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Abstract

The control of unstable fixed point solutions in discrete time dynamical

systems, with time delayed feedback control, will be explored by analytical

methods. By means of linear stability, we will compute the relevant cou-

pling gains needed for successful control. This concept will be applied to

study the synchronisation properties of two mutually coupled non identical

maps with time delayed feedback control.
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1 Introduction

Having the means to influence the behaviour of something over a period of time

is what is known as ‘control’. A dynamical system is something that changes

over a period of time[1]. It achieves this by interacting with its environment, and

then displaying emerging behaviour indicative of some form of stimulation. These

stimulants are known as inputs, and the emerging behaviour outputs. Sometimes

these outputs are not desirable and we wish to exert control in order to bring

these systems to an ‘ideal state’. Consider for instance driving in a 70mph zone

with cruise control, and wanting to reach one’s destination with urgency, whilst

remaining within the boundaries of the law. The desirable speed is 70mph. If

one’s speed is too fast or too slow, or if the trajectory of the car encounters in-

clines and declines, the cruise control will make necessary adjustments in order

to bring the speed to 70mph. This is an example of stability. The cruise control

maintains the speed in the ideal state whilst perturbations are acting on it. In

addition to this, if for example the car is going 140mph, the cruise control will

not exert the breaks harshly, as this could cause damage to the passengers and

waste energy, amongst other safety issues. But it would slow down the vehicle in

a steady and timely manner. This is known as flexibility. It is more beneficial

to let the system slowly bring itself to the desired state using as little energy as

possible [16].This concept serves as an analogy for the essence of this thesis.

In this dissertation we take di↵erence equations (maps) and study the stabil-

ity of their fixed point. We choose di↵erence equations as opposed to di↵erential

equations (continuous maps), as we gain an insight into some of the principal el-

ements of di↵erential equations with more ease. Our aim is to be able to control

unstable solutions of these discrete maps by implementing a mechanism called

time delayed feedback control (TDFC) - which was first proposed by Pyra-

gas in 1992 [8], thanks to Ott’s seminal work [18] - in order to bring our system

to a desired state, namely one that is stable.
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The second chapter gives us a brief overview of dynamical systems, and pro-

vides the foundation of notation and definitions upon which the thesis is built.

The third and fifth chapters give us the one-dimensional (1-D) and two-

dimensional (2-D) analytical case study of our systems with TDFC, and uses

graphical evidence to explore conditions for which our systems can be stabilised.

The fourth chapter presents Jury’s Criterion, which adds a powerful tool to

our arsenal, enabling us to tackle the 2-D study case in a more elegant fashion.

2 Discrete Dynamical Systems and Fixed Points

This chapter gives a brief overview of discrete dynamical systems, and provides

us with the foundation upon which this thesis it built. It is based mainly on

material found in these books [2, 3, 4, 5], which we have adapted in order to

tailor it to the purposes of this work.

2.1 Preliminaries

There are two types of dynamical systems, namely continuous-time and discrete-

time, of which the latter will be our main focus. A discrete-time dynamical

system (map) is a system that evolves over time according to a specific rule. For

example imagine di↵erent sized populations of bacteria in di↵erent petri dishes

which double in size per time interval. A map is of the form:

~x

n+1 = f(~x
n

), f : Rm 7! Rm

, ~x

n

2 Rm

, n 2 N0 (1)

Here ~x
n

would be the vector denoting the populations of the bacteria at time n,

and f would denote the doubling function.

We will be studying linear maps on the reals, which, by definition, have output

values proportional to their input values, and pass through the origin (maps whose

output values are proportional to their input values, but do not pass through the

Page 9



Matthew Morrison 110260068

origin are called ‘a�ne’[6]). Linear maps are of the form:

~x

n+1 = A~x

n

, A 2 Rm⇥m

, ~x

n

2 Rm

, n 2 N0 (2)

where we are given ~x0, called an initial vector, and A is the m⇥m matrix,

A = (a
ij

) =

0

BBBBBBB@

a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

a

m1 a

m2 . . . a

mm

1

CCCCCCCA

(3)

Where a

ij

represents the element in the i-th row and j-th column.

The determinant of a square matrix A is denoted det(A). It associates a scalar

to a matrix, which can be used to provide information about systems of linear

equations[9].

The determinant of a 2⇥ 2 matrix A is given by the formula:

det(A) =

�������

a11 a12

a21 a22

�������
= a11a22 � a12a21 (4)

The determinant of a 3⇥ 3 matrix A is given by the formula:

det(A) =

����������

a11 a12 a13

a21 a22 a23

a31 a32 a33

����������

= a11

�������

a22 a23

a32 a33

�������
� a12

�������

a21 a23

a31 a33

�������
+ a13

�������

a21 a22

a31 a32

�������
(5)
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The determinant of a 4⇥ 4 matrix A is given by the formula:

det(A) =

�������������

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�������������

= (6)

a11

����������

a22 a23 a24

a32 a33 a34

a42 a43 a44

����������

� a12

����������

a21 a23 a24

a31 a33 a34

a41 a43 a44

����������

+ a13

����������

a21 a22 a24

a31 a32 a34

a41 a42 a44

����������

� a14

����������

a21 a22 a23

a31 a32 a33

a41 a42 a43

����������

2.2 Solving Linear systems

One of our main areas of interest concerning maps is fixed points and their sta-

bility. Here we demonstrate how to solve 1-D and 2-D linear systems.

