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1 Introduction 

 
Dynamical systems can be described by various types of equations of motion. Which 

type applies may depend on the general context. For example: 

(i) Ordinary differential equation is a differential equation in which the unknown 

function is a function of a single independent variable. It normally describes the 

motion in a system with few degrees of freedom like pendula. 

(ii) Partial differential equation is a differential equation in which the unknown 

function is a function of multiple independent variables and their partial 

derivatives. Thus it is used to formulate problems involving functions of several 

variables such as the propagation of sound, electrodynamics or fluid flow. 

(iii) Stochastic differential equation is a differential equation in which one or more of 

the terms are a stochastic process. SDE are important whenever there is any kind 

of uncertainty. 

(iv)  Differential Algebraic equation is a differential equation comprising differential 

and algebraic terms given in implicit form. Such models are used for studying 

fundamental problems in abstract mathematics. 

(v)  Delay differential equation (DDE) is an equation where the evolution of the 

system at a certain time depends on the state of the system at earlier time. They 

are relevant when there is time delay.    

In this thesis I will be studying the delay differential equations. We shall study its 

stability properties using analytical computation. In the next three chapters we inspect the 

stability properties of the first order delay differential equation and the second order 

delay differential equations. Before we do so, let me first make clear what we actually 

know about delay differential equations. I will also briefly mention the history of delay 

differential equations and its various applications.  

Delay differential equations (also known as delayed system) are type of 

differential equation in which derivative of the unknown function at a certain time is 

given in terms of the values of the function at previous times; they are a special case of a 

class of differential equations called functional differential equations.  
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A general form of the time delay differential equation for ℜ∈x  is given by: 

    )),(,()( txtxtftx =&

where }{ txxt ≤= ττ :)(  represents the trajectory of the solution in the past. 

Delay Differentials equations could be continuous as well discrete DDEs. A first order 

continuous delay differential equations have the following general form:  

    ∫
∞−

+=
0

))()(),(,()( τμτ dtxtxtftx&

A first order discrete delay differential equations could be presented in general as: 

 

   ))(,),........(),(,()( 1 ntxtxtxtftx ττ −−=&  for 0....1 ≥>> nττ  

 The essential difference in ODE and DDE is in the initial value problem. For 

ODE it is given by a point whereas for DDE it is defined by a function. In particular 

delay differential equations are defined on infinite dimensional phase space, contrary to 

the other differential equations. Thus for linear systems the corresponding characteristic 

equations will have an infinite number of solutions as well, which complicates the 

analytical computation. 

DDE were initially introduced in the eighteenth century by Laplace and 

Condorcet. Nothing was done throughout the nineteenth century, but only after Second 

World War. The basic theory concerning the stability system of DDEs was developed by 

Pontryagin in 1942. Also important works of DDE have been written by Bellmann and 

Woke 1963 and Hale in 1977. 

DDE are notoriously difficult to solve by analytical methods. Thus in application 

one often applies numerical methods like Runge-Kutta method [3], asymptotic solutions 

such as perturbation methods, analytical method like Lambert W function and graphical 

tools. The situation becomes more tractable when studying the linear system. Then the 

computation of time dependent solution can be reduced to linear or non linear eigenvalue 

problems.  
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Several attempts have been made to find an analytical solution for delay 

differential equations by solving its transcendental characteristic equation under different 

conditions.  Lambert W function (Omega function) is a useful analytical method to solve 

this transcendental equation of the DDEs. The advantage of this method is that the 

solution obtained can be compared to the general solution form of ordinary differential 

equation. Every function of  that satisfies )(sw sswsw =))(exp()(  is called a Lambert W 

function [3]. Such method will give us the stability region of a delay differential equation. 

For example the diagram below shows stability criteria for a generalized first order DDE 

[3] 

 

 

 

 

 

Systems of delay differential equations now occupy a place of central importance 

in all areas of science particularly, in the biological sciences and also in engineering and 

economics. An important application of delay differential equations is the reduction of 

chatter in machining processes. It is also used in population models, economic systems, 

remote control, urban traffic, electric transmission line, heat exchangers and control 

systems for nuclear reactors with time delay and manufacturing system. 

