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Abstract 

My dissertation investigates how extreme events, such as weather changes or political decisions 

impact electricity prices. For empirical results, we will observe the Nord Pool electricity prices from 

1999 to 2007, that is given in an hourly manner, and see whether those results are what we would 

expect. In this thesis, we will look at the whole data set from 1999 to 2007 as well as the data sets 

that are conditioned on the hours of the day. We will see interesting patterns of extreme events. 

For example, at 1 am we observe a periodical pattern of the extreme events and analyse what could 

cause that. Moreover, we will investigate on what hours of the day the extreme events have a strong 

impact, and surprisingly, we will see that at 2 am the extreme events have such a strong impact on 

the electricity price, that we cannot use statistical tools such as the mean and the variance to 

describe the behaviour of the electricity prices for that data set. We will then conclude on our 

findings, which includes an insight on whether any of the data sets follow a Geometric Brownian 

Motion process.  
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1.0 Introduction 

The theory and practise of asset valuation over a particular time period is referred to as financial 
time series analysis (Tsay, 2010). Events like the financial crash in 2007, also known to as ‘The Great 
Recession’, have made it even more crucial to analyse financial data to prevent a crisis like this in 
the future. The recession had vast consequences. Major banks went bankrupt such as Lehman 
Brothers and because of economic uncertainty, the general public reduced their consumption of 
goods. Consequently, the profit of firms decreased which lead to higher rates of unemployment.  
Even today, countries such as Greece and Spain are suffering from the recession and are trying to 
recover and build a stronger economy. To do that, data analysis from past values is essential as one 
may find patterns which can help with forecasting and in return enable them to make more efficient 
economic decisions. A contemporary example is Brexit, whereby in June 2016, the UK voted to leave 
the EU. Many speculate what changes Brexit will bring, especially with regards to prices of goods as 
well as political changes. The uncertainty of Brexit can lead to drastic changes in the housing prices 
as well as electricity prices, which in return will affect the general public. The online newspaper 
Independent (2017) predicts that 10,500 jobs in finance will be lost on the first day of Brexit. 
Moreover, since the Brexit vote, the economy growth has slowed down. This is evident in the 
sterling exchange rate that dropped immensely after the Brexit vote and which is growing slowly 
since.  

 

 
Figure 1: Musaddique S., 2018, Sterling Exchange Rate, The Independent. [Online] Available at: https://www.independent.co.uk/news/business/news/brexit-economy-
sterling-currency-investment-cost-impact-business-financial-banks-insurance-retail-a7695486.html) [Accessed 14/08/2018] 

 

 

To understand what impact such a political decision can have, it is essential to study data sets from 

the past and observe how extreme events like Brexit impact prices. In this thesis, we will analyse 

the behaviour of the electricity prices in Nord Pool from 01/01/1999 to 26/01/2007. We will 

investigate how the prices behave overall in this period as well as when they are conditioned on the 

hour of the day. First, an overview will be given of the financial market, the electricity market and 

Nord Pool. After this, we will discuss the concept of stationarity and returns. We will then analyse 

our data set in detail whereby different statistical tools will be used to understand the electricity 

price behaviour. Finally, we will conclude on our findings.  

https://www.independent.co.uk/news/business/news/brexit-economy-sterling-currency-investment-cost-impact-business-financial-banks-insurance-retail-a7695486.html
https://www.independent.co.uk/news/business/news/brexit-economy-sterling-currency-investment-cost-impact-business-financial-banks-insurance-retail-a7695486.html
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2.0 Background 

2.1 Financial Market 

A financial market is a place in the market “where buyers and sellers participate in the trade of 

assets” [Investopedia, 2018] . Those assets can be bonds, equities, derivatives or currencies. In every 

country, financial markets exist; however, they can be of very different sizes. Some markets are very 

small such as in Malta or Kosovo and some are huge such as the New York Stock Exchange (NYSE), 

where trillions of dollars are traded on a daily basis. There are various types of Markets. The 

following are 3 examples:   

1. Stock Markets  

“Stock Markets allow investors to buy and sell shares in publicly traded companies” 

[Investopedia, 2018]. They contribute to one of the most important areas of market economy 

because it enables companies to gain capital and in return investors get some ownership of the 

company. If the company is successful, the gains of the investors will increase as he/she owns a 

fraction of the company .   

2. Bond Markets  

“A bond is a debt investment in which an investor loans money to an entity (corporate or 

governmental” [Investopedia, 2018]. Those entities then borrow these funds for a particular 

period of time, whereby the interest rate is fixed. Investors buy and sell bonds on credit markets, 

which can be used by companies, states and governments in order to fund projects.  

3. Derivatives Market  

A derivative is an economic contract whose value depends on the value of an underlying asset. 

Possible underlyings could be stocks or commodities such as gold, oil or electricity. People that 

transact derivatives can be hedgers (who take an offsetting position to reduce the risk of the 

investment), speculators (people that try to anticipate the price changes and buy and sell 

contracts to make profits) or middlemen (such as investment banks). The major types of 

derivative contracts are futures, which is an agreement to buy or sell an asset for a specified price 

at some future time, and options where the buyer of the contract has the right, but not the 

obligation, to buy or sell an underlying asset at a specific price, referred to as the strike price, at 

a specified date. Another type of derivative is swaps, whereby 2 counterparties exchange future 

cashflows (Boyle, 2018).  
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2.2 OVERVIEW OF THE EUROPEAN ELECTRICITY MARKET 

In the past couple of years, there have been huge changes in the European Electricity system. The 

reason for that is that countries are aiming to create a low-carbon economy such that they minimize 

the emissions of greenhouse gases (GHG). To achieve that, changes have been taken place in the 

electricity market. For example, electricity is used from renewable sources, such as using solar or 

wind energy. As a result, electricity is used in a more efficient way as the GHG emissions are reduced 

from electricity generation. Moreover, changes have been made in the transport sector such as 

using electric vehicles and electric heating.  

The Electricity System 

Figure 2 gives an overview of how the electricity system works.  

 
Figure 2: Erbach, G., 2016,  schematic overview of the electricity system, European Parliamentary Research Service. [Online]   
Available at:  http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf [Accessed 
21/07/2018] 
 

The electricity generator is a power plant whereby electricity is generated. The transmission system 

operator then increases the voltage so that the electricity can be transmitted. To carry electricity 

for long distances, transmission lines are used (U.S. Energy Information Administration, 2018). The 

distribution lines then transfer the electricity to consumers. This electricity system is sometimes 

referred to as the electricity grid and for it to be stable, one needs to ensure that the supply of 

electricity meets electricity demand on a constant basis otherwise failures are likely to happen (U.S. 

Energy Information Administration, 2018).  

According to Erbach (2016), the flow of money involves the following:  

• The electricity suppliers, who purchase electricity from the generators and then sell it to the 

consumers. 

• The consumers then use the electricity and pay the suppliers through bills. 

• TSO, transmission system operators, are paid for the transport of electricity that they carry out 

over a long distance. They also make sure that the system is stable. 

• DSO, distribution network operators, deliver electricity to the consumers and are thus paid for 

doing so. 

http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf
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• Lastly, the regulators are paid for setting the rules of the system and making sure that it functions 

well.  

 

The Balance of Supply and Demand 

As mentioned before, for the electricity system to work efficiently, the supply of electricity has to 

meet the demand continuously. To achieve that, generators are used that are non-flexible 

(Erbach,2016). These are used to meet the normal electricity demand. Flexible generators, on the 

other hand, are used for the purpose of ensuring that the peaks in demand are met. However, there 

is an increased demand now for using energy from renewable sources. Therefore, this increased 

demand requires and increased capacity of flexible generators. For short term periods, the supply 

and demand is balanced by:  

1. primary reserves, which can be activated in seconds  

2. secondary reserves, that can be used in a few minutes  

3. and tertiary reserves that can be set off within a 5 minutes period 

Another way to balance supply and demand is through energy storage (Erbach,2016).  When there 

is a low demand and/or a high supply, then energy is stored. It is then used when there is a high 

demand and/or low supply. However, storing energy is not only expensive but some energy is also 

lost during that process.  