A fixed point occurs when f(~x⇤) = ~x⇤ , i.e., if ~x0 = ~x⇤ then ~x

n

= ~x⇤, for

all n � 1. In terms of the example of bacteria, we can view this as having 0

bacteria in all our petri dishes, as our initial vector (i.e., bacteria will not spon-

taneously appear). For all linear maps the origin ~x

n

= ~0 is a fixed point.

Given an initial vector ~x0, we look at the iterates of Eq. (2) to find a general

solution:

~x1 = A~x0

~x2 = A~x1 = A

2
~x0

~x3 = A~x2 = A

2
~x1 = A

3
~x0

~x4 = A~x3 = A

2
~x2 = A

3
~x1 = A

4
~x0

...

~x

n

= A

n

~x0

(7)

We determine the stability of a fixed point by analysing at the behaviour of

points of the map in a small neighbourhood of the fixed point, and note whether

repeated iterations converge towards or diverge away from it. The fixed points

are called:

1. stable/attracting if the iterations converge towards it.
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2. unstable/repelling if the iterations diverge away from it.

2.2.1 One-Dimensional Case

In the 1-D case, the general solution given by Eq. (7) translates to,

x

n

= a

n

x0, x0, a 2 R (8)

Example 1. Consider the real valued linear map

f(x
n

) = ax

n

(9)

with a being constant. We have that x⇤ = 0 is a fixed point of the map, and

f

n(x
n

) = a

n

x0 is a solution of the map. Assuming x0 6= 0, it can be seen that if:

1. |f 0(x⇤)| = |a| < 1, then repeated iterations tend to 0, and the system is

stable.

2. |f 0(x⇤)| = |a| = 1, then repeated iterations stay fixed, and the system is not

stable.

3. |f 0(x⇤)| = |a| > 1, then repeated iterations will diverge away from 0, and

the system is unstable.

2.2.2 Two-Dimensional Case

In a 2-D map, we have a system as follows,

x

n+1 = f(x
n

, y

n

)

y

n+1 = g(y
n

, x

n

) x

n

, y

n

2 R; f, g : R 7! R
(10)

The system is said to be mutually coupled if an x is in the y equation and a

y is in the x equation. We add a small pertubation, letting x

n

= x⇤ + �x

n

and

y

n

= y⇤ + �y

n

be a point close to the fixed point (x⇤, y⇤) = (0, 0). We then use

Linearisation to expand Eq.(10) in the neighbourhood of the fixed point[15], and
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see whether future iterations converge towards, or diverge away from it. We have:

f(x
n

, y

n

) = f(x⇤, y⇤) + f

x

(x⇤, y⇤)�xn

+ f

y

(x⇤, y⇤)�yn

g(x
n

, y

n

) = g(x⇤, y⇤) + g

x

(x⇤, y⇤)�xn

+ g

y

(x⇤, y⇤)�yn

(11)

Where f
x

(x
n

, y

n

) = @f

@x

evaluated at the point (x
n

, y

n

). Noting that x
n

= x⇤+�x

n

and y

n

= y⇤ + �y

n

implies x

n+1 = x⇤ + �x

n+1 and y

n+1 = y⇤ + �y

n+1, we now

substitute Eq. (11) into Eq. (10) yielding:

x⇤ + �x

n+1 = f(x⇤, y⇤) + f

x

(x⇤, y⇤)�xn

+ f

y

(x⇤, y⇤)�yn

y ⇤+�y

n+1 = g(x⇤, y⇤) + g

x

(x⇤, y⇤)�xn

+ g

y

(x⇤, y⇤)�yn

(12)

We know that x⇤ = f(x⇤, y⇤) and y⇤ = g(x⇤, y⇤), so they cancel out and Eq.

(12) becomes the linearised system:

�x

n+1 = f

x

(x⇤, y⇤)�xn

+ f

y

(x⇤, y⇤)�y

�y

n+1 = g

x

(x⇤, y⇤)�xn

+ g

y

(x⇤, y⇤)�y
(13)

By defining ~

�x

n

:= (�x
n

, �y

n

)T , We can transform Eq. (13) into a matrix equation:

0

B@
�x

n+1

�y

n+1

1

CA =

0

B@
f

x

(x⇤, y⇤) f

y

(x⇤, y⇤)

g

x

(x⇤, y⇤) g

y

(x⇤, y⇤)

1

CA

| {z }
J

0

B@
�x

n

�y

n

1

CA (14)

Where J is known as the Jacobian matrix. It is the multivariable version of

f

0(x⇤) for the 1-D case.

In order to determine the stability of (10) we compute the eigenvalues (�) of the

Jacobian as follows [9]:

|J � �I| =

�������

f

x

(x⇤, y⇤)� � f

y

(x⇤, y⇤)

g

x

(x⇤, y⇤) g

y

(x⇤, y⇤)� �

�������
= 0

P (�) = �

2 � (f
x

(x⇤, y⇤) + g

y

(x⇤, y⇤))�� f

y

(x⇤, y⇤)gx(x⇤, y⇤) = 0

(15)

In order for a map, including Eq.(10) to be stable we require that all eigenvalues
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are less than 1 in magnitude.[13]

Example 2. Consider the following system

x

n+1 = f(x
n

, y

n

) = 3x
n

+ y

n

y

n+1 = g(x
n

, y

n

) = 2x
n

+ 4y
n

(16)

The fixed point is at (x⇤, y⇤) = (0, 0). The corresponding Jacobian matrix is

�������

3� � 1

2 4� �

�������
= �

2 � 7�+ 10 = (�� 5)(�� 2) = 0 (17)

The system has eigenvalues �1 = 5 and �2 = 2, which means that the fixed

point (x⇤, y⇤) = (0, 0), is unstable as they are both larger than 1 in magnitude.