In this project we will be analyzing the stability of a first order delay differential 

equation and a second order delay differential equation. Instead of the Lambert W 

function method we will use less complicated method; which will give us an estimate 

stability region. 
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2 Linear first order delay differential equation 

 
The linear first order of delay differential equations are the simplest differential 

delay equations, even though in general they are quite difficult to solve. But analytical 

results can be obtained for delay differential equations. Within this chapter we will be 

studying the linear first order delay differential equation. The linear first order delay 

differential equation we will be looking at has the following form: 

    )()()( τβα −+= txtxtx&     (1)                             

where α  and β  are real valued parameters and 0≥τ denotes the time delay. 

Mainly we shall investigate the stability properties of equation (1) with and 

without time delay. Hence we want to identify those values of α   and β   such that all 

the solutions of equation (1) tend to zero when t goes to infinity. Solution can be written 

down in terms of the exponential function: 

    )exp()( ttx λ=       (2) 

where λ  are the eigenvalues. But any solution of our linear system can be written as a 

linear superposition of such exponential; therefore such a choice does not limit generality 

of our arguments. The general solution can be written as a sum of such exponential type: 

         (3) ∑
∞

=

=
1

)exp()(
i

ii tctx λ

Thus the stability problem now reduces to the question whether the alleged 

characteristic values of λ  have positive or negative real part. The stability requires that 

all solutions satisfy the condition that 0Re <λ . Which means that if all exponential 

decay ( 0Re <iλ ) then the general solution decays as well. Another way of saying is that 

equation (1) will be asymptotically stable if and only if all the roots of its characteristic 

equation (cf. section 2.1) have negative real roots.  

If there exist a root of the characteristic equation with a zero or positive real part 

then the trivial equation (1) is not asymptotically stable.  
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If the region is unstable, then there is at least one eigenvalue say 1λ  with positive real 

part such that:  

      (4) ∑
∞

=

+=
2

11 )exp()exp()(
i

ii tctctx λλ

Then the general solution contains at least one exponential which grows when t goes to 

infinity where . Thus the unstable case requires the condition 01 ≠c 0Re >λ . For 

simplicity we will use equation (2) to obtain the characteristic equation rather than 

equation (3). 

 

 

2.1 Characteristic equation 
 

Equation (1) can be reduced to an algebraic equation using equation (2). Using 

equation (2) implies that: 

))(exp()( τλτ −=− ttx      (5) 

)exp()( ttx λλ=&       (6) 

Then equation (1) becomes: 

   ))(exp()exp()exp( τλβλαλλ −+= ttt  

   
)exp(

))(exp(
)exp(
)exp(

t
t

t
t

λ
τλβ

λ
λαλ −

+=  

   )exp( λτβαλ −+=   where 0≥τ    (7)  

which is the characteristic equation of the linear differential difference equation; also 

called the transcendental eigenvalue equation. Such equation has normally infinitely 

many solutions. For later purpose it will be convenient to rewrite equation (7) using the 

following abbreviations: 

   λτ=z ,  ατ=a ,  βτ=b      (8) 

where 0>τ . Then equation (7) simplifies to: 

   )exp( zbaz −+=       (9)  
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We want to investigate the stability properties of equation (1). The true boundary 

is obtained from the parametric representation of the curve when ϕλ i=  in equation (7). 

But within this project we shall establish an estimate of the stability domain. Solving the 

transcendental equation (9) for z gives a criterion for the stability of the equation. From 

equation (9) we need to figure out the part of the (a,b) parameter plane which admits 

solutions with negative real part only. Thus the region where the real part is negative 

determines a stable region.  The boundary of the stability domain is determined by the 

condition that the characteristic equation possesses either a solution or a solution 

with vanishing real part 

0=z

ϕiz =  where ℜ∈ϕ . 