 

2.3 Nord Pool 

Nord Pool, also known as the Nordic electricity market, was established in 1993, where the 

electricity markets in Norway, Finland, Denmark and Sweden were integrated into one single Nordic 

electricity market (Bergman, 2003). The owners of this market are the two national grid companies, 

Statnett SF, located in Norway, which owns 50% of the market, and Affaerverket Svensa Kraftnaet 

in Sweden, which owns 50% as well (Erzgraeber et al., 2008). In 1991, the parliament in Norway 

decided to deregulate the market for power trading, so between 1992 and 1995 Norway was the 

only country that contributed to the market. However, in 1996 Sweden joined Norway in a power 

exchange and consequently the power exchange was renamed to Nord Pool ASA. In 1996, EL-EX 

started which was a power exchange market of Finland and then in 1997 Finland joined Nord Pool. 

Interestingly, the western and eastern part of Denmark joined at different times. On 1st July 1999, 

Funen and Jutland, which is the western part, entered the Nordic electricity market and after 1st 

October 2000, the eastern part joined the market as well.  
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Electricity Consumption in Nord Pool 

According to Bergman (2003), Nord Pool can be compared to the largest national electricity markets 

in Europe as the electricity consumption in Sweden, Norway, Finland and Denmark is greater than 

the European average even though the population of the Nordic countries is small. Reasons for the 

massive electricity use are dark and long winters with a cold climate, an intensive industry structure 

and a high share of electricity in the consumption of total energy. The last point reflects that 

Sweden, Finland & Norway have huge amounts of hydro power resources for low cost. Particularly, 

there is a large capacity of nuclear power plants in Finland & Sweden that are cost efficient 

(Bergman, 2001). This is the reason why the electricity prices have been quite low in Finland, Norway 

and Sweden. So, in Nord Pool there is a lot of electricity use, but the prices are relatively low. The 

electricity consumption is represented in Table I whereas Table II shows the electricity prices for 

different groups of customers. 

 
            Table I: Elmarknaden, 2000, (as cited in Bergman 2001), Electricity consumption (TWh) in the Nordic countries 1999, (The Electricity Market 2000), Swedish 

National Energy Administration. [Online] Available at: https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf  [Accessed 

08/072018] 

 
        Table II: Elmarknaden, 2000, (as cited in Bergman 2001), Electricity prices (US c/kWh) in selected countries 1999, (The Electricity Market 2000), Swedish 

National Energy  Administration. [Online] Available at: https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf 

[Accessed 08/072018] 
 

It is noticeable in Table I that, in the 1990’s, there was a slow growth in the electricity consumption. 

The reason for this is that in the first part of that decade, there was a major slowdown of economic 

growth. However, in the last couple of years the economies have grown and so has the consumption 

of electricity, so the growth rate of electricity has increased (Bergman, 2001). Moreover, the 

demand for electricity has grown in Sweden due to the use of oil burners and electric boilers in the 

https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf
https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf
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households.  Thus, due to the increasing price of oil, the demand for electricity has grown. When 

looking at Table II for the electricity prices, we observe a major difference between the prices in 

Denmark and the other Nordic countries. The low prices in the other Nordic countries are a 

reflection of low cost hydro power that I mentioned earlier.  

Bergman (2002) states that there are 2 reasons for why there is a significant difference between 

Denmark and the other Nordic countries, when it comes to electricity consumption and prices. The 

first reason is that in Sweden, Finland and Norway there is a big focus on electricity intensive 

industries and the second reason is that electric heating is used far more in these countries when 

compared to Denmark.   

 
             Table III: Elmarknaden, 2000, (as cited in Bergman 2001), Electricity production (TWh) in the Nordic countries 1999, (The Electricity Market 2000), Swedish 

National Energy Administration. [Online] Available at: https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf [Accessed 

08/072018] 
 

Table III shows the production of electricity in Nord Pool. It is interesting to observe that the 4 

countries have very different electricity productions. For example, there is no nuclear power in 

Norway & Denmark whereas there is a substantial amount of electricity production on nuclear 

power in Sweden and Finland. One of the controversial results is that the use of environmentally 

friendly electricity technologies is encouraged by all Nordic countries, but a significant use of wind 

power only takes place in Denmark (Bergman, 2001).  

Overall, it can be argued that the Nordic electricity market has been a success to a great extent. 

According to Bergman (2002), the market reforms in electricity in Nord Pool have been more 

successful when compared to the EU electricity Market directive. Some of the successful features 

involve the maintenance of the supply reliability, and not only have the electricity prices decreased 

but also productivity has increased in the electricity supply industry. This demonstrates that, in fact, 

competition can lead to lower prices and more efficiency, which is ideal to an electricity consumer. 

One might think that market power could be a problem since there is only one common exchange 

of 4 nations, however, the integration of the national markets does not appear to be a big problem 

in regards to market power (Bergman, 2002).  

 

https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf
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2.4 Stationarity 

An important aspect of time series analysis is stationarity of a data set. Before introducing the formal 

definition of stationarity, we define the autocovariance function:  

Definition 1 (Giraitis, 2017) 

Let 𝑋𝑡 be the observations at time −∞ < 𝑡 < ∞. The Autocovariance function of (𝑋𝑡) is 

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑠) = 𝐸[(𝑋𝑡 − 𝐸[𝑋𝑡])(𝑋𝑠 − 𝐸[𝑋𝑠])]. 

There are 2 types of stationarity, that are referred to as strict stationarity and second 

order/covariance stationarity. 

Definition 2 (Giraitis, 2017) 

 (𝑋𝑡) is a strictly stationary sequence, if for any integers 𝑡1, 𝑡2, … , 𝑡𝑘 and for any ℎ, the joint 

distribution of (𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑘
) is the same as the joint distribution of (𝑋𝑡1+ℎ, 𝑋𝑡2+ℎ, … , 𝑋𝑡𝑘+ℎ):    

(𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑘
)=d (𝑋𝑡1+ℎ, 𝑋𝑡2+ℎ, … , 𝑋𝑡𝑘+ℎ). 

The definition above means that we require the joint distribution of (𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑘
) to be invariant, 

i.e. not change when we shift the time. However, according to Tsay (2010), strict stationarity is 

difficult to prove by using empirical data. Thus, one can consider second order/covariance 

stationarity, which is a weaker version of strict stationarity.  

Definition 3 (Giraitis, 2017) 

We say that the time series (𝑋𝑡) is second order or covariance stationary, if:  

I. 𝐸[𝑋𝑡] = µ, where µ is independent of 𝑡  

II. 𝑉𝑎𝑟(𝑋𝑡) = σ2, where σ2 is independent of 𝑡 

III. 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡+𝑘) ≡  γk , (for all 𝑡 and 𝑘) only dependent on 𝑘 

 

Thus, for a covariance stationary time series, we need the mean and variance to be finite and 

independent of time. The autocorrelation function (γk) also needs to be independent of time. 

Moreover, strict stationarity implies covariance stationarity if 𝐸[𝑋𝑡] < ∞ and 𝑉𝑎𝑟(𝑋𝑡) < ∞. 

However, in general, the converse is not true (Giraitis, 2017). If one of the conditions above fails, 

then we have a non-stationary time series.  

 

2.5 Returns 

When studying a financial data set, it often desired to use returns, in particular log-returns. The 

reason for this is that we can normalize, meaning that returns enable us to measure our variables 

with a metric that one can compare with. This helps us to evaluate analytical relationships between 

2 or more variables. There are 2 definitions of returns.  
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1. Simple return (Giraitis, 2017):  
Let us define 𝑃𝑡 to be the price of an asset at time 𝑡. Holding the asset for one period from time 

𝑡 − 1 to 𝑡 gives us the simple gross return: 1 + 𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
 

The corresponding simple return (or simple net return) is defined as:  𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
− 1 =

𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
 

2. Log return (Giraitis, 2017): 
The natural logarithm of the simple gross return is called log-return, which is defined as:  

𝑟𝑡 = ln(1 + 𝑅𝑡) = ln (
𝑃𝑡

𝑃𝑡−1
) = ln(𝑃𝑡) − ln (𝑃𝑡−1) 

We note that for small 𝑅𝑡 we have that ln (1 + 𝑅𝑡)~𝑅𝑡.Thus, 𝑟𝑡~𝑅𝑡, and so the log-returns are 
close to the raw returns in terms of their value. 
 