In essence this thesis requires us to take systems and reduce them to eigenvalue

problems, then impose restrictions in order to ensure that the corresponding

eigenvalues are less than 1 in absolute value in order to achieve stability.

3 1-D Case with Time-Delayed Feedback Con-

trol (TDFC)

3.1 Deriving the Characteristic Equation

Suppose we have a machine that produces some unstable time dependent output.

For the purposes of this thesis we require this output to be periodic. We do this

by measuring the signal to take what one calls ‘time delayed di↵erence’[8], that

is, one takes the a proportion of the di↵erence of the previous output with the

current output and feeds this back into the system[17]. For correct choices of

time delay, the system becomes periodic, which means the control goes to zero

[10],[19]. A positive consequence is that this does not alter the dynamics of the

unstable system, but it causes the trajectories of neighbouring points to converge

towards it. Another benefit of such a method is that one need not know any
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detailed information about the system, just the previous output[20]. Keeping

with the theme of ‘flexibility’, one wishes to e↵ectively stabilise something with

as minimal energy as possible.

As before, we are dealing with linear maps of the form in Eq.(2) but in 1-D, i.e.

maps of the form:

x

n+1 = f(x
n

) = ax

n

, a, x

n

2 R, n 2 N0 (18)

Now we assume that our system is unstable, i.e. |a| > 1. We are in the situation

where our machine produces a signal and we want to introduce feedback, which

will stabilise our system. The time delayed di↵erence we shall introduce to our

system is K(x
n

� x

n�1)[17], with K 2 R as our control gain. The system now

reads:

x

n+1 = f(x
n

) +K(x
n

� x

n�1) = ax

n

+K(x
n

� x

n�1) (3.1)

The aim of this section is to find out for what values of K stabilises this system.

This will eventually surface as a solution to an eigenvalue problem.

Firstly note that adding the time delayed di↵erence increases the dimension

of our system by unity[11]. Taking the fixed point of the system without TDFC

x⇤ = 0, we linearise about x⇤ with �x

n

= x

n

� x⇤ to get the linearised system:

0

B@
�x

n+1

�x

n

1

CA =

0

B@
a+K �K

1 0

1

CA

0

B@
�x

n

�x

n�1

1

CA (19)

Note that K(x
n

� x

n�1) = K(�x
n

� �x

n�1)[12].

Next, we find the determinant of the following matrix:

�������

a+K � � �K

1 ��

�������
(20)
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which gives rise to the characteristic equation:

P (�) = ��(a+K � �) +K = �

2 � (a+K)�+K = 0 (21)

Now, utilising the quadratic equation, we can see that:

�1/2 =
a+K ±

p
(a+K)2 � 4K

2
(22)

In order for stability to be achieved, we require |�1/2| < 1. In (Figure 1)1 we

provide a graphical representation of the following inequalities:

|�1| =

�����
a+K +

p
(a+K)2 � 4K

2

����� < 1

|�2| =

�����
a+K �

p
(a+K)2 � 4K

2

����� < 1

(23)

3.2 Results

Figure 1: Plot of region of stability for 1-D case: The boundary of the largest
triangle represents the border line cases |�1/2| = 1. Stability is achieved in the
interior. Furthermore, we introduce TDFC when |a| > 1, which is represented by
interior of the smaller right-angled triangle with solid lines. The shaded area is
indicative of when the eigenvalues are complex conjugates, i.e. the discriminant
(a+K)2 � 4K < 0.

(Figure 1) provides us with graphical proof which shows that when our system is

1
See Appendix for Matlab code
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unstable, there exists some K 2 (0, 1) for which the system can be stabilised if

a 2 (�3,�1].

Example 3. Let a = �2. This corresponds to a half of a co-ordinate, which

when paired a complementary control gain co-ordinate K, would lie within the

boundaries of the solid triangle in (Figure 1).

f(x
n

) = �2x
n

(24)

Let the initial seed x0 = 1. We have:

x0 = 1

x1 = �2⇥ 1 = �2
(25)

Now we are in the predicament where our system is unstable as |a| > 1, so we

introduce a complementary feedback of K = 0.75 and our system will stabilise.

Our system now reads:

f(x
n

) = �2x
n

+ 0.75(x
n

� x

n�1), n = 1, 2, 3, . . . (26)

Continuing our iterates now with TDFC, we have:

x2 = ax1 +K(x1 � x0) = 4 + (0.75⇥�3) = 1.75

x3 = ax2 +K(x2 � x1) = �3.5 + (0.75⇥ 3.75) = �0.6875

x4 = ax3 +K(x3 � x2) = 1.375 + (0.75⇥�2.4375) = �0.453125

x5 = ax4 +K(x4 � x3) = 0.90625 + (0.75⇥ 0.234375) = 1.08203125

x6 = �1.0127

x7 = 0.4543

x8 = 0.1916

x9 = �0.5802

(27)

In (Figure 2)2 we have plotted the first 50 iterates of this example, and we can see,

2
See Appendix for Matlab code
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that even though our system was initially unstable, after introducing the TDFC

mechanism, the trajectory converges to the fixed point, and hence the system has

been stabilised.

Figure 2: Plot of the first 50 iterates of 2-D system with TDFC with x0 = 1, a =
�2 and K = 0.75
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4 Jury’s Criterion

4.1 Polynomial Roots

Finding the roots of the characteristic equation for the 1-D case requires no

more than the quadratic equation, which is short, and most mathematicians

will have memorised. However, for the higher dimensional case, one needs a

more sophisticated method, as it involves finding the roots of a quartic equation,

which is long and cumbersome. Jury’s Criterion provides an alternative solution.