  

 

2.2 Case without time delay  
 

To illustrate some basic idea, lets focus on the trivial case without time delay i.e. 

the case where 0=τ . Then the characteristic equation (7) simplifies to:  

   βαλ +=        (10)  

This means there is just one single real solution. As we mentioned before when 0Re <λ , 

it yields a stable solution. If we let 0Re <λ  then that implies that 0<+ βα . Therefore 

the region 0<+ βα  is stable while the region 0>+ βα  is unstable. The stability 

domain can easily sketched in the (a,b) parameter plane (cf. figure 1). 

 The boundary of the stability domain is obviously determined by the solution of the 

equation 0=+ βα . Therefore even without solving the characteristic equation for λ  one 

could determine one of the boundaries of the stability by selecting .0=λ  From Figure 1 

the diagonal line  gives a boundary of the stability domain and the region below 

that line is stable. 
ba −=
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Figure 1: The stability domain when 0=τ : 

 

 
 

 

 

2.3 Boundaries of the stability domain  

 
The transcendental equation (9) is quite difficult to solve for z. However the 

boundaries of the stability domain are determined by the condition that λRe  changes 

sign, i.e. .0Re =λ  The λRe  changes sign by the condition mentioned in the previous 

paragraph. The two conditions are when: 

• A real value changes sign i.e. 0=z  on the boundary.    (*) 

• A complex conjugated pair of solutions crosses the imaginary axis i.e. ϕiz =  and 

where ℜ∈ϕ  denotes the imaginary part of the solution.  (**) 

In this paragraph we will examine both cases separately and each case more detailed. 

Consider the first condition represented by (*) where the boundary of the stability 

domain is determined by the condition 0=z . This changes equation (9) to: 

          (11) ba +=0

This stability region is the same as the one in the previous section where we considered 

the case without time delay; so equation (11) gives us the same boundary. The boundary 

is displayed in figure 2. Similar to the case without time delay the region below the 

boundary line is stable. 
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Figure 2: The stability domain when z = 0: 

 

 
 

 

Now let’s consider the second condition which is represented by (**). The 

boundaries domain are obtained by the condition ϕiz =  where ℜ∈ϕ . This condition 

changes equation (9) as follows: 

   )exp( ϕϕ ibai −+=    

   ϕϕϕ sincos ibbai −+=      (12) 

Comparing the real and imaginary part on both sides of the equation we obtain: 

   ϕcos0 ba +=       (13) 

   ϕϕ sinb−=        (14) 

Rearranging equation (13) and equation (14) we get: 

   
ϕ

ϕ
tan

=a , 
ϕ

ϕ
sin

−=b      (15) 

Equation (15) determines the parametric representation of curves in the (a,b) plane.  

The expressions which determine a and b develop singularities for πϕ k=  

where ., since trigonometric functions (cf. fig 3) appear in the denominator of 

equation (15), thus these equations determine a family of distinct curves (cf. fig 5). So 

each interval 

,...2,1,0=k

))1(,( ππϕ +∈ kk  gives rise to a different branch. 
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A complex conjugated pair of eigenvalues ϕi  and ϕi−  cross the imaginary axis. 

Hence ϕiz −=  also determines the boundary of the stability domain. But if we put 

ϕiz −=  into equation (9) we get the same a and b values as in equation (15). Therefore 

we omit the case when ϕiz −= .   

 

Figure 3: The Trigonometric functions: 

 
In figure 3 The “arrows” indicate whether the trigonometric functions approach zero from 

above or below when πϕ → . 

Investigating each of these curves separately, we observe a pattern on how each curve are 

represented on the (a.b) parameter plane (cf. figure 5). 

 Consider the first branch where ),0( πϕ ∈ . In the limit 0→ϕ  the coordinates a 

and b both tend to a finite limit, since both the numerator and denominator tend towards 

zero. 

Application of L'Hôpital's rule yields the finite limit of a and b i.e. 