The Nord Pool data set is given from 01/01/1999 to 26/01/2007. It contains the electricity prices (in 

EUR/MWh) at a sampling rate of one hour. For our analysis of this data set (as well as the data sets 

that are conditioned on the hour of the day), we will be using log-returns, with a logarithm of base 

𝑒, so a natural logarithm. The following is a plot of the electricity prices of the whole data set, that 

contains about 71000 data points. The x-axis represents the consecutive hours and the y-axis shows 

the electricity prices.  

 
We observe from the plot above that the prices have huge fluctuations and the data seems to be 

seasonal with a slight upward trend. The plot of the natural logarithm of returns is the following:  

 

From the plot above, we see high and low peaks, which represent extreme events and thus show 

extreme price fluctuations. In this thesis, we will analyse on what hours of the day these extreme 

events occur and how strong their impact is on  the electricity prices. 
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3.0 Analysis 

3.1 Mean/Variance & Conditioned Time Series Plots  

We will now consider the mean and variance of the log-returns of the whole data set as well as for 

the data sets that are conditioned on the hours of the day. To get the conditioned data sets, we use 

the function ‘OFFSET’ in Excel. The following will be an overview of the mean and variance values. 

We will then analyse the time series plots of the conditioned data sets, where a more detailed 

discussion of the mean and variance values will be given. To find the mean value of a data set in 

Excel, we use the function ‘AVERAGE’ and to get the variance we use ‘VAR’. 

 

The mean of the whole data set is: 0.000006692666, which is very small and can be considered to 

be zero. The following table illustrates the mean values of the data sets that are conditioned on the 

hour. The values are given to 5 decimal places.   

Time 12 am 1 am 2 am 3 am 4 am 5 am 6 am 7 am 8 am 

Mean -0.03579 
 

-0.02568 
 

-0.01788 
 

0.00415 
  

0.04123 
 

0.04870 
 

0.06142 
 

0.04965 
 

0.00467 
 

 

9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 

0.00218 
 

-0.00782 
 

-0.01743 
 

-0.01329 
 

-0.01061 
 

-0.00547 
 

0.00586 
 

0.01827 
 

-0.00015 
 

 

6 pm 7 pm 8 pm 9 pm 10 pm 11 pm  

-0.01634 
 

-0.01630 -0.00428 -0.01391 -0.03762 
 

-0.01342 
  

What we notice is that the mean value of the whole data set is very small when compared to the 

mean values of the conditioned data sets. The mean values for the conditioned data set ranges from 

-0.03762 to 0.06142, so the average return is the smallest at 10 pm and the highest at 6 am. 

Moreover, the mean values are negative from 5 pm to 2 am. Negative mean values mean that prices 

go down and positive mean values mean that prices go up. Overall, just from looking at the mean 

values, it seems sensible to have negative mean values from 9 pm to 2 am as people usually sleep 

during this time, so not much electricity is used and hence the price goes down. However, it is 

surprising that the mean values of 5 pm and 6 pm are negative as one would expect them to be 

positive because these are rush hour times. The reason for why that could be will be discussed later 

when we will look at the variance of the data sets.  

After looking at the mean values, I thought it would be interesting to plot the mean values in a graph 

to observe if there is a specific pattern. The following is the plot of the mean values which goes from 

1 am to midnight.  
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We will now look at the variance of the whole data set and the conditioned data sets. The variance 

of the whole data set is: 0.003491878006. The following table consists of the variance values for the 

time series that are conditioned on the hour. 

Time 12 am 1 am 2 am 3 am 4 am 5 am 6 am 7 am 8 am 

Variance 0.00293 0.00301 0.00333 0.00272 0.00492 0.00522 
 

0.00935 0.00766 
 

0.00364 

 

9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 

0.00198 0.00186 0.00102 0.00047 0.00037 0.00105 0.00186 
 

0.00273 0.00325 
 

0.00321 
 

 

7 pm 8 pm 9 pm 10 pm 11 pm  

0.00167 0.00058 
 

0.00068 
 

0.00109 
 

0.00321 

The variance is a measure for the volatility of the market. If the variance is high, then that means 

that the market is highly volatile, so the prices go up and down drastically. The smaller the variance 

the more ‘constant’ the spread of the data is. If the variance is zero, then the data points are evenly 

distributed, so we do not have outliers that lead to fluctuations in the data set. From the table above, 

we can see that the variance ranges from 0.00037 to 0.00935, so the variance is smallest at 1 pm 

and highest at 6 am, thus we have the least fluctuations of the price at 1 pm and drastic fluctuations 

in the price at 6 am. The following hours of the day have the same variance as the whole data set to 

3 decimal places: 12 am, 1 am, 2 am, 3 am, 4 pm, 5 pm, 6 pm & 11 pm. The hours of the day that 

have a small variance and thus very small fluctuations of the electricity price are at 12 pm, 1 pm,      

8 pm and 9 pm. From 11 pm to 3 am the variance is constant, i.e. the same (to 3 decimal places). As 

mentioned for the mean values, during this period most people are sleeping, so we would not expect 

the price of the electricity to fluctuate much. I mentioned in the analysis of the mean that it was 

surprising to see that the mean at 5 pm and 6 pm is negative. One reason for this may be the 

variance. The variance at 5 pm and 6 pm is 0.003 (to 3 decimal places), which is higher than most 

hours. A higher variance means that the data is more spread out, so we have outliers. Thus, it is 

likely that we have negative outliers in the 5 pm and 6 pm data set and as a result of that, the mean 

From the plot one observes interesting oscillatory 

patterns. The values of the oscillations become 

smaller throughout the day. It is noticeable that the 

mean keeps on changing and is thus not constant. 

This goes against the first property of stationarity, 

which we defined earlier.  
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value turned out to be negative. To see if the variance shows a specific pattern I plotted the graph 

of the variance of the data sets that goes from 1 am to midnight.  

  

We will now consider the plots of each hourly data set and investigate in more detail how the mean 

and variance changes from one time to another. We will also observe if any extreme events are 

present and whether those are positive or negative. 

             

In the 1 am plot we notice positive extreme events that seem to be periodic. The extreme events 

happen once every year and as they are positive, it means that there is a significant price increase 

from 12 am to 1 am at one specific day every year. As there seems to be a periodic pattern, it is 

likely that the price increase is not caused by economic demand but rather by some computer 

update; for example, power networks might have an upgrade during those days. It would make 

sense to do a power upgrade at 1 am as most people would be sleeping at this time and would thus 

not be affected by it. During this time the mean is negative (-0.02568), so on average the electricity 

price goes down from 12 am to 1 am and the variance is the same as for the whole data set (to 3 

decimal places). In the 2 am plot there are negative extreme events, so there is a price decrease 

from 1 am to 2 am. However, there seems to be no specific periodic pattern of the extreme events. 

The mean of 1 am and 2 am are very similar to 2 decimal places (-0.03 & -0.02 respectively) and the 

variance is the same to 3 decimal places (0.003), so the dispersion of the data is constant from 1 am 

to 2 am. It is noticeable that at 1 am we have extreme positive spikes and at 2 am we have extreme 

negative spikes but both plots have peaks of around 0.7 (in terms of the modulus). So, when 

From the variance plot we observe that there are 
huge fluctuations between 1 am and 9 am and 
we see that the fluctuations are almost periodic 
after 10 am. As with the mean values, we notice 
that the variance is not constant but changes 
over time, which goes against the second 
property of stationarity. Thus, we can say that 
our data sets are not covariance stationary. 
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considering the modulus, the value of the spikes of 1 am and 2 am are very similar and thus the 

similar variance of these 2 time series plots makes sense.   

