ) and T , the data is plotted in Fig 2.5(b).
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(a)

(b)
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Figure 2.5: (a) The histogram with 0.15 threshold value and 0.005 bin width.
(b) The points after double logarithm. The abscissas are Ln(T ) while the ordinate
is Ln(P (T )).

From Fig 2.5(b), we can see the points are in linear relationship approximately.

So we are going to use the least square fit to estimate a straight line y = β1x+β2.
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Before the least square fitting, there are some preprocessing work need to be done.
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Figure 2.6: Line plot of double logarithm.

Take a look at the Fig 2.6, we can observe there are several disorders at the end of

the plot. Go back to the distribution of laminar phases, in the last few bins, the

number of laminar phases are unstable and small. In this specific case, from the

30th to the last bin, most bins have zero laminar phase in it and in other bins, a

number of laminar phases are in the single unit. To have a deeper understanding

of the distribution of laminar phase, we can take a look at the cumulative distri-

bution function(cdf) of laminar phases.

To get the cdf, the laminar phases are ordered in ascending. In the case of threshold

value 0.15, the total of laminar phases is 1043. So the probability of each laminar

phases is 1/1043. A point (x,y) in cdf means the probability of a sample smaller

than x is y. Like Fig 2.7 shows, the probability of a laminar phase smaller than
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0.153 is 0.9789. On the contrary, there are 1043 × (1 − 0.9789) ≈ 22.0073. In a

general way, these insignificant samples can be removed.
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Cumulative Distribution Function

X: 0.153

Y: 0.9789

Figure 2.7: The empirical cumulative distribution function of laminar phases with
threshold 0.15. The specified point (0.153, 0.9789), it means the probability of a
laminar phase which is smaller than 0.153 is 0.9789

Besides, taking the fact that cannot take the logarithm of zero into account, we

can find the first bin with zero laminar phases in it. In this case, the 20th bin is

the first bin with zero laminar phase. So we only keep the first 19 bins for the

double logarithm.
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Figure 2.8: Line plot of double logarithm after preprocessing

From Fig 2.8, we can see that, after preprocessing, the line of the double logarithm

is more likely to be a straight line. Then we are going to use the least square fitting

method to estimate the ideal straight line.

In linear square fit method, with the best fit parameters, the squared difference

between real value and modeled value is smallest. In current case, the Ln(T ) can

be viewed as (x1, x2, ..., x19) and the Ln(P (T )) is (y1, y2, ..., y19). The hypothetical

straight line is y = β1x + β2. We would like to find the parameters which make

the sum smallest:

S(β1, β2) = [y1 − (β1x1 + β2)]
2 + [y2 − (β1x2 + β2)]

2 + ...+ [y19 − (β1x19 + β2)]
2

To find the minimum of the sum, we can do the partial differential:

∂S

∂β1
= 0
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∂S

∂β2
= 0

In this way, the parameters can be calculated. Finally the fitted line is y =

−1.6013x− 2.8978, as displayed in Fig 2.9.
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Figure 2.9: The straight line is: y = −1.6013x − 2.8978 with the Ln(T ) and
Ln(P (T ) points.

It is worth reminding that this is only for the case with threshold value 0.15 and

bin width 0.005. We need to verify the universality in other cases.

We can generate different distributions of laminar phases with different threshold

values. Firstly we attempt to decrease the threshold value. If the threshold value is

set to 0.12, there are 1552 laminar phases can be got from the log return time series.

After the preprocessing work, there are 20 bins with 0.005 bin width remained

for the next step. With the least square fit method, the parameters are: β1 =

−1.7458, β2 = −3.2946. The straight line is displayed in Fig 2.9.
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Figure 2.10: The fitting condition for case with threshold 0.12 and the bin width
0.005.

We continue to verify cases with a larger threshold value. In the case with threshold

0.2, there are 643 laminar phases generated in the log returns time series. To ensure

the number of samples in double logarithm, the bin width is set to 0.01. After

preprocessing work, there are 17 bins remained for the least square fit. Finally the

estimated parameters are: β1 = −1.5142, β2 = −2.0353. The fitting condition is

displayed in Fig 2.10.
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Figure 2.11: Fitting condition for the case with 0.20 threshold and 0.01 bin width

After these experiments on different cases, in conclusion, the estimated slopes β1

are from -1.5 to -1.7 and the drifts are around -3. With the tunability of threshold

values and bin width in histograms, it is possible to say that the slope can be closer

to the theoretical value: -1.5. With this statement, we can say that the asymptotic

-3/2 power law also can be detected in the intermittent behavior in Nord Pool log

return.



Chapter 3

Conclusions

In this project, we analyze the log return time series of Nord Pool electricity prices

and detect the existence and features of on-off intermittency in it.