   1
sec

1lim
tan

limlim 2000
===

→→→ ϕϕ
ϕ

ϕϕϕ
a    

1
cos

1lim
sin

limlim
000

−=
−

=−=
→→→ ϕϕ

ϕ
ϕϕϕ

b     (16) 

Hence when  0→ϕ  then   whereas  i.e. it touches at the line  when 

 and . Therefore this branch terminates on the boundary given by . In 

the limit

1→a 1→b ba −=

1=a 1−=b 0=z

πϕ →  both a and b tend to ∞− . Since ϕtan  approaches zero from below as 

πϕ →  and ϕsin  approaches zero from above as πϕ →  (cf. fig 3). Hence both 

parameters a and b diverge.  
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 Now let’s consider the second branch where )2,( ππϕ ∈ . In the limit πϕ →  both 

a and b both tend to . Because ∞ ϕsin  approaches zero from below and ϕtan  from 

above where πϕ > . For the limit πϕ 2→  a tends to ∞−  and b tends to  where ∞

πϕ 2< . Since ϕsin  approaches zero from below and ϕtan  from below. Those two 

branches when ),0( πϕ ∈  and )2,( ππϕ ∈  are sketched in figure 4.   

 

Figure 4: The first two branches of the parametric curves of the first order 

delay differential equation  

 

 
where: 

• Blue line represent boundary determined by the condition 0=z . 

• Red curve is the boundary determined by the condition ),0( πϕ ∈ . From figure 4 

you can that when 0→ϕ , that the curve terminates on the boundary  at       

(-1,1) and when 

0=z

πϕ →  both a and b tend to ∞−  i.e. ),( −∞−∞ . 

• Green curve is determined by the condition when )2,( ππϕ ∈ . 

• Yellow curve is determined by the condition when )3,2( ππϕ ∈ . 

At first after all this calculation I have sketched the two branches by hand. Then I used 

Maple to draw the curves more accurate; so I obtained figure 4. 
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The other branches can be analyzed in similar way where ))1(,( ππϕ +∈ kk  and 

. Whether the value of k is odd or even it is very important. Since it 

determines the position of the curves in the (a,b) parameter plane. If k is even then the 

curve is in the region below a-axis and if k is odd it is in the region above a –axis. The 

limits are always infinite and asymptotes can be worked out from equation (15). 

,....3,2,1,0=k

The asymptote is the ratio of the two parameters a and b, which according 

equation (15) can be written as: 

   ϕ
ϕ

ϕ
ϕ sin*

tan
−

=
b
a

 

Which implies that  ϕcos−=
b
a        (17) 

For example in the limit πϕ →  1→
b
a , which means ba ≅ , i.e. it yield an asymptote.  

In equation (17) taking πϕ k→  where ,...2,1,0=k it will gives two asymptotes, 

depending on the value of k. If k is odd then it will give us the asymptote  and if k 

is even it will give us the asymptote 

ba ≅

ba −≅ . Both asymptotes are represented in figure 5. 

 By taking 
2
πϕ k=  and k is odd integer i.e. ,...5,3,1=k , we obtain the coordinates 

where each curves cuts on the b-axes.  

 

For example the case when  we obtain: 5,3,1=k

   
2
πϕ =   0=a  and 

2
π

−=b  

   
2

3πϕ =  0=a  and  
2

3π
=b  

   
2

5πϕ =  0=a  and  
2

5π
−=b  

We can see that if  then the coordinates of b are negative. Whereas for 

 then coordinates of b are positive where 

34 += nk

14 += nk ...2,1,0=n  But for any value of  the 

coordinates of a is zero. (cf. figure 5) 

k
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Figure 5: The parametric curves of the first order delay differential equation: 
 

 

 
 

 

I have used Maple to sketch figure 5 which shows two asymptotes and 5 curves. 