     
At 3 am there are positive and negative extreme events. The mean at 3 am (0.00415) is larger than 

at 2 am (-0.01788). Thus, on average, there is a price increase from 2 am to 3 am. However, the 

variance from 2 am to 3 am is the same to 3 decimal places (0.003), showing that the price 

fluctuations are fairly constant between 2 am and 3 am. This is what we would expect as normally 

there is not a huge change in the use of electricity between 2 am and 3 am as it is night time. At        

4 am we observe positive extreme events, so there is a price increase from 3 am to 4 am. This can 

also be seen from the mean as the mean at 4 am (0.04123) is significantly larger than at 3 am 

(0.00415). The variance at 4 am (0.00492) is larger than at 3 am (0.00272). Thus, the price 

fluctuations are not constant anymore.  

          

At 5 am there are positive extreme events, so the electricity price goes up between 4 am and 5 am. 

This is what we would expect as some households wake up during this time and thus more electricity 

is used. The mean at 4 am (0.04) and 5 am (0.05) are nearly the same to 2 decimal places and their 

variances are the same to 3 decimal places (0.005), so the price fluctuation between 4 am and 5 am 

is constant. At 6 am we also have positive extreme events, and the values of some extreme events 

are higher than the values at 5 am; for example, the highest value that an extreme event has at          

6 am is 2 whereas the highest peak of the extreme events at 5 am is 0.85. This may be the reason 

why the variance of 6 am (0.009) is much higher than the variance at 5 am (0.005) and thus we have 
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major price fluctuations between 5 am and 6 am. Moreover, the mean value of 6 am (0.06142) is 

larger than at 5 am (0.04870), indicating a price increase between 5 am and 6 am.  

         

At 7 am we have positive extreme events, so the electricity price goes up between 6 am and 7 am. 

During this time there are the most extreme events when compared to any other hour of the day. 

This is expected as most people start waking up during this time for work/school and this is a rush 

hour time. Thus, more electricity is used in households and company buildings, so the price of 

electricity increases. When looking at the plot, one would expect the variance of 7 am to be larger 

than at 6 am, but in fact the variance at 7 am is smaller. The reason for this may be that at 7 am the 

extreme events are smaller than 1.2 whereas at 6 am some extreme events are higher than 1.2. So, 

the data is more spread out at 6 am and this may be the reason why the variance at 6 am (0.00935) 

is higher than at 7 am (0.00766). As we have a smaller variance at 7 am, it would indicate that there 

are less price fluctuations when compared to 6 am. However, the variance at 7 am is still high when 

compared to other hours of the day, so in average the price at 7 am does in fact fluctuate more than 

in other hours. At 8 am we observe a few positive and negative extreme events, but the prices seem 

to be fairly constant. This is also evident in the variance as the variance at 8 am (0.00364) is much 

smaller than at 7 am (0.00766), thus we do not have many outliers at 8 am that would lead to high 

price fluctuations. Moreover, the mean at 8 am (0.00467) is significantly smaller than the mean at 

7 am (0.04965), thus indicating that the electricity price decreases between 7 am and 8 am. 
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We observe some negative extreme events at 9 am and 10 am, which seem to occur randomly that 

could be due to ecological reasons such as unexpected weather changes, but generally the 

electricity prices seem to be constant during these times. Moreover, the variance between 9 am 

and 10 am is the same to 3 decimal places (0.002) and therefore the price fluctuations between 9 

am and 10 am are constant. The mean at 9 am (0.00218) is smaller than the mean at 8 am (0.00467) 

and the mean at 10 am (-0.00782) is smaller than the mean at 9 am, indicating that the prices go 

down.  The reason for the price decrease may be that most people are at school/work during that 

time and not much electricity is used in the households.  

            

The 11 am data set has negative extreme events and looks similar to the 10 am plot. This is evident 

in the variance as the variance at 11 am (0.001) and at 10 am (0.002) are similar to 3 decimal places, 

thus the price fluctuations are fairly constant in that time period. However, the mean at 11 am            

(-0.01743) is smaller than the mean at 10 am (-0.00782), meaning that there is a price decrease 

between 10 am and 11 am. At 12 pm we have negative extreme events as well. It is interesting to 

observe that the variance at 12 pm is very small (0.00047) since when looking at the plot one may 

expect that we have a lot of extreme events and thus the variance would be higher. The reason for 

the small variance may be that the values of the extreme events are quite small, with the highest 

being 0.325 (when considering the modulus). The mean values between 11 am (-0.02) and 12 pm   

(-0.01) are very similar to 2 decimal places, so there is not a huge change in the price during that 

time period.   
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In the 1 pm plot we observe a similar behaviour as in the 12 pm plot. This is evident in the variance 

values as the variance is very similar to 4 decimal places between 12 pm (0.0005) and 1 pm (0.0004) 

and the mean values are the same to 2 decimal places (-0.01), thus we do not see any drastic 

changes in the electricity price. However, we notice a change in the price at 2 pm as the mean at     

2 pm (-0.00547) is larger than at 1 pm (-0.01061) so the prices increase in that period. Moreover, 

we see positive extreme events at 2 pm, which seem to occur in a random manner. When 

considering the modulus, we observe that the extreme events at 2 pm have higher values when 

compared to the extreme events at 1 pm; for example, the highest value of an extreme event at       

2 pm is 0.5 whereas at 1 pm it is 0.225. Since the values at 2 pm are higher, we would expect that 

the data is more dispersed. This is supported by the variance at 2 pm (0.00105) as this is larger than 

at 1 pm (0.00037) and thus we experience more price fluctuations during this time.   

        

There is a price increase between 2 pm and 3 pm as the mean at 3 pm (0.00586) is much higher than 

at 2 pm (-0.00547). Also, the mean at 4 pm (0.01827) is larger than at 3 pm, so the prices also 

increase between 3 pm and 4 pm. The reason for this may be that most children come home from 

school during that time, so more electricity is used in the households. Even though there are some 

positive extreme events in both plots, the price fluctuations are fairly small as the variance between 

2 pm (0.00105), 3 pm (0.00186) and 4 pm (0.00273) are close in value. 
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The plots from 5 pm to 8 pm look quite similar. The plots of 5 pm and 8 pm have positive and 

negative extreme events whereas at 6 pm and 7 pm we have negative extreme events. The mean 

value becomes smaller from 5 pm (-0.00015) to 7 pm (-0.01630), so the prices decrease in that 

period. The variance between 5 pm and 6 pm are the same to 3 decimal places (0.003) but then it 

decreases at 7 pm (0.00167) and at 8 pm (0.00058), thus getting closer to zero, so the price 

fluctuations become smaller from 5 pm to 8 pm.  

            

               
From 9 pm to 12 am we observe negative extreme events, which one would expect as most people 

sleep during this time and thus in most households electricity is not used, so the prices decrease. 

There is an interesting pattern of the mean values between 9 pm to 12 am: -0.01, -0.04, -0.01, -0.04, 

so the prices tend to go up and down almost in a periodic manner. Moreover, the variance increases 

between 9 pm (0.00068) to 11 pm (0.00321) so the prices tend to fluctuate much during this period. 
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However, the variance at 12 am (0.00293) is the same as the variance at 11 pm to 3 decimal places 

and thus the fluctuations of the electricity price are fairly constant between 11 pm to 12 am. 

When looking at the plots of the different hours of the day, we observed that there were sometimes 

positive and/or negative extreme events that do not have any specific pattern. The following are a 

few reasons why electricity prices can fluctuate and lead to those extreme events:  

1. Weather: severe weather such as storms can lead to power cuts, which in return will affect the 

electricity price as the prices will increase (Exchange Utility, 2018).  

2. Supply & Demand: Since the discussion on green energy started, more businesses want to 

become environmentally friendly in their electricity use.  In those cases, sometimes supply is 

greater than demand, so the prices go down and hence affect the electricity price. 

3. Infrastructure: electricity prices can be affected by the cost of maintenance and the cost of 

construction of power stations. If the cost of these is too high, then the electricity prices will be 

increased (Exchange Utility, 2018).  

4. Randomness: However, some extreme events may just occur by ‘randomness’, where an 

explanation may simply be that some people used more or less electricity for no specific reason.   

In the analysis above, we used the mean and variance to observe the behaviour of the price changes. 