Nord Pool electrical energy power price is distinguished with other kinds of finan-

cial data because of its high volatility. Intermittent behavior can be observed from

its log return time series. Unlike other financial time series, the log return of Nord

Pool prices is more stationary. So mean is subtracted from every sample as data

preprocessing work.

To analyze the distribution of laminar phases, a threshold is needed to set at first.

In the histogram of laminar phases, some bins are empty or only have several lam-

inar phases in it. With the help of cdf, we know that removing samples of slight

possibility may not have much effect on the following analysis. So we remove bins

which contain single unit or zero laminar phases as preprocessing work in case of

disorders.

To verify the theoretically asymptotic -1.5 power law of distribution of laminar

phases, double logarithm is more convenient for estimating the slope and drift.

With the least square fitting method, in different cases, the estimated slopes are

from -1.7 to -1.5 and the drifts are around the range -2 to -3.

25
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In conclusion, we can say that on-off intermittency exhibits in the Nord Pool prices

log return time series. The distribution of laminar phases obeys the asymptotic

-1.5 power law like the on-off intermittency in other signals.



Bibliography

[1] Bystrom, Hans NE. Extreme value theory and extremely large electricity price

changes. International Review of Economics Finance 14.1 (2005): 41-55.

[2] Erzgraber, Hartmut, et al, Time series analysis and long range correlations of

Nordic spot electricity market data., Physica A: Statistical Mechanics and its

Applications 387.26 (2008): 6567-6574.

[3] Grebogi, Celso, et al. Final state sensitivity: an obstruction to predictability.

Physics Letters A 99.9 (1983): 415-418.

[4] Hammer, Philip W., et al. Experimental observation of on-off intermittency.

Physical review letters 73.8 (1994): 1095.

[5] Heagy, J. F., N. Platt, and S. M. Hammel. Characterization of on-off inter-

mittency., Physical Review E 49.2 (1994): 1140.

[6] Kristiansen, Tarjei. Forecasting Nord Pool day-ahead prices with an autoregres-

sive model. Energy Policy 49 (2012): 328-332.

[7] Mantegna, Rosario N., and H. Eugene Stanley. Scaling behavior in the dynamics

of an economic index. Nature 376.6535 (1995): 46-49.

[8] Perell, Josep, et al. Entropy of the Nordic electricity market: anomalous scal-

ing, spikes, and mean-reversion. Journal of Statistical Mechanics: Theory and

Experiment 2006.11 (2006): P11011.

[9] Platt, N. S. E. A., E. A. Spiegel, and C. Tresser. On-off intermittency: A

mechanism for bursting. Physical Review Letters 70.3 (1993): 279.

27



BIBLIOGRAPHY 28

[10] Pomeau, Yves, and Paul Manneville. Intermittent transition to turbulence in

dissipative dynamical systems. Communications in Mathematical Physics 74.2

(1980): 189-197.

[11] Tsay, Ruey S. Analysis of financial time series. Vol. 543. John Wiley Sons,

2005.

[12] Ufldl.stanford.edu. (2017). Data Preprocessing - Ufldl. [online] Available

at:http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#

Per-example_mean_subtraction [Accessed 28 Aug. 2017].

[13] Weron, Aleksander, Szymon Mercik, and Rafal Weron. Origins of the scaling

behavior in the dynamics of financial data. Physica A: Statistical Mechanics

and its Applications 264.3 (1999): 562-569.

[14] Weron, Rafal. Energy price risk management. Physica A: Statistical Mechan-

ics and its Applications 285.1 (2000): 127-134.

[15] Weron, Rafa, Michael Bierbrauer, and Stefan Trck. Modeling electricity prices:

jump diffusion and regime switching. Physica A: Statistical Mechanics and its

Applications 336.1 (2004): 39-48.

[16] Weron, Rafa, Ingve Simonsen, and Piotr Wilman. Modeling highly volatile

and seasonal markets: evidence from the Nord Pool electricity market. The

application of econophysics. Springer, Tokyo, 2004. 182-191.

[17] Weron, Rafa, and Adam Misiorek. Forecasting spot electricity prices: A com-

parison of parametric and semiparametric time series models. International

journal of forecasting 24.4 (2008): 744-763.

[18] Weron, Rafal. Forecasting wholesale electricity prices: A review of time series

models. (2008).

[19] Weron, Rafa. Market price of risk implied by Asian-style electricity options

and futures. Energy Economics 30.3 (2008): 1098-1115.

http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#Per-example_mean_subtraction
http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing#Per-example_mean_subtraction

	Introduction
	Nord Pool Market
	Log Return Of Prices
	On-off intermittency

	Distribution of Laminar Phases
	Data Preprocessing
	Collection of Laminar Phases
	Histogram of Laminar Phases
	The Asymptotic Power Law

	Conclusions
	Bibliography