The curves could be labelled by .....2,1,0=k Label the first branch ),0( πϕ ∈  by 

(red colour) and label  for the next branch (green colour) etc (cf. fig4).  0=k 1=k

The true stability domain is bounded by the curves we have computed i.e. it is bounded 

between the two boundaries. One boundary is a part of the line 0=+ ba  and the other 

boundary is the branch where ),0( πϕ ∈ . But the asymptotes are analytical estimate for 

the stability domain. The red line and the blue line are the two asymptotes. In this thesis 

we limit our studies to the  region between the two asymptotes( 0<+ ba ). Hence the 

striped region ( 0<+ ba ) have to be stable region since it is in the region between the 

first branch and the line 0=+ ba . We will verify this conjecture using algebraic 

estimates in the next chapter.  
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3 Algebraic estimates for the boundaries of stability domain 

 
 In the previous chapter we made some conjecture about the stability region. We 

determined an estimate for the unstable and stable region. In this chapter we shall 

reformulate these conjectures into two lemmas and proof each lemma separately. 

 

 

Lemma 1 

 
 If  where a and b are real numbers then the characteristic equation 

 has a solution where  (Unstable). 

0>+ ba

)exp( zbaz −+= 0)Re( >z

 

Figure 6: The estimate unstable region:  
 

 
 

where the  represents the boundary and the region above the line is an unstable 

region. 

ba −=
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Proof 

 
 We will prove this lemma using the intermediate value theorem. The Intermediate 

Value Theorem (IVT) states that if [ ] ℜ→yxf ,:  is continuous and ,  

where 

0)( <xf 0)( >yf

yx <  then there exist a point ),( yxc∈  such that 0)( =cf . 

 

Using IVT we require showing that we have at least one positive solution i.e. that the 

transcendental equation has a solution  in the region 0>z 0>+ ba . 

Let  then: )exp()( zbazzf −−−=

0)()0exp(0)0( <+−=−−=−−= bababaf ,      Since  0>+ ba

∞=∞)(f  

Hence  implies the existence of a value ∞=∞)(f y  such that  and Intermediate 

Value Theorem can be applied for  and . Therefore we get: 

0)( >yf

)0(f )(yf

0)( =zf   for 0>z               

Thus we have at least one positive solution in the region 0>+ ba . Therefore the region 

above the line  is unstable. ba −=

 

 

Lemma 2 

 

 If 0<+ ba  where a and b are real numbers then the characteristic equation 

 has no solution where (Stable). )exp( zbaz −+= 0)Re( >z

 

Proof 
 

 Suppose that  a + │b│< 0. If the Re (z) <0 then the transcendental equation is 

stable for that region. We shall proof this lemma by contradiction. 
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Let iyxz +=  then the transcendental equation (9) becomes: 

   )exp( iyxbaiyx −−+=+  

   )sin)(cosexp( yiyxbaiyx −−+=+     (18) 

We are only interested in the real part of equation (18). Hence we obtain: 

   yxbax cos)exp(−+=      (19) 

Assume that  which implies . We know that the function of cosy is 

bounded between 1 and -1 i.e. 

0)Re( >z 0>x

1cos <y  and 1)exp( <−x  because we assume . 0>x

Using what we know we can see that the right hand side of equation (19) is less than the 

value of ba + . In other words what we are trying to say is that:  

   bayxba +<−+ cos)exp(      (20) 

Since a + │b│< 0 equation (19) becomes: 

   0cos)exp( <+<−+= bayxbax  

But we assumed , hence we get a contradiction. Therefore the region  0>x 0<+ ba  is a 

stable region. 