However, using the mean and variance has advantages and disadvantages. The advantages are that 

both can be computed easily and both values take into account the whole data set rather than just 

specific points of a data set. On the other hand, the mean is highly affected by extreme values, so it 

may not be a true representation of the data points that have outliers. Moreover, the mean may 

not be appropriate to use for highly skewed data (Laerd Statistics,2018) and the same holds for the  

variance (Manikandan, 2011). This is important to consider as later we will analyse the distributions 

of the data sets and we will see that some distributions are in fact highly skewed and it may be that 

the mean and variance cannot be used to describe those data sets. 
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3.2 Probability Density Functions  

We will now consider the probability density functions of the whole data set and the data sets that 

are conditioned on the hour. To get the probability density function (PDF) we need to do the 

following:  

Let N be the number of data points. We first sort out the data points from smallest to largest, such 

that we get a series of 𝑋 = {𝑥1, … , 𝑥𝑁}. To get the PDF, we need to consider how to get the cumulative 

distribution function (CDF), as the PDF is the derivative of the CDF. The CDF gives us the probability 

of a variable that is less than or equal to 𝑥. In our case, we have to get a numerical CDF so we define 

the CDF to be: 𝑌 = {𝑐(𝑥1), 𝑐(𝑥2), … , 𝑐(𝑥𝑁)}.  

To get the numerical CDF, we calculate the values by doing the following:   

𝑐(𝑥1) =
1

𝑁
 , 𝑐(𝑥2) =

2

𝑁
 , …, 𝑐(𝑥𝑁) =

𝑁

𝑁
= 1 

Thus, we plot 𝑋 against 𝑌 to get the CDF. To find the PDF, we need to take the derivative of the 

(numerically defined) CDF by using a suitable difference quotient.  Difference quotients are used to 

approximate a numerical differentiation. Since the 𝑥- values are not equally spaced, we can consider 

the inverse function first as the y-values are equally spaced and then take a simple first order 

difference quotient which is:  
xk+1−xk

yk+1−yk
, for 𝑘 = 1, … , 𝑁 − 1. That is the derivative of the inverse 

function, so the inverse of the fraction, which is the derivative of the CDF, i.e. the PDF is:  
𝑦𝑘+1−𝑦𝑘

𝑥𝑘+1−𝑥𝑘
, 

for 𝑘 = 1, … , 𝑁 − 1. However, one can get more accurate results by taking a higher order difference 

quotient. For my data set I used the second order difference quotient which is: 
𝑦𝑘+1−𝑦𝑘−1

𝑥𝑘+1−𝑥𝑘−1
, for             

𝑘 = 2, … , 𝑁 − 1. 

The above is an overall explanation on how to get the PDF. I will now explain step-by-step how to 

get the PDF in Excel explicitly and what problems may occur.  

PDF in Excel 

One of the important things to remember, when doing the calculation in Excel, is that when we 

create a column that contains the data of xk+1 − xk−1, we might get values that are zero. In Excel, it 

either shows as an error that we are dividing by zero, or sometimes if the data set is large (here 

about 3000 data points for each hour of the day), what Excel does is convert the number that we 

are dividing by zero into a huge number, such as 13 000 000 (as mathematically 1/0 diverges to 

infinity). To prevent that, we just delete the data points that contain those zeros. Deleting data 

points like this is sometimes referred to as ‘cleaning’ the data set. It is important to remember to 

not only delete the zeros in that one column, but to delete the sorted 𝑥- values that lead to these 
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zeros. This is important as the number of data points, which is N, will change since we have deleted 

some data points. Thus, to get accurate results for the PDF we do the following steps: 

1. We first sort the data points from smallest to largest in column A (which is the 1st column) of 

Excel. This gives us  𝑥1, … , 𝑥𝑁. However, ′𝑁′ is not the last data point that we use for the calculation 

of the CDF (as we might have some zeros in the quotient, so the number of data points will change 

and so will the CDF). Thus, before calculating the CDF, we need to find the data points that need 

to be deleted first, which is our second step.  

2. In the second column, i.e. column B, we calculate xk+1– xk−1.To find the zeros, we use CTRL+F. 

After we find those zero points, we delete them from column B and the data points in column A 

that correspond to it. 

3. We now have the accurate number of data points, that we define as ′𝑛′. In column C we calculate 

the CDF, so: 𝐶(𝑋) = { 
1

𝑛
,

2

𝑛
, … ,1 }. We then plot column A versus column C. The following is the 

CDF of the whole data set:  

  

4. We now calculate yk+1 − yk−1 in column D. In column E we then divide column D by column B, so 

we calculate 
𝑦𝑘+1−𝑦𝑘−1

𝑥𝑘+1−𝑥𝑘−1
 . This gives us the values of the PDF. However, since the data set is very 

noisy, the PDF values need to be smoothed, and then we can plot the smoothed PDF. 

 

Smoothing a data set 

As mentioned above, the data set is noisy, so it is desired to smooth the data set. The aim of 

smoothing a time series is to eliminate the noise.  A way to smooth the data set is by using a simple 

moving average, which is implemented in the following way:  

Let us assume that we have a time series containing data points 𝑥1, … , 𝑥𝑛. Then, a moving average 

with a window size of 𝑁 means to average over the next 𝑁 points. For example, if we have 𝑁 = 5 

then we need to average over the next 5 points. Thus, we define a new time series, which we call 

𝑧𝑡,  that will have the following values:  

We observe that for 𝑥 < 0, the function 

decays to zero and for 𝑥 > 0, the function 

gets closer to 1. However, we are more 

interested in the probability density function 

of the whole data set and the conditioned 

data sets.  
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𝑧1 =
1

5
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) 

𝑧2 =
1

5
(𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6) 

     ... 

𝑧𝑛 =
1

5
(𝑥𝑛−4 + 𝑥𝑛−3 + 𝑥𝑛−2 + 𝑥𝑛−1 + 𝑥𝑛) 

Once the moving average has been calculated, we plot the sorted data set (that we defined as X 

earlier) versus the moving average values to get the smoothed PDF. For my data set, I tried different 

window sizes. The following is the result of the PDF of the whole data set when it is not smoothed:  

 

We can clearly see that the PDF needs to be smoothed. One needs to try different window sizes in 

order to get a smooth PDF. For a window size of 30 and 70 the PDF looks like this:  

         

When using the 30-order simple moving average, the PDF becomes smoother but a 70-order moving 

average gives the smoothest results. I will thus be using a 70-order moving average for the 

conditioned data sets as well. 

When plotting the probability density functions in Excel, we notice that some distributions have long 

right and /or long left tails. For the distributions that have long right or long left tails we will 

investigate if a power law exists. To do that we use log-log plots. This is when we take the logarithm 
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of the x-values and y-values of the distribution. For our data set, we will be using the logarithm of 

base 10. If we can see a straight line in the log-log plot, then that means that we have a power law 

that takes the following form: 𝑦 = 𝑏 ∗ 𝑥𝑛. The power, i.e. the exponent ′𝑛′, is the slope of the line 

from the log-log plot. The constant ′𝑏′ is found by trying out different numbers until a plot fits the 

curve. However, if we do not see a straight line in the log-log plot, then we consider a semi-log plot. 

In this case the x-values stay the same and we take the logarithm of the y-values of the distribution. 

If we observe that there is a straight line in the semi-log plot, then we have an exponential fit for 

the right/left tail of the distribution that has the form: 𝑦 = 𝑘 ∗ 10𝑚𝑥. ′𝑚′ is the gradient of the line in 

the semi-log plot. Again, the constant ′𝑘′ is found by trying different numbers until a function fits.  

However, if we do not see a straight line in the semi-log plot, then that means that we do not have 

an exponential fit either. 

Skewness 

We will also analyse the skewness of the distributions. The skewness is a measure for the asymmetry 

of the distribution. If the skewness is positive, then the right tail of a distribution is longer than the 

left tail and if it is negative then the left tail of a distribution is longer than the right tail. The following 

is how we characterise the extent of the skewness (taken from GoodData Corporation, 2018): 

1. If the skewness is less than -1 or greater than +1, then we have a  highly skewed distribution 
2. If the skewness is between -1 and -0.5 or between 0.5 and 1, then we have a moderately skewed 

distribution 
3. And lastly, if the skewness is between -0.5 and +0.5, then the distribution is approximately 

symmetric.  