It gives us necessary and su�cient criteria for polynomials to have all their roots

confined within the unit circle[7]. In context, this ensures that the eigenvalues of

our system are less than one in magnitude, and guarantees stability.

4.2 Jury’s Stability Test

For the characteristic polynomial

P (�) = a0�
0 + a1�

1 + a2�
2 + · · ·+ a

n

�

n

a

n

> 0

We construct Jury’s Table [7] as follows:

�

0
�

1
�

2
. . . �

n�k

. . . �

n�2
�

n�1
�

n

a0 a1 a2 . . . a

n�k

. . . a

n�2
a

n�1 a

n

a

n

a

n�1 a

n�2 . . . a

k

. . . a2 a1 a0

b0 b1 b2 . . . b

n�k

. . . b

n�2 b

n�1

b

n�1 b

n�2 b

n�3 . . . b

k�1 . . . b1 b0

c0 c1 c2 . . . c

n�k

. . . c

n�2

c

n�2 c

n�3 c

n�4 . . . c

k�2 . . . c0

...
...

...
...

. . .

r0 r1 r2 r3

r3 r2 r1 r0

s0 s1 s2

s2 s1 s0

Table 1: Jury’s Table
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The first row is composed of the coe�cients of the characteristic polynomial,

and every even row is identical to the row above it, but in reverse order. The el-

ements in odd rows greater than one are calculated by the following determinants:

b

k

=

�������

a0 a

n�k

a

n

a

k

�������
, c

k

=

�������

b0 b

n�k�1

b

n�1 b

k

�������
, d

k

=

�������

c0 c

n�k�2

c

n�2 c

k

�������
, . . .

Theorem 4.1. Jury’s Criteria

In order for the characteristic polynomial

P (�) = a0�
0 + a1�

1 + a2�
2 + · · ·+ a

n

�

n

, a

n

> 0, n � 2

to have all its roots confined within the unit circle, the necessary and su�cient

conditions of Jury’s Test are:

1) P (1) > 0

2) (�1)nP (�1) > 0

3) a
n

> |a0|

4) |b0| > |b
n�1|

5) |c0| > |c
n�2|

6) |d0| > |d
n�3|

7) |e0| > |e
n�4|

...

n+ 1) |s0| > |s2|

For a proof of the theorem, please see [14]

Example 4. Using the quadratic characteristic Eq. (21) from the previous chap-

ter P (�) = �

2 � (a + K)� + K, we use Jury’s Criteria, to verify the stability

conditions. The Criteria read:

1) P (1) = 1� a > 0

2) P (�1) = 1 + a+ 2K > 0

3) |K| < 1

Page 20



Matthew Morrison 110260068

Plotting these inequalities, we gain the same region of stability (depicted in

black) as in (Figure 1).

Figure 3: Plot of region of stability for 1-D case using Jury’s Criterion
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5 2-D Case with TDFC

5.1 Deriving the Characteristic Equation

Now we take two linear maps and couple them via TDFC, and we look to find

under what conditions the system can be stabilised. With a, b, x

n

, y

n

, K1, K2 2 R,

we have the following system:

x

n+1 = ax

n

+K1(yn � y

n�1)

y

n+1 = by

n

+K2(xn

� x

n�1)
(5.1)

By adding the TDFC into the system we have gone from a 2 to a 4-dimensional

system, with a fixed point (x⇤, y⇤) = (0, 0), and as before, we let x
n

= x⇤ � �x

n

and y

n

= y⇤� �y

n

be in the neighbourhood of our fixed point and linearise about

that point to get the system:

0

BBBBBBB@

�x

n+1

�x

n

�y

n+1

�y

n

1

CCCCCCCA

=

0

BBBBBBB@

a 0 K1 �K1

1 0 0 0

K2 �K2 b 0

0 0 1 0

1

CCCCCCCA

| {z }
A

0

BBBBBBB@

�x

n

�x

n�1

�y

n

�y

n�1

1

CCCCCCCA

(28)

Next we calculate the determinant det(A��I) in order to bring it to an eigenvalue

problem.

�������������

a� � 0 K1 �K1

1 �� 0 0

K2 �K2 b� � 0

0 0 1 ��

�������������

=

(a��)

����������

�� 0 0

�K2 b� � 0

0 1 ��

����������

+K1

����������

1 �� 0

K2 �K2 0

0 0 ��

����������

+K1

����������

1 �� 0

K2 �K2 b� �

0 0 1

����������

= (29)
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(�2 � a�)

�������

b� � 0

1 ��

�������
+K1

�������

�K2 0

0 ��

�������
+K1�

�������

K2 0

0 ��

�������
+K1

�������

�K2 b� �

0 1

�������
+

K1�

�������

K2 b� �

0 1

�������

= (�2 � a�)(�2 � b�) +K1(K2��K2�
2) +K1(K2��K2) =

P (�) = �

4 � (a+ b)�3 + (ab�K1K2)�
2 + 2K1K2��K1K2 = 0

5.2 Application of Jury’s Test

We have that the characteristic equation for the two dimensional system Eq.(5.1)

is given by:

P (�) = �

4 � (a+ b)�3 + (ab�K1K2)�
2 + 2K1K2��K1K2 = 0 (30)

Now we construct the Jury’s Table as in chapter 4 as follows:

�

0
�

1
�

2
�

3
�

4

a0 a1 a2 a3 a4

a4 a3 a2 a1 a0

b0 b1 b2 b3

b3 b2 b1 b0

c0 c1 c2

c2 c1 c0

Table 2: Jury’s Table for quartic characteristic Eq(30)
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with:

a0 = �K1K2,

a1 = 2K1K2,

a2 = ab�K1K2,

a3 = �(a+ b),

a4 = 1,

b0 =

�������

�K1K2 1

1 �K1K2

�������
= K

2
1K

2
2 � 1,

b1 =

�������

�K1K2 �(a+ b)

1 2K1K2

�������
= a+ b� 2K2

1K
2
2 ,

b2 =

�������

�K1K2 ab�K1K2

1 ab�K1K2

�������
= K

2
1K

2
2 + (1� ab)K1K2 � ab,

b3 =

�������

�K1K2 2K1K2

1 �(a+ b)

�������
= (a+ b� 2)K1K2,

c0 =

�������

K

2
1K

2
2 � 1 (a+ b� 2)K1K2

(a+ b� 2)K1K2 K

2
1K

2
2 � 1

�������
=

K

4
1K

4
2 � (a2 + b

2 + 2ab� 4a� 4b+ 6)K2
1K

2
2 + 1,

c2 =

�������

K

2
1K

2
2 � 1 a+ b� 2K2

1K
2
2

(a+ b� 2)K1K2 K

2
1K

2
2 + (1� ab)K1K2 � ab

�������
=

K

4
1K

4
2 + (2a+ 2b� ab� 3)K3

1K
3
2 � (ab+ 1)K2

1K
2
2�

(a2 + b

2 + ab� 2a� 2b+ 1)K1K2 + ab

(31)

Utilising Jury’s Criterion from chapter 4, the necessary and su�cient condi-

tions in order for this mutually coupled linear system to have eigenvalues within

the unit circle, and hence achieve stability are:
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1. P (1) > 0 =) ab� a� b+ 1 > 0 (C1)

2. P (�1) > 0 =) ab+ a+ b� 4K1K2 + 1 > 0 (C2)

3. |a0| < a4 =) |K1K2| < 1 (C3)

4. |b0| > |b3| =) |K2
1K

2
2 � 1| > |(a+ b� 2)K1K2| (C4)

5. |c0| > |c2| =) |K4
1K

4
2 � (a2 + b

2 + 2ab� 4a� 4b+ 6)K2
1K

2
2 + 1| >

|K4
1K

4
2 + (2a+ 2b� ab� 3)K3

1K
3
2 � (ab+ 1)K2

1K
2
2�

(a2 + b

2 + ab� 2a� 2b+ 1)K1K2 + ab|

(C5)

It can be seen that through Eqs.(C1-C5),K1 and K2 are always present mul-

tiplied together. Therefore taking into account Eq.(C3) = |K1K2| < 1, we can

treat the control gains as a single variable. This also means that if one does find

conditions where stability is successful i.e, for K1K2 = �0.2, then we can choose

varying controls e.g. K1 = �2 and K2 = 0.1, or K1 = 20 and K2 = �0.01. In

addition to this the controls could be exchanged (K1 := K2) and (K2 := K1),

and this would not e↵ect the stability of our system.

5.2.1 Pictorial overview of (C1-C5)

Now in (Figure A)3 we shall provide snapshots of the criteria established above.

3
See Appendix for Matlab code
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Figure A: Inequality plots of individual Jury Criteria w
ith increasing m

agnitudes of K
1 K

2 

In (Figure A) w
e have 63 inequality plots. The axis are too sm

all to be distinguished but a detailed explanation follow
s: beginning from

 left to 
right, in the first row

 w
e have the inequality plots depicting the intersection of Eq.(C1) and Eq.(C2). In the second row

 w
e have the inequality 

plots for Eq.(C4). In the third row
 w

e have the inequality plots for Eq.(C5), and in the fourth row
 w

e have the corresponding values of K
1 K

2  for 
each colum

n, w
hich adm

inisters Eq.(C3). Each plot has a as the horizontal-axis and b as the vertical-axis, both ranging from
 -5 to +5 w

ith the 
origin at the centre of each plot. The black regions portray the areas in w

hich the respective criteria are m
et, therefore, graphing the 

intersections of the first three row
s of each colum

n w
ould give the region of stability for the coupled system

 Eq.(5.1), according to the respective 
values of K

1 K
2 . 

W
hen |K

1 K
2 |

 = 1, w
e can see that stability is not achieved, as the leftm

ost and rightm
ost plots of the second row

 have no black regions. This 
adheres to Eq.(C3).  
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5.2.2 Analysis of coupled system with ‘zero control’

Beginning with K1 = 0,K2 = 0 or K1 = K2 = 0 Eqs.(C1-C5) of Jury’s Criteria

read:

1. P (1) = ab� a� b+ 1 > 0

2. P (�1) = ab+ a+ b�+1 > 0

3. 0 < 1

4. 1 > 0

5. 1 > |ab|

We can see that 3 and 4 are equivalent Boolean expressions which when evaluated

are true. In (Figure 4)4 the white region represents the intersection of 1, 2 and

5, which shows us that when at least one control gain is zero, stability is achieved

when |a| < 1 and |b| < 1. This result is reasonable, as without the presence of

control, an unstable signal will not be able to be stabilised.

Figure 4: Plot of region of All Criteria

4
See Appendix for Matlab code
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5.2.3 Graphs of regions of stability with �1  K1K2  0.95 (in steps of

0.05)

We shall now present 40 plots, over 5 figures in order to give an overview of the

regions of stability for varying control parameters. In each plot from here on, the

region where the criteria are met are the white regions.

In (Figure 5)5 We have used Eqs.(C1-C5) to plot the region of stability for the

system Eq.(5.1) for the respective values of the control gains.