 Both lemmas show that at least the region above the diagonal  is 

unstable (cf. figure 5 and 6); also that the region bounded by the two diagonal 

0=+ ba

ba −=  

and  is stable. We have obtained an estimate stability region for the linear first 

order delay differential equation (1). 

ba =
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4 Second order delay differential equations 
  

 In this chapter we are looking at more advanced topic compared to the first order 

delay differential equation. It is more complicated but a similar approach can be applied 

to the second order differential difference equations which describes oscillators subjected 

to time delay feedback. The second order delay differential equation which we will study 

in this chapter has the following form: 

)()()()( τδχβα −=++ txtxtxtx &&&     (21) 

where mass=α , damping=β , force=χ  

 

 

4.1 The transcendental equation 

 
 Using )exp()( ttx λ=  in equation (21) we obtain the following transcendental 

eigenvalue equation 

)exp(2 λτδχβλαλ −=++  

)exp(2
2 zzz −=++ δχ

τ
β

τ
α  

)exp(2 zzz −=++ δτχτβ
τ
α      (22) 

The parameter β  has an important impact on equation (22). Different values of the 

parameter β  will give us different stability properties. Hence to determine the stability 

properties of equation (21) we need to consider the following three cases separately 

• 0>β    

• 0<β    

• 0=β    

In this thesis, it will take a great deal to cover all the three cases. As a result we will only 

focus on the case when the parameter 0>β . 
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4.2 The stability domain for 0>β  

 

 If 0>β  then we could divide both side of equation (22) by β . Then we obtain 

the following equation: 

)exp(2 zzz −=++
β
δτ

β
χ

βτ
α      (23) 

Hence rearranging equation (23) we find:  

)exp(2 zbazcz −+=+      (24) 

where 
βτ
α

=c , 
β
χ

−=a  and 
β
δτ

=b  

 We shall evaluate equation (24) with the same method we applied in equation (9) 

section 2.1. But equation (24) is more complicated than the transcendental equation of the 

first order delay differential equation. There will be three cases that we need to discuss 

separately which are when ,  and 0=c 0>c 0<c . 

 If we consider the trivial case when 0=c  then we obtain the transcendental 

eigenvalue equation of the first order delay differential equation (cf. chapter 2). 

 Now let’s look the case when . Again to determine the boundaries stability 

domain we need to consider the conditions 

0>c

0=z  and ϕiz = . When  , we get the 

same result as in section 2.2, but what about when 

0=z

ϕiz = ? 

Taking ϕiz =  equation (24) becomes: 

)exp()( 2 ϕϕϕ ibaiic −+=+  

⇒  )      (25) exp(2 ϕϕϕ ibaic −+=+−

Comparing the real part and the imaginary part on both sides of the equation we have: 

   ϕϕ sinb−=  

         (26) ϕϕ cos2 bac +=−

Rearranging equation (26) gives: 

ϕ
ϕϕ

tan
2 +−= ca   and  

ϕ
ϕ

sin
−=b    (27) 
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Which gives us another stability boundary in the parameter space of (a,b), where a and b 

represents parametric equations which you obtain a set of curves. Each of these curves 

are determined by ))1(,( ππϕ +∈ kk . The first branch is obtained by putting  0=k  

where a finite limit occurs. Similarly to chapter 2, from equation (27) asymptotes could 

be determined. The asymptote are worked out by considering the ratio of the two 

parameter a and b which can be written as: 

ϕ
ϕ

ϕ
ϕϕϕ sin*

tan
tan2 −+−

=
c

b
a

    

  ⇒  ϕϕϕ cossin −= c
b
a       (28) 

In section 2.3 the equation gave us only two asymptote namely and ba / ba −= ba = . 

But equation (28) is more complicated,  so we need to derive an equation which gives us 

the general form of the asymptotes. Consider ϕ  close to πk  where  is an integer. Let k

Δ+= πϕ k , considering  to be small, then equation (27) gives us: Δ

   
)tan(

)( 2

Δ+
Δ+

+Δ+−=
π

ππ
k

kkca  

   
)sin( Δ+

Δ+
−=

π
π
k

kb       (29) 

Using Taylor series we attain  and similarlyΔ−≅Δ+ kk )1()sin( π Δ≅Δ+ )tan( πk . So 

equation (29) changes to: 