In Excel, the skewness can be calculated by using the function ‘SKEW’. 

We start by looking at the distributions that have long right tails. The right tail is taken from the 

mean value as the mean is the x-value of the peak of the distribution. Next to the PDF, we will have 

the log-log plot. As we are dealing with real life data, it is rare to see a perfect straight line, so to get 

a good fit for the tail, we consider an interval in the log-log plot where we plot a line of best fit, 

which can be done in Excel. In case a power law does not exist, the semi-log plot will be plotted after 

it. The first distribution that we consider is for the 4 am data set. 
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The values between -1.4 and -0.5 seem to show a straight line. We will thus consider a line of best 

fit in Excel in that interval. However, we bear in mind that the points flatten out after -0.5, so there 

is not a strong evidence of a power law. In this case, we consider a power law and identify later on 

(when we analyse the exponent values in detail) if the fit makes sense for the given data set. 

 

  
 

The following is the fit (orange curve) for the right tail of the 4 am distribution: 

  

The next distribution is for the 6 am data set. 

   

 

We see from the equation of the line of best 

fit that the gradient is -2.4 (to 1 decimal 

place). We thus consider a fit with the 

exponent -2.4. However, the exponent does 

not have to be -2.4 but that number gives us 

a good idea what the approximate value of 

the power could be.  

The equation of the power law is:  
y= (1/150)*x-2.4 

We fit a line of best fit in the interval        

[-1.2, -0.6]. However, as can be seen 

from the next plot, the points in that 

interval do not form a perfect straight 

line, so the evidence for the existence of 

a power law is not very strong. As with 

the 4 am fit, we will consider a power 

law for now and then analyse later if a 

power law for this data set makes sense.  
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The following is the distribution of the 7 am data set. 

   
 

   

We will now consider the distributions for the 2 pm and 3 pm data set. 

   

We consider the interval 

[-1.1, -0.4] for the line of 

best fit. Here, most of the 

points lie on the line, so 

there is strong evidence 

for a power law.  
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In the log-log plots of 2 pm & 3 pm we do not see a straight line. Therefore, a power law does not 

exist for these distributions, so we consider a semi-log plot. 

  
The following is the distribution of the 4 pm data set. 

  

  
The gradient of the line is -3.8 (to 1 decimal place). However, when fitting a curve with an exponent 

of -3.8, the constant that has to be fit is about 1/200000.This example above shows that, when 

dealing with real life data, we might find an interval in the log-log plot that seems to be a straight 

line but we cannot always just take that number to be our exponent as that gradient is the gradient 

for only the numbers in the interval (and not the whole data set). This is why sometimes one needs 

In both semi-log plots, we 

observe that the points show a 

decreasing behaviour rather 

than a straight line. Therefore, an 

exponential fit does not exist 

either for the right tails of both 

distributions. 

We consider a 

line of best fit 

in the interval: 

[-1.4, -0.8]. 
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to experiment with different numbers and exponents to find the right fit for the data. We can thus 

consider the line of best fit for the whole data set, which has a gradient of -2.3. This gives a more 

sensible result. However, later we will see that a power law may not exist for this data set. 

 

The following table consists of the skewness values of the distributions together with the exponent 

of the power law fit (if a power law exists). 

Time Exponent Skewness 

4 am  -2.4 4.64 

6 am  -2.9 6.94 

7 am  -2.9  5.37 

2 pm No power law 4.19 

3 pm  No power law 6.57 

4 pm -2.3  10.37 

We notice that all the distributions above are highly positively skewed. In the time series plots we 

observed that all these hours of the day had positive extreme events. Thus, positive extreme events 

lead to positive skewness that in return lead to long tails on the right side of the distributions. 

Moreover, regarding the exponent, the smaller the exponent is, the faster the tail decays. Thus, the 

distribution that decays the fastest is for 6 am & 7 am and the distribution that decays the slowest 

is for 4 pm. It is interesting to see that, even though at 4 pm we have the highest skewness, the right 

tail decays the slowest when compared to the exponents of 4 am to 7 am and the tails of the 6 am 

and 7 am distributions have the same exponent but different skewness values, so there does not 

seem to be a relationship between the skewness value and the exponent. Finally, the only 

distributions that do not follow a power law or an exponential function are the right tails of 2 pm 

and 3 pm. 
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We will now consider the distributions that have long left tails and investigate whether they have 

power laws. Since we are considering the tails on the left side, the numbers are negative, so we take 

the absolute value of x, which enables us to take the logarithm of a positive number. To find the 

absolute value of a number in Excel we use the function ‘ABS’. If a power law exists, then it will have 

the form: 𝑦 =
𝐶

|𝑥|𝑛 ,where ‘𝐶′ is a constant and ′𝑛′ is the exponent.  

The following is the distribution for the 2 am data set. 

   

    

  The distribution for the 9 am data set is: 

  

  

 

 

There is strong 

evidence for a power 

law. We consider the 

interval [-1.6, -0.6] 

for the line of best fit.  

We do not see a straight line in 
the log-log plot. One can see 
straight lines for some intervals 
such as [-2.1 to -1.7] but that 
interval is too small and thus not 
a good reflection of the whole 
data set. Thus, a power law does 
not exist for the distribution of 
the 9 am data set and so we 
consider a semi-log plot.  
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 The left tails of 10 am and 11 am have a similar power law. 

  

 

      

      

However, we do not have a 

straight line either in the semi-

log plot and thus an exponential 

fit does not exist for the left tail 

of the 9 am distribution.  

Overall, the points show a 

straight line. We consider the 

interval [-2, -0.8] for the fit. 

When fitting a line in the 

interval [-1.3, -0.6], we 

get a gradient of -1.7. 

However, we get a better 

power law fit when using 

-1.8. 
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We now consider the distribution for 12 pm.  

   

  
 

 

The next distribution is that of 6 pm.  

      

We have some outliers 

but since these are not 

many points, we do 

overall see a straight 

line. For the line of best 

fit, we consider the 

interval: [-1.9, -0.8]. 

We consider a fit in the interval:  

[ -1.1, -0.7]. We obtain a gradient 

of -1.6 but we get a better fit by 

using -1.9 as our exponent.  
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 The distribution of 7 pm is the following:  

  
 

  

The following is the distribution of 10 pm. 

  

   

We consider the interval [-1.7, -1] 

for the line of best fit. However, 

after -0.6, the points become 

flatter, but these are only a few 

data points.  Since we do overall 

see a straight line in the interval 

[-1.7, -1], there is a strong 

evidence for the existence of a 

power law.   

 

We consider a fit in the 

interval: [-1.45, -0.7]. We 

get a gradient of -2.1 (to 1 

decimal place) but -2.0 

gives a better fit.  
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 The last 2 distributions that have long left tails are for 11 pm and 12 am. 

  
 

 

    

 
 

 

 

 

We do not see a straight 

line in the log-log plot, so 

we consider a semi-log 

plot.  

Like the other semi-log plots that we had 

earlier, we observe an exponential decay 

rather than a straight line, so we do not 

have an exponential fit either.  

We consider a fit in the 

interval: [-1.3, -0.6]. 
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The following table consists of the skewness values of the distributions together with the exponent 

of the power law fit (if a power law exists):  

Time Exponent Skewness 

2 am -1.4 -7.92 

9 am No power law -7.68 

10 am -1.7 -10.69 

 11 am -1.8 -7.30 

12 pm -1.3 -4.60 

6 pm  -1.9 -7.04 

7 pm -1.6 -8.02 

10 pm -2.0 -2.39 

11 pm No power law  -3.92 

12 am -1.8 -8.10 

 

All the distributions that have left tails are highly negatively skewed and all the time series plots 

above have negative extreme events. Thus, negative extreme events lead to a negative skewness 

which in return lead to long tails on the left side of the distributions. An interesting observation is 

that at 10 pm we have the highest skewness and the smallest exponent and the skewness of the    

10 am data set is the smallest, but the exponent is still quite small. So, there does not seem to be a 

relationship between the value of the skewness and the value of the exponent. Moreover, the 

smaller the exponent, the faster the power law increases (since we consider the modulus of x). Thus, 

the power law for the 10 pm distribution increases at the fastest rate whereas the power law for 

the 12 pm distribution grows at the slowest rate. Finally, the only distributions that do not follow a 

power law or an exponential function are the left tails of 9 am and 11 pm. 