Figure 5: Plot of region of stability for 2-D case with �1  K1K2  �0.6:
The figure represents the stability region of Eq.(5.1) for �1  K1K2  �0.6 in
steps of 0.05, with the top left figure representing the region of stability when
K1K2 = �1, and the bottom right figure representing the region of stability when
K1K2 = �0.6.

5
See Appendix for Matlab code
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In (Figure 6)6 We have used Eqs.(C1-C5) to plot the region of stability for

the system Eq.(5.1) for the respective values of the control gains.

Figure 6: Plot of region of stability for 2-D case with �0.55  K1K2 
�0.15: The figure represents the stability region of Eq.(5.1) for �0.55  K1K2 
�0.15 in steps of 0.05, with the top left figure representing the region of stability
when K1K2 = �0.55, and the bottom right figure representing the region of
stability when K1K2 = �0.15.

6
See Appendix for Matlab code
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In (Figure 7)7 We have used Eqs.(C1-C5) to plot the region of stability for

the system Eq.(5.1) for the respective values of the control gains.

Figure 7: Plot of region of stability for 2-D case with �0.1  K1K2  0.3:
The figure represents the stability region of Eq.(5.1) for �0.1  K1K2  0.3 in
steps of 0.05, with the top left figure representing the region of stability when
K1K2 = �0.1, and the bottom right figure representing the region of stability
when K1K2 = �0.3.

7
See Appendix for Matlab code

Page 30



Matthew Morrison 110260068

In (Figure 8)8 We have used Eqs.(C1-C5) to plot the region of stability for

the system Eq.(5.1) for the respective values of the control gains.

Figure 8: Plot of region of stability for 2-D case with 0.35  K1K2  0.75:
The figure represents the stability region of Eq.(5.1) for 0.35  K1K2  0.75 in
steps of 0.05, with the top left figure representing the region of stability when
K1K2 = 0.35, and the bottom right figure representing the region of stability
when K1K2 = 0.75.

8
See Appendix for Matlab code
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In (Figure 9)9 We have used Eqs.(C1-C5) to plot the region of stability for

the system Eq.(5.1) for the respective values of the control gains.

Figure 9: Plot of region of stability for 2-D case with 0.8  K1K2  0.95:
The figure represents the stability region of Eq.(5.1) for 0.8  K1K2  0.95 in
steps of 0.05, with:
The top left figure representing the region of stability when K1K2 = 0.8,
The top right figure representing the region of stability when K1K2 = 0.85,
The bottom left figure representing the region of stability when K1K2 = 0.9,
The bottom right figure representing the region of stability when K1K2 = 0.95.

When K1K2 = 1 we know from (Figure A), that stability cannot be achieved.

5.2.4 Analysis of regions of stability with �1  K1K2  1

(Figures 5-9) indicate that we have the largest region of stability when K1K2 = 0,

and this decreases as the magnitude of K1K2 increases. We can see from (Figure

9
See Appendix for Matlab code
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5) and up until the third plot in (Figure 6), in other words when, �1 < K1K2 

�0.45, the system can only be stabilised for |a| < 1 and |b| < 1, in which case

stability would not be required, as the system is stable without control. (Figures

5-9) also indicate that stability cannot be achieved for a � 1 and b � 1. Moreover,

as the magnitude of K1K2 increases, the regions of stability go from a square

(K1K2 = 0), and then undergo some sort of ‘distortion’ (for negative values only)

before the region shrinks in towards the point (a, b) = (1, 1) whilst resembling

an isosceles right angled triangle (with a concave/convex hypotenuse). The two

equal sides of this triangle are represented by a < 1 and b < 1, and the right

angle is the point (a, b) = (1, 1). The major di↵erence between the negative and

positive values of K1K2, is that for positive values, the region shrinks in a what

seems to be uniform manner, and doesn’t undergo any distortion.

(Figures 5-9) suggest that Eq.(5.1) cannot be stabilised for |a| � 1 and |b| � 1,

however, from (Figure 6-plot 4) to (Figure 7-plot 2), in other words, from �0.4 

K1K2  0.05, the ‘distortion’ that occurs, enables us to stabilise some values for

|a| � 1 and |b| < 1, or vice versa. For an example, we take a look at (Figure 10)

which is an enlarged version of (Figure 6-plot 8):

Figure 10: Plot of region of stability for 2-D case with K1K2 = �0.2

We can see from (Figure 10), that there are values of |a| � 1 and |b| < 1 (or

vice versa), which the graph indicates, that stability would be successful.

Example 5. For Eq(5.1), Letting a = �1.55, b = 0.4, K1 = �2, K2 = 0.1 we
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have the coupled map:

x

n+1 = �1.55x
n

� 2(y
n

� y

n�1)

y

n+1 = 0.4y
n

+ 0.1(x
n

� x

n�1)
(5.2)

Jurys Criterion for the system reads:

(C1) = �0.62 + 1.55� 0.4 + 1 = 1.53 > 0

(C2) = �0.62� 1.55 + 0.4 + 0.8 + 1 = 0.03 > 0

(C3) = |� 0.2| < 1

(C4) = |(�0.2)2 � 1| > |0.1(�6.3� 1� 2)| =) 0.96 > 0.63

(C5) = |(�0.2)4�(11.9225)(�0.2)2+1| > |(�0.2)4+(�4.68)(�0.2)3�(0.38)(�0.2)2�

(5.2425)(�0.2)� 0.62| =) 0.5427 > 0.45234

As all the criteria have been met, the four eigenvalues of the system are all

smaller than one in unity, and stabilisation of the system is guaranteed.