   
Δ−

−≅ k

kb
)1(
π  

         (30) bkca k)1()( 2 −+−≅ π

This gives us the asymptotes of equation (24). The asymptotes will shift up each time for 

different values of  where . c 0>c

 Equation (27) is more complicated to sketch then equation (15). I have used 

Maple to sketch the parametric curves of the equation. We can see in figure 7 which has 

small positive value of c that the curves look very similar to the curves in figure 5. Hence 

it has the same stable region as the linear first order delay differential equation (1). 
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Figure 7: The parametric curves of the second order delay differential 

equation for a small value of c i.e. c = 0.1: 

 

 
 

Comparing figure 8a and 8b we view that each curve shifts to the left as the 

positive value of c gets bigger. Some of the curves are below the a-axis while the other is 

above the a-axis depending on ϕ  where ))1(,( ππϕ +∈ kk (cf. figure 8a and 8b). We see 

that if k is even then the curve is below the a-axis while if k is odd, the curve is above the 

a-axis. From figure 8a and 8b, we observe that the region between the two sets of 

boundaries contains a parabola shaped region which opens to the left. Hence the parabola 

shaped region should be a stable region. We shall proof this conjecture in the next 

section. 

 

Figure 8a: The parametric curves of the second order delay differential 

equation when 0>β  and c = 0.75: 
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Figure 8b: The parametric curves of the second order delay differential 

equation when 0>β  and c = 1.0: 

 

 
Figure 8a and 8b we see that the distance between the curves gets bigger as c increases; 

also that the curves become wider.  

 

What about the case when 0<c . We could determine the parametric curves of 

the equation when using the same method. In order not to replicate the same 

calculation again, I have used maple to construct the parametric curves of the equation 

when (cf. fig 9a, 9b). From figure 9a and 9b we notice that the stable region is 

bounded by the red and the blue line. Hence this case has very similar stability region as 

the first order delay differential equation; see the figures below. When , we could 

use the same stability region as the first order DDE as we only resolve for an estimate 

stability region in this project. But as c gets more negative we observe that the stability 

region gets bigger, since the red curve becomes more curved. The green and the orange 

curves change their shapes because they are in the unstable region. 

0<c

0<c

0<c
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Figure 9a: The parametric curves of the second order delay differential 

equation for 0>β  with negative value i.e. c = -0.5: 

 

 
 

Figure 9b: The parametric curves of the second order delay differential 

equation for 0>β  and c = -1.0: 

 

 
 

where: 

• The blue line represents the boundary obtained by the condition   (i) 0=z

• The red curve is obtained by the condition ϕiz =  ),0( πϕ ∈  and    (ii) 

• The region bounded between (i) and (ii) is the stable region 
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4.3 Algebraic estimates  

 
In the previous section, we made conjecture for the stability region for the cases  

and . The case , is very similar to the first order delay differential equation and 

so we shall omit the proof. For the case , we stated that the region which has the 

parabola shaped region is stable; so will proof this conjecture in lemma 4. The following 

2 lemmas are only valid for the case .  

0>c

0<c 0<c

0>c

0>c

 

Lemma 3 

 If  and  then the transcendental equation  

has a solution where  (Unstable) 

0>+ ba 0>c )exp(2 zbazcz −+=+

0Re >z

 

Proof 
 We will proof this lemma the same way as lemma 1. We need to show that we at 

least have one positive solution in the region 0>+ ba   

Let . )exp()( 2 zbazczzf −−−+=

   0)()0( <+−=−−= babaf   since 0>+ ba  

       since 0>c  =∞)(f ∞

Hence by intermediate value theorem 0)( =zf  for  i.e. there is at least one positive 

solution in the region . As a result the region 

0>z

0>+ ba 0>+ ba  is unstable 

 

Lemma 4 

 If 02 <++ bcba  and , a, b and c are real numbers then the transcendental 

equation  has no real solution where  (Stable). 