 

Existence of Moments 

We will now take a closer look at the values of the exponents. The exponent value characterises the 

importance or strength of the extreme events that we observe in our time series plots. If the 

exponent is smaller than -2, then that means that the first moment (which is the expectation) still 

exists since ∫ 𝑥𝑝(𝑥)𝑑𝑥
∞

−∞
 converges when 𝑥 is large and so the extreme events do not have much 

impact on the data set. If the exponent is between -1 and -2, then the first moment does not exist 

anymore, meaning that the expectation diverges and cannot be used anymore to characterise the 

event. Lastly, if the exponent is close to -1 then this is very extreme as then even the normalisation 

of the distribution starts to fail because  ∫ 𝑥𝑝(𝑥)𝑑𝑥
∞

−∞
 would diverge. So, in the last case, the extreme 

events have the strongest impact on the data set.  
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The following table shows the exponents for the distributions that have long right or left tails along 

with their mean and variance values. We will analyse on what hours of the day the extreme events 

have the strongest/weakest impact on the electricity price. 

Time  Exponent  Right/Left tail Mean  Variance  

2 am -1.4 left  -0.01788 0.00333 

4 am -2.4 right  0.04123 0.00492 

6 am -2.9 right 0.06142 0.00935 

7 am -2.9 right  0.04965 0.00766 

9 am No power law   0.00218 0.00198 

10 am -1.7 left  -0.00782 0.00186 

11 am -1.8  left  -0.01743 0.00102 

12 pm -1.3 left  -0.01329 0.00047 

2 pm No power law  -0.00547 0.00105 

3 pm No power law   0.00586 0.00186 

4 pm -2.3 right  0.01827 0.00273 

6 pm -1.9 left  -0.01634 0.00321 

7 pm -1.6 left  -0.01630 0.00167 

10 pm -2.0 left  -0.03762 0.00109 

11 pm No power law   -0.01342 0.00321 

12 am  -1.8 left  -0.03579 0.00293 

For the following distributions the expectation exists: 4 am, 6 am 7 am and 4 pm. Thus, for these 

hours of the day, the extreme events do not have a strong impact on the data set, so the mean and 

the variance of these data sets are a good representation of their overall behaviour. This is certainly 

expected for the 4 am and 6 am distributions as most people sleep during that time and we would 

not expect the extreme events to have a strong impact on the electricity price. However, at 4 pm 

the price fluctuations are higher than other hours of the day (as the variance is quite high), so we 

would expect that the extreme events (which lead to a higher variance) would have a greater impact 

on the electricity price, and so the exponent value seems surprising. The reason for this may be that 

in the log-log plot, we did not see a perfect straight line. A straight line is only visible for the interval 

[-1.4, -0.8] and thus the power law that we used for the fit may not have been a good representation 

of the whole data set.  

For the following distributions the first moment does not exist: 2 am, 10 am, 11 am, 12 pm, 6 pm,  

7 pm, 10 pm and 12 am. So, the extreme events have a strong impact on these hours of the day and 

thus, the mean and the variance are not a good representation for these data sets. This result is 

expected for 10 am to 7 pm as we would expect the price to fluctuate during these hours and thus 

it makes sense that the extreme events have a strong impact on the price. However, the result is 

quite surprising for 2 am and 12 am as not much electricity is used because most households sleep 
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during that time. We would thus not expect that the extreme events have such a strong impact on 

the price. One plausible reason may be that their variances are quite high (0.003) and so the mean 

is indeed not a good representation of the whole data set. However, in the 2 am log-log plot we do 

see a straight line overall, so there is a strong evidence for the existence of a power law for the left 

tail of the 2 am distribution, but in the 12 am log-log plot we only see a straight line for the interval       

[-1.3, -0.6]. However, after -0.6 the points flatten out and thus the fit for the 12 am distribution may 

not be a good representation of the whole data set (we had a similar situation for the 4 pm 

distribution). Furthermore, the extreme events have the strongest impact at 12 pm as the exponent 

is closest to -1. An interesting observation is that the exponents of the left-tailed distributions are 

all between -1 and -2 whereas the exponents for the right-tailed distributions are all below -2. Thus, 

negative extreme events have a stronger impact on the price than positive extreme events. We also 

notice that the mean and the variance are very small for the distributions that do not have a power 

law, i.e. for 9 am, 2 pm, and 3 pm (except for 11 pm, where the variance is quite high). 

 

Geometric Brownian Motion 

We want to observe whether the whole data set or some hours of the day follow a process called 

Geometric Brownian Motion (GBM). Before doing this, let us introduce its formal definition. 

We start by considering the stochastic process called Brownian Motion (also known as the Wiener 

Process) that we define to be 𝐵(𝑡). The following is the formal definition of Brownian Motion. 

Definition I (Phillips, 2017)  

Brownian motion satisfies the following for t ≥ 0:  

1. 𝐵(0) = 0 

2. The sample paths of 𝐵(𝑡) are continuous 

3. The increments of 𝐵(𝑡) are independent. This means that for any set of times                                         

0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, the random variables 𝐵(𝑡2) − 𝐵(𝑡1), 𝐵(𝑡3) − 𝐵(𝑡2),…, 𝐵(𝑡𝑛) − 𝐵(𝑡𝑛−1) are 

independent 

4. For any 0 ≤ 𝑠 < 𝑡, the increments are normally distributed, such that 𝐵(𝑡) − 𝐵(𝑠)~𝑁(0, 𝑡 − 𝑠)                           

“These conditions are both necessary and sufficient to define the Wiener Process” (Phillips, 

2017).  

 

However, when modelling stock prices, Brownian Motion is not a good model as the stochastic 

process assumes that the probability of a stock price going up is the same probability as the stock 

price going down, whereas in reality the stock price tends to move up over time (on average) 

(Phillips, 2017). An improved version of Brownian Motion is Brownian Motion with drift. 
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Definition II (Phillips, 2017)  

Brownian Motion with drift is defined to be the following process: 𝑋(𝑡) = 𝑋(0) + 𝑚𝑡 + σB(t), where 
𝑋(0) is the initial value of the process,  ′𝑚′ is the drift per unit time, σ is the volatility and 𝐵(𝑡) is the 
Brownian motion process.  
 
However, the problem with Brownian motion with drift is that the process can take negative values 
(Phillips, 2017) . An improved model is thus Geometric Brownian Motion (GBM). 
 
Definition III (Phillips, 2017) 
Geometric Brownian Motion is defined as the following process:  

 𝑌(𝑡) = 𝑌(0) exp[𝑚𝑡 + σB(t)]. So, the logarithm of 𝑌(𝑡) is Brownian Motion with drift  𝑚, log(𝑌(0)) 

as the initial value and volatility σ. 

This is useful as we cannot take negative values (if we assume that 𝑌(0) > 0).  
 

 
            Figure above taken from: Phillips, M., 2017, A sample path of Geometric Brownian Motion, lecture notes,                                                                                                                                                                     

Foundations of Mathematical  Modelling in Finance, MTH771P, Queen Mary University of London. 
 