In (Figure 11)10 we have plotted the first 500 iterates of the example above,

with x

n

in black and y

n

in blue. It can be seen, that even though our system

was initially unstable, after introducing the TDFC mechanism, the trajectories

oscillate and converge to the fixed point, and hence the coupled system has been

stabilised.

Figure 11: Plot of the first 500 iterates of 4-D system with TDFC with x0 =
1, y0 = �1, a = �1.55, b = 0.4, K1 = �2 and K2 = 0.1

10
See Appendix for Matlab code
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5.2.5 Results

For the system:

x

n+1 = ax

n

+K1(yn � y

n�1)

y

n+1 = by

n

+K2(xn

� x

n�1)
(5.1)

Our graphical analysis indicates that for all values of |K1K2| < 1 the system can

be stabilised with TDFC, although for the majority of cases |a| < 1 and |b| < 1,

so TDFC would not be useful. In addition to this:

• When K1 = 0 or K2 = 0 the fixed point (x⇤, y⇤) = (0, 0) is stable if and

only if |a| < 1 and |b| < 1.

• When �0.4  K1K2  0.05 there are values for some |a| � 1 and |b| < 1,

or vice versa such that the system can be stabilised.

• The system cannot be stabilised if |a| � 1 and |b| � 1.

• The system cannot be stabilised if a � 1 or b � 1.
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6 Conclusion

By using analytical methods, we have explored the control of unstable fixed point

solutions in discrete time dynamical systems, with TDFC. By means of linear

stability, we found that for the 1-D case Eq(3.1), in order for stability to be

achieved, we must have:

|�1/2| =

�����
a+K ±

p
(a+K)2 � 4K

2

����� < 1

which led to the conclusion that we can find a suitable control gain K which

could stabilise an originally unstable signal of �3 < a  �1.

This concept was then applied to a 2-D case Eq(5.1), where we used Jury’s

Criterion to find the necessary and su�cient conditions to restrict the eigenvalues

of the quartic equation to less that one in magnitude are. These criteria are:

• ab� a� b+ 1 > 0

• ab+ a+ b� 4K1K2 + 1 > 0

• |K1K2| < 1

• |K2
1K

2
2 � 1| > |(a+ b� 2)K1K2|

• |K4
1K

4
2 � (a2 + b

2 + 2ab� 4a� 4b+ 6)K2
1K

2
2 + 1| >

|K4
1K

4
2 + (2a + 2b � ab � 3)K3

1K
3
2 � (ab + 1)K2

1K
2
2 � (a2 + b

2 + ab � 2a �

2b+ 1)K1K2 + ab|

By treating K1K2 as a single variable, we were able to produce graphical plots

of these criteria, with varying values of K1K2, and this led to the conclusion that

the system can be stabilised for some values of |a| � 1 and |b| < 1, (intuitively

one would assume a > �3, as this was a limit in the 1-D case) but not for any

|a| � 1 and |b| � 1, or a � 1 and any b (or vice versa).

This topic could be explored further in many ways. One could explore the

e↵ect of changing the values of K1 and K2, (where the value of K1K2 would
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remain constant) and seeing whether iterations converge at di↵erent rates to the

fixed point. One could also go about formalising and extending the analysis

of the graphical conjectures e.g. from the results section we have that “When

�0.4  K1K2  0.05 there are values for some |a| � 1 and |b| < 1, or vice

versa such that the system can be stabilised”. When K1K2 = �0.01, we have

(Figure 12)11, which suggests that the inequality is �0.4  K1K2 < 0. One

Figure 12: Region of 2D stability with K1K2 = �0.01

may also explore systems with a di↵ering version of TDFC for example by using

K(x
n�1�x

n�2), in order to see whether other unstable solutions can be stabilised.

11
See Appendix for Matlab code
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A

Appendix - Matlab codes for Figures

This section reveals the Matlab coding used to create many of the figures used

in the thesis.

Matlab Code for (Figure 1)

This Matlab code was used to get the region of stability:

area = -5:0.01:5,-5:0.01:5;

[a K] = meshgrid(area);

lamda 1 = abs(a+K + ((a+K).^2� 4. ⇤K).^(1/2)) < 2;

lamda 2 = abs(a+K � ((a+K).^2� 4. ⇤K).^(1/2)) < 2;

lamda 1 = double(lamda 1);

lamda 2 = double(lamda 2);

lamda 1(lamda 1 == 0) = NaN;

lamda 2(lamda 2 == 0) = NaN;

eigenvalues = lamda 1.*lamda 2;

surf(a,K,eigenvalues)

view(0,90)

xlabel(’a’)

ylabel(’b’)

title(’Region of Stability’)

This Matlab code was then used to recreate the area of stability as

seen in (Figure 1):

axis([-4 3 -2 3])

line([-3 -1],[1 0],[1 1],’LineStyle’,’-’)

hold on
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line([-1 1],[0 -1],[1 1],’LineStyle’,’–’)

hold on

line([1 1],[-1 1],[1 1],’LineStyle’,’–’)

hold on

line([1 -1],[1 1],[1 1],’LineStyle’,’–’)

hold on

line([-1 -3],[1 1],[1 1],’LineStyle’,’-’)

hold on

line([-1 -1],[0 1],[1 1],’LineStyle’,’-’)

grid on

hold on

area = -5:0.01:5;

[a K] = meshgrid(area);

inequalities = ((a+K).^2� 4. ⇤K > 0);

points = zeros(length(area));

points(inequalities) = NaN;

surf(a, K, points)

view(0,90)

xlabel(’a’)

ylabel(’K’)

title(’Region of Stability’)