0>c

)exp(2 zbazcz −+=+ 0Re >z

 

Proof  

If the region 02 <++ bcba  is stable then 0)Re( <z . Hence to proof the lemma 

we need . We shall proof this lemma by contradiction.  0)Re( <z
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Suppose that 02 <++ bcba  and . 0>c

Let iyxz +=  where yx,  are real numbers. Then the equation (24) simplifies to: 

)sin)(cosexp()2( 22 yiyxbaiyxyixyxc −−+=++−+  

Then comparing the real and imaginary parts on both sides of the equation we get  

       (31) yxbaxcycx cos)exp(22 −+=+−

yxbycxy sin)exp(2 −−=+      (32) 

Assume that  which implies . We rearrange equation (32) to obtain a 

relationship between 

0)Re( >z 0>x

y and b .  

yxbcxy sin)exp()12( −−=+  

⇒  bcxy <+ )12(  

⇒  
12 +

<
cx

b
y  

⇒  by <        (33) 

 

Similar to the proof of lemma 2 we conclude that bayxba +<−+ cos)exp(  since  

by assumption. Using this statement with equation (33) then equation (31) becomes: 

0>x

022 <++<+ babcxcx   since 02 <++ bcba  

But we assumed  i.e. , hence we get contradiction. Therefore 0)Re( >z 0>x 0)Re( <z . 

As a result the region 02 <++ bcba  is stable and it has parabola shape. 

If  02 =++ bcba  then we find that: 

   0)1( 2 =++ bcbca  

   0)41)21(( 22 =−++ ccbca  

   041)21( 2 =−++ ccbca  

   2)21(
4
1 cbc
c

a +−=  

So the equation  02 =++ bcba  has a parabola shape which is flipped on the b-axis. 
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5 Conclusion 

 
To summarize what we have done so far, we determined an estimate for the unstable 

and stable regions. We have achieved this by establishing the characteristic equation, 

from which we determined an estimate of the stability domain; we made a conjecture 

about the region of our stable estimate and finally proved it as a lemma.  

The true boundary can be obtained from the parametric representation of the curve 

ϕλ i= . On that boundary the change from stable to unstable occur. Considering this case 

would have complicated this thesis; so we can conclude that to obtain an estimate stable 

region for the delay differential equations we could use the steps mentioned above. But if 

we need to determine the true boundary which will gives the whole stable region, then we 

need to use methods like Runge-Kutta or Lambert W functions. 

 In chapter 2 and 3 the linear first order system; the stability domain has been 

expressed in terms of rescaled parameters i.e. ατ=a  and βτ=b . We could have also 

investigated how for a fixed values of α  and β , the stability could change when the 

delay time τ  increases. According to equation (8) such a change in delay corresponds to 

a ray in the (a,b) plane originating from the origin. If 0<+ ba  then such a ray never 

leaves the stability region displayed in figure 5. Hence the time dynamics is stable for all 

values of the delay τ . If  but 0<+ ba 0>− ba  then the initial part of the ray is in the 

stability domain, but it will cross the boundary at some value (cf. figure 10). The point 

where it crossed is called the critical time delay where cττ = . As a consequence, the 

dynamics is stable for cττ <  but unstable for cττ > . We could also evaluate critical 

delay time. In critical case the eigenvalue equation has a solution ϕλ i= ; the condition 

when ϕλ i=  determines the boundary domain i.e. critical line. Thus the solution in the 

critical case oscillates with frequency ϕ . 

 

 

 

 

 27



In chapter 4 the second order system for positive mass and damping where  

has indicated that the stability domain has a parabola like shape see figure 8. Since any 

ray in the (a,b) plane will finally cut the parabola like shaped, we then conclude that such 

system will always have critical delay time and systems with large delay will become 

ultimately unstable. So higher order systems would be more complicated to investigate 

because the transcendental equation becomes more complex. 

0>c

 

Figure 10: critical time delay: 

 

 
 

where: 

• The green line corresponds to line ba −=  

• The red curve is the boundary obtained by ϕiz =  where ),0( πϕ ∈  

• The blue line corresponds to the line when 2=α  and 1=β  i.e. it is the 

region 0<+ βα  

• The orange line corresponds to the line when 1=α  and 2=β  i.e. it is in 

the region 0<+ βα  
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