The above figure is a sample path of Geometric Brownian Motion. We saw a similar behaviour (i.e. 
an upward trend) when we plotted the whole data set of the prices. In a GBM process we expect a 
normal distribution with no extreme events. So, the distributions that we looked at before with long 
right or left tails were all highly skewed (and not normally distributed) and extreme events were 
strong in all the distributions with long left tails. Thus, those distributions certainly do not represent 
a GBM process. We will now consider the distributions with long tails on both sides and see whether 
they follow a GBM process. 
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The following are the skewness values for the distributions above: 

Time   Skewness 

whole data set  1.88 

1 am 2.96 

3 am -1.83 

5 am  2.28 

8 am  -3.76 

1 pm  -2.03 

5 pm  -2.94 

8 pm   0.62 

9 pm  -0.20 
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As can be seen from the table, the distribution of the whole data set is highly positively skewed as 

well as the distributions of 1 am and 5 am. The distributions of 3 am, 8 am, 1 pm & 5 pm are highly 

negatively skewed. Thus, for these highly skewed distributions we do not have a GBM process as we 

would need the skewness to be zero. However, at 8 pm the distribution is moderately skewed, so 

the skewness at this hour is significantly lower when compared to the hours before that. The 

distribution that shows a strong evidence for a GBM process is for 9 pm as a skewness of -0.20 

means that the distribution is approximately symmetric. This supports a GBM process as we observe 

somewhat a normal distribution whereby the skewness is very close to zero.   

 

 

 

4.0 Conclusion 

We analysed a data set that is given from 1999 to 2007. A study of a longitudinal period enables us 

to get a good insight about how the returns behave for each hour of the day and how extreme 

events such as weather changes affect the prices. When analysing the mean and the variance we 

found some results that we would expect, such as low prices at midnight. We also found            

counter-intuitive results such as a negative mean at 5 pm and 6 pm. To get a better insight about 

the behaviour of the returns, we then looked at the distributions and observed on what hours of 

the day the extreme events had the strongest impact and it turned out that, surprisingly, at 2 am 

the extreme events have a strong impact on the electricity price. Thus, when dealing with real life 

data, we get results that one may not expect and may not be able to explain when solely looking at 

a given data set.  

In conclusion it can be argued that the data set for the whole period, as well as for the periods 

conditioned on the hour, we have a non-stationary time series. There are ways to transform a non-

stationary time series to a stationary time series by differencing the data set and then fitting a model 

to the data set. However, when applying a model to a data set that requires stationarity to a non-

stationary data set, it is likely that we get inaccurate estimators for the fitted model that do not 

follow required mathematical properties such as asymptotic normality or consistency and thus we 

would have a poor forecast of the prices. Moreover, none of the data sets can be modelled by 

Geometric Brownian Motion except the time series for the 9 pm data set, whereby we had a 

skewness close to zero.  

 

 



P a g e  | 38 

 

5.0 References  

Bergman, L., 2001. Regulation and Competition On the Nordic Power Market. In Stockholm School of 

Economics, Stockholm, Sweden. Technical paper presented at 18th World Energy Congress, pp. 1-3. [Online] 

Available at: https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf 

[Accessed 08/07/2018] 

 

Bergman, L., 2002. The Nordic electricity market-continued success or emerging problems?. Swedish 

Economic Policy Review, 9(2), pp. 51-58. [Online] Available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.1518&rep=rep1&type=pdf [Accessed 

02/07/2018] 

Bergman, L.,  2003. European Electricity Market Integration: The Nordic Experiences. In Research Symposium 

European Electricity Markets, The Hague. [Online] Available at: 

https://www.ecn.nl/fileadmin/ecn/units/bs/Symp_Electricity-markets/c1_2-paper.pdf [Accessed 

02/07/2018] 

Boyle, P.E., 2017/2018. Lecture 1: Derivatives Basics, Futures/Forwards, Lecture 2: Introduction to Options, 

Lecture 7: Interest Rates & Swaps, lecture notes, Financial Derivatives,  ECOM026, Queen Mary University of 

London. [Accessed 28/07/2018] 

Erbach, G. , 2016. Understanding electricity markets in the EU. European Parliamentary Research Service, PE 

593.519, pp. 1-5. [online] Available at: 

http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf   

[Accessed 21/07/2018] 

Erzgraeber, H., Strozzi, F., Zaldivar, J.M., Touchette, H., Gutierrez, E. and Arrowsmith, D.K., 2008. Time series 

analysis and long range correlations of Nordic spot electricity market data.    Elsevier, PACS: 05.45.Tp, 05.40.Jc, 

pp. 1-5. [Online] Available at:  

https://pdfs.semanticscholar.org/2b01/bde7404c4fd8fbcb762130cdf757d921ee6b.pdf [Accessed 

07/06/2018] 

Exchange Utility Ltd Company, 2018. What factors affect business electricity prices?.  [Online] Available at:  

https://www.exchangeutility.co.uk/news/business-electricity-prices-what-affects-your-bill-2/ [Accessed 

17/07/2018] 

Giraitis, L., 2017. Lecture 1: Time Series and their characteristics, lecture notes, Time Series Analysis, 

ECOM014, Queen Mary University of London. [Accessed 20/07/2018] 

GoodData Corporation, 2018. Normality Testing-Skewness and Kurtosis. [Online] Available at:  

https://help.gooddata.com/display/doc/Normality+Testing+-+Skewness+and+Kurtosis [Accessed 

01/08/2018] 

https://pdfs.semanticscholar.org/1864/9cffe78f204586e786d29d5204fabc9502dc.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.1518&rep=rep1&type=pdf
https://www.ecn.nl/fileadmin/ecn/units/bs/Symp_Electricity-markets/c1_2-paper.pdf
http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf
https://pdfs.semanticscholar.org/2b01/bde7404c4fd8fbcb762130cdf757d921ee6b.pdf
https://www.exchangeutility.co.uk/news/business-electricity-prices-what-affects-your-bill-2/
https://help.gooddata.com/display/doc/Normality+Testing+-+Skewness+and+Kurtosis


P a g e  | 39 

 

Investopedia, 2018. Types of Financial Markets and Their Roles [Online] Available at: 

https://www.investopedia.com/walkthrough/corporate-finance/1/financial-markets.aspx [Accessed 

22/08/2018] 

Laerd Statistics, Lund Research Ltd, 2018. Measures of Central Tendency. [Online] Available at:  
https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php 
[Accessed 15/07/2018] 
 
Manikandan, S., 2011. Measures of Dispersion.  Journal of Pharmacology & Pharmacotherapeutics, 2(4), 315-

316. [Online] Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198538/ [Accessed 

09/07/2018] 

Musaddique, S., 2017. ‘Cost of Brexit: The impact on business and the economy in 2017 and beyond’, The 

Independent, 26 December. [Online] Available at: 

https://www.independent.co.uk/news/business/news/brexit-economy-sterling-currency-investment-cost-

impact-business-financial-banks-insurance-retail-a7695486.html  [Accessed 14/08/2018] 

Phillips, M., 2017/2018. Topic 7: Continuous-time stochastic processes, lecture notes, Foundations of 

Mathematical Modelling in Finance, MTH771P, Queen Mary University of London. [Accessed 20/07/2018] 

Tsay, R.S., 2010. Analysis of Financial Time Series, Wiley, Hoboken. [Online] Available at: ProQuest Ebook 

Central, pp. 1 & 30. https://ebookcentral-proquest-com.ezproxy.library.qmul.ac.uk/lib/gmul-

ebooks/detail.action?docID=565117    [Accessed 10/07/2018] 

 

U.S. Energy Information Administration (EIA), 2018. Electricity Explained, How Electricity is Delivered to 

Consumers.  [Online] Available at: 

https://www.eia.gov/energyexplained/index.php?page=electricity_delivery  [Accessed 21/07/2018] 

 

 

 

 

 

 

 

 

https://www.investopedia.com/walkthrough/corporate-finance/1/financial-markets.aspx
https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198538/
https://www.independent.co.uk/news/business/news/brexit-economy-sterling-currency-investment-cost-impact-business-financial-banks-insurance-retail-a7695486.html
https://www.independent.co.uk/news/business/news/brexit-economy-sterling-currency-investment-cost-impact-business-financial-banks-insurance-retail-a7695486.html
https://ebookcentral-proquest-com.ezproxy.library.qmul.ac.uk/lib/gmul-ebooks/detail.action?docID=565117
https://ebookcentral-proquest-com.ezproxy.library.qmul.ac.uk/lib/gmul-ebooks/detail.action?docID=565117
https://www.eia.gov/energyexplained/index.php?page=electricity_delivery