Matlab Code for (Figure 2)

This Matlab code was used to produce (Figure 2):

x = zeros(51,1);

a = -2;

K = 0.75;

x(1) = 1;
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x(2) = a.*x(1);

for i = 3:1:51

x(i) = a.*x(i-1) + K.*(x(i-1) - x(i-2));

end

z = 0:1:50;

plot(z,x)

xlabel(’n’)

ylabel(’x
n

’)

title(’First 50 iterations of 2-D linear system with TDFC with x0 = 1, y
n

=

�1, a = �2, K = 0.750)

Matlab Code for (Figure A)

This Matlab code was used to get the regions of inequalities for row 1:

area = �5 : 0.01 : 5;

[a, b] = meshgrid(area);

for K = �1 : 0.1 : 1;

inequalities = (a. ⇤ b� a� b+ 1 > 0)&(a. ⇤ b+ a+ b� 4. ⇤K + 1 > 0);

points = zeros(length(area));

points(inequalities) = NaN;

surf(a, b, points);

view(0,90)

xlabel(’a’)

ylabel(’b’)

figure

end

This Matlab code was used to get the regions of inequalities for row 2:
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area = �5 : 0.01 : 5;

[a, b] = meshgrid(area);

for K = �1 : 0.1 : 1;

inequalities = (abs(K.^2� 1) > abs(K. ⇤ (a+ b� 2)));

points = zeros(length(area));

points(inequalities) = NaN;

surf(a, b, points);

view(0,90)

xlabel(’a’)

ylabel(’b’)

figure

end

This Matlab code was used to get the regions of inequalities for row 3:

area = �5 : 0.01 : 5;

[a, b] = meshgrid(area);

for K = �1 : 0.1 : 1;

inequalities = (abs(K.^4�(a.^2+b.^2+2.⇤a.⇤b�4.⇤a�4.⇤b+6).⇤K.^2+1) >

abs(K.^4+ (2. ⇤ a+2. ⇤ b� a. ⇤ b� 3). ⇤K^3� (a. ⇤ b+1). ⇤K^2� (a.^2+ b.^2+

a. ⇤ b� 2. ⇤ a� 2. ⇤ b+ 1). ⇤K + a. ⇤ b));

points = zeros(length(area));

points(inequalities) = NaN;

surf(a, b, points);

view(0,90)

xlabel(’a’)

ylabel(’b’)

figure

end
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Matlab Code for (Figures: 4-9, & 12)

This Matlab code was used to get the regions of stability for (Figures:

4-9):

area = �2 : 0.01 : 2;

[a, b] = meshgrid(area);

for K = �1 : 0.05 : 1;

inequalities = (a.⇤b�a�b+1 > 0)&(a.⇤b+a+b�4.⇤K+1 > 0)&(abs(K.^2�1) >

abs(K.⇤(a+b�2)))&(abs(K.^4�(a.^2+b.^2+2.⇤a.⇤b�4.⇤a�4.⇤b+6).⇤K.^2+1) >

abs(K.^4+ (2. ⇤ a+2. ⇤ b� a. ⇤ b� 3). ⇤K^3� (a. ⇤ b+1). ⇤K^2� (a.^2+ b.^2+

a. ⇤ b� 2. ⇤ a� 2. ⇤ b+ 1). ⇤K + a. ⇤ b));

points = zeros(length(area));

points(inequalities) = NaN;

surf(a, b, points);

view(0,90)

xlabel(’a’)

ylabel(’b’)

title([’Jury‘s Criterion Region of Stability for 2D for (K1K2=’ num2str(K) ’)’])

figure

end

The Matlab code used to get the region of stability for (Figure 12) is:

area = �2 : 0.01 : 2;

[a, b] = meshgrid(area);

K = �0.01;

inequalities = (a.⇤b�a�b+1 > 0)&(a.⇤b+a+b�4.⇤K+1 > 0)&(abs(K.^2�1) >

abs(K.⇤(a+b�2)))&(abs(K.^4�(a.^2+b.^2+2.⇤a.⇤b�4.⇤a�4.⇤b+6).⇤K.^2+1) >

abs(K.^4+ (2. ⇤ a+2. ⇤ b� a. ⇤ b� 3). ⇤K^3� (a. ⇤ b+1). ⇤K^2� (a.^2+ b.^2+

a. ⇤ b� 2. ⇤ a� 2. ⇤ b+ 1). ⇤K + a. ⇤ b));
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points = zeros(length(area));

points(inequalities) = NaN;

surf(a, b, points);

view(0,90)

xlabel(’a’)

ylabel(’b’)

title([’Jury‘s Criterion Region of Stability for 2D for (K1K2=’ num2str(K) ’)’])

Matlab Code for (Figure 11)

The Matlab code used in order to achieve this plot is:

x = zeros(500,1);

y = zeros(500,1);

a = -1.55;

b = 0.4;

K1 = -2;

K2 = 0.1;

x(1) = 1;

y(1) = -1;

x(2) = a.*x(1);

y(2) = b.*y(1);

for i = 3:1:501

x(i) = a.*x(i-1) + K1.*(y(i-1) - y(i-2));

y(i) = b.*y(i-1) + K2.*(x(i-1) - x(i-2));

end

z = 0:1:500;

plot(z,x,’k’,z,y,’b’)

xlabel(’n’)

ylabel(’x
n

or y
n

’)
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title(’First 500 iterations of 4-D linear system with TDFC with x0 = 1, y
n

=

�1, a = �1.55, b = 0.4K1 = 2, K2 = �0.1’)

legend(’x0
n

,

0
y

0
n

)
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